1932

Abstract

Recent advances in cryo-electron microscopy have marked only the beginning of the potential of this technique. To bring structure into cell biology, the modality of cryo-electron tomography has fast developed into a bona fide in situ structural biology technique where structures are determined in their native environment, the cell. Nearly every step of the cryo-focused ion beam-assisted electron tomography (cryo-FIB-ET) workflow has been improved upon in the past decade, since the first windows were carved into cells, unveiling macromolecular networks in near-native conditions. By bridging structural and cell biology, cryo-FIB-ET is advancing our understanding of structure–function relationships in their native environment and becoming a tool for discovering new biology.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-111622-091327
2023-05-09
2024-12-14
Loading full text...

Full text loading...

/deliver/fulltext/biophys/52/1/annurev-biophys-111622-091327.html?itemId=/content/journals/10.1146/annurev-biophys-111622-091327&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Akey CW, Singh D, Ouch C, Echeverria I, Nudelman I et al. 2022. Comprehensive structure and functional adaptations of the yeast nuclear pore complex. Cell 185:2361–78.e25
    [Google Scholar]
  2. 2.
    Albert S, Schaffer M, Beck F, Mosalaganti S, Asano S et al. 2017. Proteasomes tether to two distinct sites at the nuclear pore complex. PNAS 114:5213726–31
    [Google Scholar]
  3. 3.
    Allegretti M, Zimmerli CE, Rantos V, Wilfling F, Ronchi P et al. 2020. In-cell architecture of the nuclear pore and snapshots of its turnover. Nature 586:7831796–800
    [Google Scholar]
  4. 4.
    Asano S, Fukuda Y, Beck F, Aufderheide A, Förster F et al. 2015. Proteasomes. A molecular census of 26S proteasomes in intact neurons. Science 347:6220439–42
    [Google Scholar]
  5. 5.
    Barad BA, Medina M, Fuentes D, Wiseman RL, Grotjahn DA. 2022. A surface morphometrics toolkit to quantify organellar membrane ultrastructure using cryo-electron tomography. bioRxiv 2022.01.23.477440. https://doi.org/10.1101/2022.01.23.477440
  6. 6.
    Bartesaghi A, Lecumberry F, Sapiro G, Subramaniam S. 2012. Protein secondary structure determination by constrained single-particle cryo-electron tomography. Structure 20:122003–13
    [Google Scholar]
  7. 7.
    Bäuerlein FJB, Pastor-Pareja JC, Fernández-Busnadiego R. 2021. Cryo-electron tomography of native Drosophila tissues vitrified by plunge freezing. bioRxiv 2021.04.14.437159. https://doi.org/10.1101/2021.04.14.437159
  8. 8.
    Baumeister W. 2022. Cryo-electron tomography: a long journey to the inner space of cells. Cell 185:152649–52
    [Google Scholar]
  9. 9.
    Beck M, Förster F, Ecke M, Plitzko JM, Melchior F et al. 2004. Nuclear pore complex structure and dynamics revealed by cryoelectron tomography. Science 306:57001387–90
    [Google Scholar]
  10. 10.
    Bell JM, Chen M, Fluty A, Ludtke SJ. 2018. A complete workflow for cellular tomography and subtomogram averaging in EMAN2. Microsc. Microanal. 24:S1866–67
    [Google Scholar]
  11. 11.
    Bepler T, Kelley K, Noble AJ, Berger B. 2020. Topaz-Denoise: general deep denoising models for cryoEM and cryoET. Nat. Commun. 11:5208
    [Google Scholar]
  12. 12.
    Berger C, Dumoux M, Glen T, Yee NB-Y, Mitchels JM et al. 2022. Plasma FIB milling for the determination of structures in situ. bioRxiv 2022.08.01.502333. https://doi.org/10.1101/2022.08.01.502333
  13. 13.
    Berger C, Ravelli RBG, López-Iglesias C, Peters PJ. 2021. Endocytosed nanogold fiducials for improved in-situ cryo-electron tomography tilt-series alignment. J. Struct. Biol. 213:1107698
    [Google Scholar]
  14. 14.
    Bharat TAM, Scheres SHW. 2016. Resolving macromolecular structures from electron cryo-tomography data using subtomogram averaging in RELION. Nat. Protoc. 11:112054–65
    [Google Scholar]
  15. 15.
    Bieber A, Capitanio C, Erdmann PS, Fiedler F, Beck F et al. 2022. In situ structural analysis reveals membrane shape transitions during autophagosome formation. PNAS 119:39e2209823119
    [Google Scholar]
  16. 16.
    Bouvette J, Liu H-F, Du X, Zhou Y, Sikkema AP et al. 2021. Beam image-shift accelerated data acquisition for near-atomic resolution single-particle cryo-electron tomography. Nat. Commun. 12:1957
    [Google Scholar]
  17. 17.
    Briggs JAG. 2013. Structural biology in situ—the potential of subtomogram averaging. Curr. Opin. Struct. Biol. 23:2261–67
    [Google Scholar]
  18. 18.
    Buchholz T-O, Jordan M, Pigino G, Jug F. 2019. Cryo-CARE: content-aware image restoration for cryo-transmission electron microscopy data. arXiv:1810.05420 [ cs.CV ]
  19. 19.
