1932

Abstract

Biophysics is a way of approaching biological problems through numbers, physical laws, models, and quantitative logic. In a long scientific career, I have seen the formation and fruition of the ion channel concept through biophysical study. Marvelous discoveries were made as our instruments evolved from vacuum tubes to transistors; computers evolved from the size of an entire building to a few chips inside our instruments; and genome sequencing, gene expression, and atom-level structural biology became accessible to all laboratories. Science is rewarding and exhilarating.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-120121-074034
2022-05-09
2024-05-14
Loading full text...

Full text loading...

/deliver/fulltext/biophys/51/1/annurev-biophys-120121-074034.html?itemId=/content/journals/10.1146/annurev-biophys-120121-074034&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Adams DJ, Dwyer TM, Hille B. 1980. The permeability of endplate channels to monovalent and divalent metal cations. J. Gen. Physiol. 75:493–510
    [Google Scholar]
  2. 2.
    Armstrong CM. 1966. Time course of TEA+-induced anomalous rectification in squid giant axons. J. Gen. Physiol. 50:491–503
    [Google Scholar]
  3. 3.
    Armstrong CM. 1969. Inactivation of the potassium conductance and related phenomena caused by quaternary ammonium ion injection in squid axons. J. Gen. Physiol. 54:553–75
    [Google Scholar]
  4. 4.
    Armstrong CM. 1971. Interaction of tetraethylammonium ion derivatives with the potassium channels of giant axons. J. Gen. Physiol. 58:413–37
    [Google Scholar]
  5. 5.
    Armstrong CM, Binstock L. 1965. Anomalous rectification in the squid giant axon injected with tetraethylammonium chloride. J. Gen. Physiol. 48:859–72
    [Google Scholar]
  6. 6.
    Beech DJ, Bernheim L, Hille B. 1992. Pertussis toxin and voltage dependence distinguish multiple pathways modulating calcium channels of rat sympathetic neurons. Neuron 8:97–106
    [Google Scholar]
  7. 7.
    Beech DJ, Bernheim L, Mathie A, Hille B 1991. Intracellular Ca2+ buffers disrupt muscarinic suppression of Ca2+ current and M current in rat sympathetic neurons. PNAS 88:652–56
    [Google Scholar]
  8. 8.
    Bernheim L, Beech DJ, Hille B. 1991. A diffusible second messenger mediates one of the pathways coupling receptors to calcium channels in rat sympathetic neurons. Neuron 6:859–67
    [Google Scholar]
  9. 9.
    Bernheim L, Mathie A, Hille B 1992. Characterization of muscarinic receptor subtypes inhibiting Ca2+ current and M current in rat sympathetic neurons. PNAS 89:9544–48
    [Google Scholar]
  10. 10.
    Breitwieser GE, Szabo G. 1985. Uncoupling of cardiac muscarinic and beta-adrenergic receptors from ion channels by a guanine nucleotide analogue. Nature 317:538–40
    [Google Scholar]
  11. 11.
    Brown DA, Adams PR. 1980. Muscarinic suppression of a novel voltage-sensitive K+ current in a vertebrate neurone. Nature 283:673–76
    [Google Scholar]
  12. 12.
    Courtney KR. 1975. Mechanism of frequency-dependent inhibition of sodium currents in frog myelinated nerve by the lidocaine derivative GEA. J. Pharmacol. Exp. Ther. 195:225–36
    [Google Scholar]
  13. 13.
    Cowan AE, Moraru II, Schaff JC, Slepchenko BM, Loew LM. 2012. Spatial modeling of cell signaling networks. Methods Cell Biol 110:195–221
    [Google Scholar]
  14. 14.
    Dickson EJ, Falkenburger BH, Hille B. 2013. Quantitative properties and receptor reserve of the IP3 and calcium branch of Gq-coupled receptor signaling. J. Gen. Physiol. 141:521–35
    [Google Scholar]
  15. 15.
    Dodge FA, Frankenhaeuser B. 1958. Membrane currents in isolated frog nerve fibre under voltage clamp conditions. J. Physiol. 143:76–90
    [Google Scholar]
  16. 16.
    Dodge FA, Frankenhaeuser B. 1959. Sodium currents in the myelinated nerve fibre of Xenopus laevis investigated with the voltage clamp technique. J. Physiol. 148:188–200
    [Google Scholar]
  17. 17.
    Doyle DA, Morais Cabral J, Pfuetzner RA, Kuo A, Gulbis JM et al. 1998. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280:69–77
    [Google Scholar]
  18. 18.
    Dwyer TM, Adams DJ, Hille B 1980. The permeability of the endplate channel to organic cations in frog muscle. J. Gen. Physiol. 75:469–92
    [Google Scholar]
  19. 19.
    Falkenburger BH, Dickson EJ, Hille B. 2013. Quantitative properties and receptor reserve of the DAG and PKC branch of Gq-coupled receptor signaling. J. Gen. Physiol. 141:537–55
    [Google Scholar]
  20. 20.
    Gamal El-Din TM, Lenaeus MJ, Zheng N, Catterall WA 2018. Fenestrations control resting-state block of a voltage-gated sodium channel. PNAS 115:13111–16
    [Google Scholar]
  21. 21.
    Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ. 1981. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch 391:85–100
    [Google Scholar]
  22. 22.
    Heckmann K. 1965. Zur Theorie der “single file”-Diffusion. Part I. Z. Phys. Chem. 44:184–203
    [Google Scholar]
  23. 23.
    Heckmann K. 1968. Zur Theorie der “single file”-Diffusion. Part III. Sigmoide Konzentrationsabhängigkeit unidirectionaler Flüsse bei “single file” Diffusion. Z. Phys. Chem. 58:201–19
    [Google Scholar]
  24. 24.
    Herlitze S, Garcia DE, Mackie K, Hille B, Scheuer T, Catterall WA. 1996. Modulation of Ca2+ channels by G-protein βγ subunits. Nature 380:258–62
    [Google Scholar]
  25. 25.
    Hilgemann DW, Ball R. 1996. Regulation of cardiac Na+,Ca2+ exchange and KATP potassium channels by PIP2. Science 273:956–59
    [Google Scholar]
  26. 26.
    Hille B. 1966. Common mode of action of three agents that decrease the transient change in sodium permeability in nerves. Nature 210:1220–22
    [Google Scholar]
  27. 27.
    Hille B. 1967. A pharmacological analysis of the ionic channels of nerve. PhD thesis Rockefeller Univ. New York:
    [Google Scholar]
  28. 28.
    Hille B. 1967. The selective inhibition of delayed potassium currents in nerve by tetraethylammonium ion. J. Gen. Physiol. 50:1287–302
    [Google Scholar]
  29. 29.
    Hille B. 1968. Charges and potentials at the nerve surface. Divalent ions and pH. J. Gen. Physiol. 51:221–36
    [Google Scholar]
  30. 30.
    Hille B. 1968. Pharmacological modifications of the sodium channels of frog nerve. J. Gen. Physiol. 51:199–219
    [Google Scholar]
  31. 31.
    Hille B. 1970. Ionic channels in nerve membranes. Prog. Biophys. Mol. Biol. 21:1–32
    [Google Scholar]
  32. 32.
    Hille B. 1971. The permeability of the sodium channel to organic cations in myelinated nerve. J. Gen. Physiol. 58:599–619
    [Google Scholar]
  33. 