    Buchholz T-O, Krull A, Shahidi R, Pigino G, Jékely G, Jug F. 2019. Content-aware image restoration for electron microscopy. Methods Cell Biol 152:277–89
    [Google Scholar]
  20. 20.
    Burt A, Cassidy CK, Ames P, Bacia-Verloop M, Baulard M et al. 2020. Complete structure of the chemosensory array core signalling unit in an E. coli minicell strain. Nat. Commun. 11:743
    [Google Scholar]
  21. 21.
    Burt A, Gaifas L, Dendooven T, Gutsche I. 2021. A flexible framework for multi-particle refinement in cryo-electron tomography. PLOS Biol 19:8e3001319
    [Google Scholar]
  22. 22.
    Bykov YS, Schaffer M, Dodonova SO, Albert S, Plitzko JM et al. 2017. The structure of the COPI coat determined within the cell. eLife 6:e32493
    [Google Scholar]
  23. 23.
    Cai S, Böck D, Pilhofer M, Gan L. 2018. The in situ structures of mono-, di-, and trinucleosomes in human heterochromatin. Mol. Biol. Cell. 29:202450–57
    [Google Scholar]
  24. 24.
    Castaño-Díez D, Kudryashev M, Arheit M, Stahlberg H. 2012. Dynamo: a flexible, user-friendly development tool for subtomogram averaging of cryo-EM data in high-performance computing environments. J. Struct. Biol. 178:2139–51
    [Google Scholar]
  25. 25.
    Chaikeeratisak V, Nguyen K, Khanna K, Brilot AF, Erb ML et al. 2017. Assembly of a nucleus-like structure during viral replication in bacteria. Science 355:6321194–97
    [Google Scholar]
  26. 26.
    Chen M, Dai W, Sun SY, Jonasch D, He CY et al. 2017. Convolutional neural networks for automated annotation of cellular cryo-electron tomograms. Nat. Methods 14:10983–85
    [Google Scholar]
  27. 27.
    Cheng A, Eng ET, Alink L, Rice WJ, Jordan KD et al. 2018. High resolution single particle cryo-electron microscopy using beam-image shift. J. Struct. Biol. 204:2270–75
    [Google Scholar]
  28. 28.
    Chreifi G, Chen S, Metskas LA, Kaplan M, Jensen GJ. 2019. Rapid tilt-series acquisition for electron cryotomography. J. Struct. Biol. 205:2163–69
    [Google Scholar]
  29. 29.
    Clarke NI, Royle SJ. 2018. FerriTag is a new genetically-encoded inducible tag for correlative light-electron microscopy. Nat. Commun. 9:2604
    [Google Scholar]
  30. 30.
    Collado J, Kalemanov M, Campelo F, Bourgoint C, Thomas F et al. 2019. Tricalbin-mediated contact sites control ER curvature to maintain plasma membrane integrity. Dev. Cell 51:4476–87.e7
    [Google Scholar]
  31. 31.
    Croxford M, Elbaum M, Arigovindan M, Kam Z, Agard D et al. 2021. Entropy-regularized deconvolution of cellular cryotransmission electron tomograms. PNAS 118:50e2108738118
    [Google Scholar]
  32. 32.
    Dahan I, Sorrentino S, Boujemaa-Paterski R, Medalia O. 2018. Tiopronin-protected gold nanoparticles as a potential marker for cryo-EM and tomography. Structure 26:101408–13.e3
    [Google Scholar]
  33. 33.
    Dahlberg PD, Perez D, Hecksel CW, Chiu W, Moerner WE. 2022. Metallic support films reduce optical heating in cryogenic correlative light and electron tomography. J. Struct. Biol. 214:4107901
    [Google Scholar]
  34. 34.
    Dahlberg PD, Saurabh S, Sartor AM, Wang J, Mitchell PG et al. 2020. Cryogenic single-molecule fluorescence annotations for electron tomography reveal in situ organization of key proteins in Caulobacter. PNAS 117:2513937–44
    [Google Scholar]
  35. 35.
    Danev R, Baumeister W. 2016. Cryo-EM single particle analysis with the Volta phase plate. eLife 5:e13046
    [Google Scholar]
  36. 36.
    DeRosier DJ. 2021. Where in the cell is my protein?. Q. Rev. Biophys. 54:e9
    [Google Scholar]
  37. 37.
    Dimchev G, Amiri B, Fäßler F, Falcke M, Schur FK. 2021. Computational toolbox for ultrastructural quantitative analysis of filament networks in cryo-ET data. J. Struct. Biol. 213:4107808
    [Google Scholar]
  38. 38.
    Dodonova SO, Aderhold P, Kopp J, Ganeva I, Röhling S et al. 2017. 9Å structure of the COPI coat reveals that the Arf1 GTPase occupies two contrasting molecular environments. eLife 6:e26691
    [Google Scholar]
  39. 39.
    Douglas JO, Conroy M, Giuliani F, Gault B. 2022. In-situ sputtering from the micromanipulator to enable cryogenic preparation of specimens for atom probe tomography by focused-ion beam. arXiv:2211.06877 [ cond-mat.mtrl-sci ]
  40. 40.
    Dubochet J, Adrian M, Chang JJ, Homo JC, Lepault J et al. 1988. Cryo-electron microscopy of vitrified specimens. Q. Rev. Biophys. 21:2129–228
    [Google Scholar]
  41. 41.
    Eisenstein F, Danev R, Pilhofer M. 2019. Improved applicability and robustness of fast cryo-electron tomography data acquisition. J. Struct. Biol. 208:2107–14
    [Google Scholar]
  42. 42.
    Eisenstein F, Yanagisawa H, Kashihara H, Kikkawa M, Tsukita S, Danev R. 2022. Parallel cryo electron tomography on in situ lamellae. bioRxiv 2022.04.07.487557. https://doi.org/10.1101/2022.04.07.487557
  43. 43.
    Elbaum M, Seifer S, Houben L, Wolf SG, Rez P. 2021. Toward compositional contrast by cryo-STEM. Acc. Chem. Res. 54:193621–31
    [Google Scholar]
  44. 44.
    Elferich J, Schiroli G, Scadden D, Grigorieff N. 2022. Defocus corrected large area cryo-EM (DeCo-LACE) for label-free detection of molecules across entire cell sections. eLife 11:e80980
    [Google Scholar]
  45. 45.
    ENCODE Proj. Consort 2012. An integrated encyclopedia of DNA elements in the human genome. Nature 489:57–74
    [Google Scholar]
  46. 46.
    Engel BD, Schaffer M, Albert S, Asano S, Plitzko JM, Baumeister W. 2015. In situ structural analysis of Golgi intracisternal protein arrays. PNAS 112:3611264–69
    [Google Scholar]
  47. 47.
    Erdmann PS, Hou Z, Klumpe S, Khavnekar S, Beck F et al. 2021. In situ cryo-electron tomography reveals gradient organization of ribosome biogenesis in intact nucleoli. Nat. Commun. 12:5364
    [Google Scholar]
  48. 48.
    Fäßler F, Dimchev G, Hodirnau V-V, Wan W, Schur FKM 2020. Cryo-electron tomography structure of Arp2/3 complex in cells reveals new insights into the branch junction. Nat. Commun. 11:6437
    [Google Scholar]
  49. 49.
    Fäßler F, Zens B, Hauschild R, Schur FKM. 2020. 3D printed cell culture grid holders for improved cellular specimen preparation in cryo-electron microscopy. J. Struct. Biol. 212:3107633
    [Google Scholar]
  50. 50.
    Fatmaoui F, Carrivain P, Grewe D, Jacob B, Victor J-M et al. 2022. Cryo-electron tomography and deep learning-based denoising reveal native chromatin landscapes of interphase nuclei. bioRxiv 2022.08.16.502515. https://doi.org/10.1101/2022.08.16.502515
  51. 51.
    Fernández JJ, Li S, Crowther RA. 2006. CTF determination and correction in electron cryotomography. Ultramicroscopy 106:7587–96
    [Google Scholar]
  52. 52.
    Ferreira JL, Pražák V, Vasishtan D, Siggel M, Hentzschel F et al. 2022. Form follows function: variable microtubule architecture in the malaria parasite. bioRxiv 2022.04.13.488170. https://doi.org/10.1101/2022.04.13.488170
  53. 53.
    Fontana P, Dong Y, Pi X, Tong AB, Hecksel CW et al. 2022. Structure of cytoplasmic ring of nuclear pore complex by integrative cryo-EM and AlphaFold. Science 376:6598eabm9326
    [Google Scholar]
  54. 54.
    Foster HE, Ventura Santos C, Carter AP 2022. A cryo-ET survey of microtubules and intracellular compartments in mammalian axons. J. Cell Biol. 221:2e202103154
    [Google Scholar]
  55. 55.
    Frangakis AS. 2021. It's noisy out there! A review of denoising techniques in cryo-electron tomography. J. Struct. Biol. 213:4107804
    [Google Scholar]
  56. 56.
    Frangakis AS, Hegerl R. 2001. Noise reduction in electron tomographic reconstructions using nonlinear anisotropic diffusion. J. Struct. Biol. 135:3239–50
    [Google Scholar]
  57. 57.
    Frank J. 2006. Three-Dimensional Electron Microscopy of Macromolecular Assemblies: Visualization of Biological Molecules in Their Native State Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  58. 58.
    Frank J. 2008. Electron Tomography: Methods for Three-Dimensional Visualization of Structures in the Cell Berlin: Springer
    [Google Scholar]
  59. 59.
    Freitas RA Jr., Merkle RC. 2004. Kinematic Self-Replicating Machines Georgetown, TX: Landes Biosci.
    [Google Scholar]
  60. 60.
    Friedman JR, Lackner LL, West M, DiBenedetto JR, Nunnari J, Voeltz GK. 2011. ER tubules mark sites of mitochondrial division. Science 334:6054358–62
    [Google Scholar]
  61. 61.
    Giannuzzi LA. 2006. Introduction to Focused Ion Beams: Instrumentation, Theory, Techniques and Practice Berlin: Springer
    [Google Scholar]
  62. 62.
    Glaeser RM. 2013. Invited review article: methods for imaging weak-phase objects in electron microscopy. Rev. Sci. Instrum. 84:11111101
    [Google Scholar]
  63. 63.
    Gorelick S, Buckley G, Gervinskas G, Johnson TK, Handley A et al. 2019. PIE-scope, integrated cryo-correlative light and FIB/SEM microscopy. eLife 8:e45919
    [Google Scholar]
  64. 64.
    Grange M, Vasishtan D, Grünewald K. 2017. Cellular electron cryo tomography and in situ sub-volume averaging reveal the context of microtubule-based processes. J. Struct. Biol. 197:2181–90
    [Google Scholar]
  65. 65.
    Grant T, Grigorieff N. 2015. Measuring the optimal exposure for single particle cryo-EM using a 2.6 Å reconstruction of rotavirus VP6. eLife 4:e06980
    [Google Scholar]
  66. 66.
    Grimm R, Typke D, Bärmann M, Baumeister W. 1996. Determination of the inelastic mean free path in ice by examination of tilted vesicles and automated most probable loss imaging. Ultramicroscopy 63:3–4169–79
    [Google Scholar]
  67. 67.
    Hagen WJH, Wan W, Briggs JAG. 2017. Implementation of a cryo-electron tomography tilt-scheme optimized for high resolution subtomogram averaging. J. Struct. Biol. 197:2191–98
    [Google Scholar]
  68. 68.
    Han D, Pal S, Nangreave J, Deng Z, Liu Y, Yan H. 2011. DNA origami with complex curvatures in three-dimensional space. Science 332:6027342–46
    [Google Scholar]
  69. 69.
    Himes BA, Zhang P. 2018. emClarity: software for high-resolution cryo-electron tomography and subtomogram averaging. Nat. Methods. 15:11955–61
    [Google Scholar]
  70. 70.
    Hoffman DP, Shtengel G, Xu CS, Campbell KR, Freeman M et al. 2020. Correlative three-dimensional super-resolution and block-face electron microscopy of whole vitreously frozen cells. Science 367:6475eaaz5357
    [Google Scholar]
  71. 71.
    Hoffmann PC, Bharat TAM, Wozny MR, Boulanger J, Miller EA, Kukulski W. 2019. Tricalbins contribute to cellular lipid flux and form curved ER-PM contacts that are bridged by rod-shaped structures. Dev. Cell 51:4488–502.e8
    [Google Scholar]
  72. 72.
    Iancu CV, Tivol WF, Schooler JB, Dias DP, Henderson GP et al. 2006. Electron cryotomography sample preparation using the Vitrobot. Nat. Protoc. 1:62813–19
    [Google Scholar]
  73. 73.
    Jasnin M, Ecke M, Baumeister W, Gerisch G. 2016. Actin organization in cells responding to a perforated surface, revealed by live imaging and cryo-electron tomography. Structure 24:71031–43
    [Google Scholar]
  74. 74.
    Jiang W, Wagner J, Du W, Plitzko J, Baumeister W et al. 2022. A transformation clustering algorithm and its application in polyribosomes structural profiling. Nucleic Acids Res 50:169001–11
    [Google Scholar]
  75. 75.
    Kelley K, Raczkowski AM, Klykov O, Jaroenlak P, Bobe D et al. 2022. Waffle method: a general and flexible approach for improving throughput in FIB-milling. Nat. Commun. 13:1857
    [Google Scholar]
  76. 76.
    Khanna K, Villa E. 2022. Revealing bacterial cell biology using cryo-electron tomography. Curr. Opin. Struct. Biol. 75:102419
    [Google Scholar]
  77. 77.
    Khavnekar S, Wan W, Majumder P, Wietrzynski W, Erdmann PS, Plitzko JM. 2023. Multishot tomography for high-resolution in situ subtomogram averaging. J. Struct. Biol. 215:107911
    [Google Scholar]
  78. 78.
    Khavnekar S, Vrbovská V, Zaoralová M, Kelley R, Beck F et al. 2022. Optimizing cryo-FIB lamellas for sub-5Å in situ structural biology. bioRxiv 2022.06.16.496417. https://doi.org/10.1101/2022.06.16.496417
  79. 79.
    Klumpe S, Fung HK, Goetz SK, Zagoriy I, Hampoelz B et al. 2021. A modular platform for automated cryo-FIB workflows. eLife 10:e70506
    [Google Scholar]
  80. 80.
    Kuba J, Mitchels J, Hovorka M, Erdmann P, Berka L et al. 2021. Advanced cryo-tomography workflow developments—correlative microscopy, milling automation and cryo-lift-out. J. Microsc. 281:2112–24
    [Google Scholar]
  81. 81.
    Kühlbrandt W. 2014. The resolution revolution. Science 343:61781443–44
    [Google Scholar]
  82. 82.
    Lam V, Villa E. 2021. Practical approaches for cryo-FIB milling and applications for cellular cryo-electron tomography. Methods Mol. Biol. 2215:49–82
    [Google Scholar]
  83. 83.
    Lamm L, Righetto RD, Wietrzynski W, Pöge M, Martinez-Sanchez A et al. 2022. MemBrain: a deep learning-aided pipeline for automated detection of membrane proteins in cryo-electron tomograms. Comput. Methods Programs Biomed. 224:106990
    [Google Scholar]
  84. 84.
    Laughlin TG, Deep A, Prichard AM, Seitz C, Gu Y et al. 2022. Architecture and self-assembly of the jumbo bacteriophage nuclear shell. Nature 608:7922429–35
    [Google Scholar]
  85. 85.
    Lazić I, Wirix M, Leidl ML, de Haas F, Mann D et al. 2022. Single-particle cryo-EM structures from iDPC-STEM at near-atomic resolution. Nat. Methods. 19:91126–36
    [Google Scholar]
  86. 86.
    Lehtinen J, Munkberg J, Hasselgren J, Laine S, Karras T et al. 2018. Noise2Noise: learning image restoration without clean data. arXiv:1803.04189 [ cs.CV ]
  87. 87.
    Liu Y-T, Zhang H, Wang H, Tao C-L, Bi G-Q, Zhou ZH. 2021. Isotropic reconstruction of electron tomograms with deep learning. bioRxiv 2021.07.17.452128. https://doi.org/10.1101/2021.07.17.452128
  88. 88.
    Liu Y-T, Zhang H, Wang H, Tao C-L, Bi G-Q, Zhou ZH. 2022. Isotropic reconstruction for electron tomography with deep learning. Nat. Commun. 13:6482
    [Google Scholar]
  89. 89.
    Lucas BA, Himes BA, Xue L, Grant T, Mahamid J, Grigorieff N. 2021. Locating macromolecular assemblies in cells by 2D template matching with cisTEM. eLife 10:e68946
    [Google Scholar]
  90. 90.
    Lucas BA, Zhang K, Loerch S, Grigorieff N. 2022. In situ single particle classification reveals distinct 60S maturation intermediates in cells. eLife 11:e79272
    [Google Scholar]
  91. 91.
    Mageswaran SK, Grotjahn DA, Zeng X, Barad BA, Medina M et al. 2021. Nanoscale details of mitochondrial fission revealed by cryo-electron tomography. bioRxiv 2021.12.13.472487. https://doi.org/10.1101/2021.12.13.472487
  92. 92.
    Mahamid J, Pfeffer S, Schaffer M, Villa E, Danev R et al. 2016. Visualizing the molecular sociology at the HeLa cell nuclear periphery. Science 351:6276969–72
    [Google Scholar]
  93. 93.
    Mahamid J, Schampers R, Persoon H, Hyman AA, Baumeister W, Plitzko JM. 2015. A focused ion beam milling and lift-out approach for site-specific preparation of frozen-hydrated lamellas from multicellular organisms. J. Struct. Biol. 192:2262–69
    [Google Scholar]
  94. 94.
    Marko M, Hsieh C, Schalek R, Frank J, Mannella C. 2007. Focused-ion-beam thinning of frozen-hydrated biological specimens for cryo-electron microscopy. Nat. Methods. 4:3215–17
    [Google Scholar]
  95. 95.
    Martinez-Sanchez A, Garcia I, Asano S, Lucic V, Fernandez J-J. 2014. Robust membrane detection based on tensor voting for electron tomography. J. Struct. Biol. 186:149–61
    [Google Scholar]
  96. 96.
    Martinez-Sanchez A, Kochovski Z, Laugks U, Meyer Zum Alten Borgloh J, Chakraborty S et al. 2020. Template-free detection and classification of membrane-bound complexes in cryo-electron tomograms. Nat. Methods. 17:2209–16
    [Google Scholar]
  97. 97.
    Martynowycz MW, Clabbers MTB, Unge J, Hattne J, Gonen T. 2021. Benchmarking the ideal sample thickness in cryo-EM. PNAS 118:49e210884118
    [Google Scholar]
  98. 98.
    Mastronarde DN. 2005. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152:136–51
    [Google Scholar]
  99. 99.
    Mastronarde DN. 2013. Automated tomographic reconstruction in the IMOD software package. Microsc. Microanal. 19:S2544–45
    [Google Scholar]
  100. 100.
    Mastronarde DN, Held SR. 2017. Automated tilt series alignment and tomographic reconstruction in IMOD. J. Struct. Biol. 197:2102–13
    [Google Scholar]
  101. 101.
    Mattei S, Glass B, Hagen WJH, Kräusslich H-G, Briggs JAG. 2016. The structure and flexibility of conical HIV-1 capsids determined within intact virions. Science 354:63181434–37
    [Google Scholar]
  102. 102.
    Milo R, Jorgensen P, Moran U, Weber G, Springer M. 2010. BioNumbers—the database of key numbers in molecular and cell biology. Nucleic Acids Res 38:D750–53
    [Google Scholar]
  103. 103.
    Milo R, Philips R. 2015. Cell Biology by the Numbers New York: Garland Sci.
    [Google Scholar]
  104. 104.
    Moebel E, Martinez-Sanchez A, Lamm L, Righetto RD, Wietrzynski W et al. 2021. Deep learning improves macromolecule identification in 3D cellular cryo-electron tomograms. Nat. Methods. 18:111386–94
    [Google Scholar]
  105. 105.
    Mosalaganti S, Kosinski J, Albert S, Schaffer M, Strenkert D et al. 2018. In situ architecture of the algal nuclear pore complex. Nat. Commun. 9:2361
    [Google Scholar]
  106. 106.
    Mosalaganti S, Obarska-Kosinska A, Siggel M, Taniguchi R, Turoňová B et al. 2022. AI-based structure prediction empowers integrative structural analysis of human nuclear pores. Science 376:6598eabm9506
    [Google Scholar]
  107. 107.
    Ni T, Frosio T, Mendonça L, Sheng Y, Clare D et al. 2022. High-resolution in situ structure determination by cryo-electron tomography and subtomogram averaging using emClarity. Nat. Protoc. 17:2421–44
    [Google Scholar]
  108. 108.
    O'Reilly FJ, Xue L, Graziadei A, Sinn L, Lenz S et al. 2020. In-cell architecture of an actively transcribing-translating expressome. Science 369:6503554–57
    [Google Scholar]
  109. 109.
    Ori A, Banterle N, Iskar M, Andrés-Pons A, Escher C et al. 2013. Cell type-specific nuclear pores: a case in point for context-dependent stoichiometry of molecular machines. Mol. Syst. Biol. 9:648
    [Google Scholar]
  110. 110.
    Peck A, Carter SD, Mai H, Chen S, Burt A, Jensen GJ. 2022. Montage electron tomography of vitrified specimens. J. Struct. Biol. 214:107860
    [Google Scholar]
  111. 111.
    Peck JV, Fay JF, Strauss JD. 2022. High-speed high-resolution data collection on a 200 keV cryo-TEM. IUCrJ 9:Pt 2243–52
    [Google Scholar]
  112. 112.
    Phan S, Boassa D, Nguyen P, Wan X, Lanman J et al. 2017. 3D reconstruction of biological structures: automated procedures for alignment and reconstruction of multiple tilt series in electron tomography. Adv. Struct. Chem. Imaging 2:8
    [Google Scholar]
  113. 113.
    Phan S, Terada M, Lawrence A 2009. Serial reconstruction and montaging from large-field electron microscope tomograms. Conf. Proc. IEEE Eng. Med. Biol. Sci. 2009:5772–76
    [Google Scholar]
  114. 114.
    Piche N, Bouchard I, Marsh M. 2017. Dragonfly SegmentationTrainer—a general and user-friendly machine learning image segmentation solution. Microsc. Microanal. 23:S1132–33
    [Google Scholar]
  115. 115.
    Prinz WA, Toulmay A, Balla T. 2020. The functional universe of membrane contact sites. Nat. Rev. Mol. Cell Biol. 21:17–24
    [Google Scholar]
  116. 116.
    Pyle E, Hutchings J, Zanetti G. 2022. Strategies for picking membrane-associated particles within subtomogram averaging workflows. Faraday Discuss 240:101–13
    [Google Scholar]
  117. 117.
    Pyle E, Zanetti G. 2021. Current data processing strategies for cryo-electron tomography and subtomogram averaging. Biochem. J. 478:101827–45
    [Google Scholar]
  118. 118.
    Radermacher M. 1988. Three-dimensional reconstruction of single particles from random and nonrandom tilt series. J. Electron Microsc. Technol. 9:4359–94
    [Google Scholar]
  119. 119.
    Rice WJ, Cheng A, Noble AJ, Eng ET, Kim LY et al. 2018. Routine determination of ice thickness for cryo-EM grids. J. Struct. Biol. 204:138–44
    [Google Scholar]
  120. 120.
    Rickgauer JP, Grigorieff N, Denk W. 2017. Single-protein detection in crowded molecular environments in cryo-EM images. eLife 6:e25648
    [Google Scholar]
  121. 121.
    Sanchez RM, Zhang Y, Chen W, Dietrich L, Kudryashev M. 2020. Subnanometer-resolution structure determination in situ by hybrid subtomogram averaging—single particle cryo-EM. Nat. Commun. 11:3709
    [Google Scholar]
  122. 122.
    Sarder P, Nehorai A. 2006. Deconvolution methods for 3-D fluorescence microscopy images. IEEE Signal Process. Mag. 23:332–45
    [Google Scholar]
  123. 123.
    Schaffer M, Mahamid J, Engel BD, Laugks T, Baumeister W, Plitzko JM. 2017. Optimized cryo-focused ion beam sample preparation aimed at in situ structural studies of membrane proteins. J. Struct. Biol. 197:273–82
    [Google Scholar]
  124. 124.
    Schmid MF, Booth CR. 2008. Methods for aligning and for averaging 3D volumes with missing data. J. Struct. Biol. 161:3243–48
    [Google Scholar]
  125. 125.
    Schorb M, Briggs JAG. 2014. Correlated cryo-fluorescence and cryo-electron microscopy with high spatial precision and improved sensitivity. Ultramicroscopy 143:24–32
    [Google Scholar]
  126. 126.
    Schuller AP, Wojtynek M, Mankus D, Tatli M, Kronenberg-Tenga R et al. 2021. The cellular environment shapes the nuclear pore complex architecture. Nature 598:667–71
    [Google Scholar]
  127. 127.
    Schur FKM, Obr M, Hagen WJH, Wan W, Jakobi AJ et al. 2016. An atomic model of HIV-1 capsid-SP1 reveals structures regulating assembly and maturation. Science 353:6298506–8
    [Google Scholar]
  128. 128.
    Schwartz O, Axelrod JJ, Campbell SL, Turnbaugh C, Glaeser RM, Müller H. 2019. Laser phase plate for transmission electron microscopy. Nat. Methods 16:101016–20
    [Google Scholar]
  129. 129.
    Sergey G, Denis K, Ava H, Gediminas G, Viola O et al. 2018. Oxygen plasma focused ion beam scanning electron microscopy for biological samples. bioRxiv 457820. https://doi.org/10.1101/457820
  130. 130.
    Serwas D, Akamatsu M, Moayed A, Vegesna K, Vasan R et al. 2021. Actin force generation in vesicle formation: mechanistic insights from cryo-electron tomography. Dev. Cell 57:P1132–45.E5
    [Google Scholar]
  131. 131.
    Song K, Shang Z, Fu X, Lou X, Grigorieff N, Nicastro D. 2020. In situ structure determination at nanometer resolution using TYGRESS. Nat. Methods 17:2201–8
    [Google Scholar]
  132. 132.
    Stalling D, Westerhoff M, Hege H-C 2005. Amira: a highly interactive system for visual data analysis. The Visualization Handbook C Hansen, C Johnson 749–67. Amsterdam: Elsevier
    [Google Scholar]
  133. 133.
    Studer D, Humbel BM, Chiquet M. 2008. Electron microscopy of high pressure frozen samples: bridging the gap between cellular ultrastructure and atomic resolution. Histochem. Cell Biol. 130:5877–89
    [Google Scholar]
  134. 134.
    Suloway C, Shi J, Cheng A, Pulokas J, Carragher B et al. 2009. Fully automated, sequential tilt-series acquisition with Leginon. J. Struct. Biol. 167:111–18
    [Google Scholar]
  135. 135.
    Sun SY, Segev-Zarko L-A, Chen M, Pintilie GD, Schmid MF et al. 2022. Cryo-ET of Toxoplasma parasites gives subnanometer insight into tubulin-based structures. PNAS 119:6e2111661119
    [Google Scholar]
  136. 136.
    Tacke S, Erdmann P, Wang Z, Klumpe S, Grange M et al. 2021. A streamlined workflow for automated cryo focused ion beam milling. J. Struct. Biol. 213:3107743
    [Google Scholar]
  137. 137.
    Tegunov D, Xue L, Dienemann C, Cramer P, Mahamid J. 2021. Multi-particle cryo-EM refinement with M visualizes ribosome-antibiotic complex at 3.5 Å in cells. Nat. Methods 18:2186–93
    [Google Scholar]
  138. 138.
    Toro-Nahuelpan M, Zagoriy I, Senger F, Blanchoin L, Théry M, Mahamid J. 2020. Tailoring cryo-electron microscopy grids by photo-micropatterning for in-cell structural studies. Nat. Methods 17:150–54
    [Google Scholar]
  139. 139.
    Turoňová B, Hagen WJH, Obr M, Mosalaganti S, Beugelink JW et al. 2020. Benchmarking tomographic acquisition schemes for high-resolution structural biology. Nat. Commun. 11:876
    [Google Scholar]
  140. 140.
    Turoňová B, Schur FKM, Wan W, Briggs JAG. 2017. Efficient 3D-CTF correction for cryo-electron tomography using NovaCTF improves subtomogram averaging resolution to 3.4Å. J. Struct. Biol. 199:3187–95
    [Google Scholar]
  141. 141.
    Villa E, Schaffer M, Plitzko JM, Baumeister W. 2013. Opening windows into the cell: focused-ion-beam milling for cryo-electron tomography. Curr. Opin. Struct. Biol. 23:5771–77
    [Google Scholar]
  142. 142.
    Verma RS. 1995. Genes V. by Benjamin Lewin Oxford University Press, Oxford and New York, 1994, 1,272 pp. Am. J. Med. Genet. 57:121
    [Google Scholar]
  143. 143.
    Wagner FR, Watanabe R, Schampers R, Singh D, Persoon H et al. 2020. Preparing samples from whole cells using focused-ion-beam milling for cryo-electron tomography. Nat. Protoc. 15:62041–70
    [Google Scholar]
  144. 144.
    Wagner J, Schaffer M, Fernández-Busnadiego R. 2017. Cryo-electron tomography—the cell biology that came in from the cold. FEBS Lett 591:172520–33
    [Google Scholar]
  145. 145.
    Wang K, Strunk K, Zhao G, Gray JL, Zhang P. 2012. 3D structure determination of native mammalian cells using cryo-FIB and cryo-electron tomography. J. Struct. Biol. 180:2318–26
    [Google Scholar]
  146. 146.
    Wang Q, Mercogliano CP, Löwe J. 2011. A ferritin-based label for cellular electron cryotomography. Structure 19:2147–54
    [Google Scholar]
  147. 147.
    Wan W, Briggs JAG. 2016. Cryo-electron tomography and subtomogram averaging. Methods Enzymol 579:329–67
    [Google Scholar]
  148. 148.
    Wan W, Khavnekar S, Wagner J, Erdmann P, Baumeister W. 2020. STOPGAP: a software package for subtomogram averaging and refinement. Microsc. Microanal. 26:S22516
    [Google Scholar]
  149. 149.
    Watanabe R, Buschauer R, Böhning J, Audagnotto M, Lasker K et al. 2020. The in situ structure of Parkinson's disease-linked LRRK2. Cell 182:1508–18.e16
    [Google Scholar]
  150. 150.
    Waugh B, Wolf SG, Fass D, Branlund E, Kam Z et al. 2020. Three-dimensional deconvolution processing for STEM cryotomography. PNAS 117:4427374–80
    [Google Scholar]
  151. 151.
    Weis F, Hagen WJH. 2020. Combining high throughput and high quality for cryo-electron microscopy data collection. Acta Crystallogr. D 76:Pt 8724–28
    [Google Scholar]
  152. 152.
    Weiss GL, Kieninger A-K, Maldener I, Forchhammer K, Pilhofer M. 2019. Structure and function of a bacterial gap junction analog. Cell 178:2374–84.e15
    [Google Scholar]
  153. 153.
    Wietrzynski W, Schaffer M, Tegunov D, Albert S, Kanazawa A et al. 2020. Charting the native architecture of Chlamydomonas thylakoid membranes with single-molecule precision. eLife 9:e53740
    [Google Scholar]
  154. 154.
    Winey M, Meehl JB, O'Toole ET, Giddings TH Jr. 2014. Conventional transmission electron microscopy. Mol. Biol. Cell. 25:3319–23
    [Google Scholar]
  155. 155.
    Winey M, Yarar D, Giddings TH Jr., Mastronarde DN. 1997. Nuclear pore complex number and distribution throughout the Saccharomyces cerevisiae cell cycle by three-dimensional reconstruction from electron micrographs of nuclear envelopes. Mol. Biol. Cell 8:2119–32
    [Google Scholar]
  156. 156.
    Wolf SG, Houben L, Elbaum M. 2014. Cryo-scanning transmission electron tomography of vitrified cells. Nat. Methods 11:4423–28
    [Google Scholar]
  157. 157.
    Wolff G, Limpens RWAL, Zheng S, Snijder EJ, Agard DA et al. 2019. Mind the gap: Micro-expansion joints drastically decrease the bending of FIB-milled cryo-lamellae. J. Struct. Biol. 208:3107389
    [Google Scholar]
  158. 158.
    Wozny MR, Di Luca A, Morado DR, Picco A, Hoffmann PC et al. 2022. Supramolecular architecture of the ER-mitochondria encounter structure in its native environment. bioRxiv 2022.04.12.488000. https://doi.org/10.1101/2022.04.12.488000
  159. 159.
    Xing J, Takeuchi K, Kamei K, Nakamuro T, Harano K, Nakamura E. 2022. Atomic-number (Z)-correlated atomic sizes for deciphering electron microscopic molecular images. PNAS 119:14e2114432119
    [Google Scholar]
  160. 160.
    Yamada H, Yamaguchi M, Shimizu K, Murayama SY, Mitarai S et al. 2017. Structome analysis of Escherichia coli cells by serial ultrathin sectioning reveals the precise cell profiles and the ribosome density. Microscopy 66:283–94
    [Google Scholar]
  161. 161.
    Yang JE, Larson MR, Sibert BS, Kim JY, Parrell D et al. 2022. Correlative cryogenic montage electron tomography for comprehensive in-situ whole-cell structural studies. bioRxiv 2021.12.31.474669. https://doi.org/10.1101/2021.12.31.474669
  162. 162.
    Yesibolati MN, Laganá S, Kadkhodazadeh S, Mikkelsen EK, Sun H et al. 2020. Electron inelastic mean free path in water. Nanoscale 12:4020649–57
    [Google Scholar]
  163. 163.
    Zachs T, Schertel A, Medeiros J, Weiss GL, Hugener J et al. 2020. Fully automated, sequential focused ion beam milling for cryo-electron tomography. eLife 9:e52286
    [Google Scholar]
  164. 164.
    Zhang P. 2019. Advances in cryo-electron tomography and subtomogram averaging and classification. Curr. Opin. Struct. Biol. 58:249–58
    [Google Scholar]
  165. 165.
    Zheng S, Wolff G, Greenan G, Chen Z, Faas FGA et al. 2022. AreTomo: an integrated software package for automated marker-free, motion-corrected cryo-electron tomographic alignment and reconstruction. J. Struct. Biol. X 6:100068
    [Google Scholar]
  166. 166.
    Zimmerli CE, Allegretti M, Rantos V, Goetz SK, Obarska-Kosinska A et al. 2021. Nuclear pores dilate and constrict in cellulo. Science 374:6573eabd9776
    [Google Scholar]
  167. 167.
    Zivanov J, Nakane T, Forsberg BO, Kimanius D, Hagen WJ et al. 2018. New tools for automated high-resolution cryo-EM structure determination in RELION-3. eLife 7:e42166
    [Google Scholar]
/content/journals/10.1146/annurev-biophys-111622-091327
Loading
/content/journals/10.1146/annurev-biophys-111622-091327
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error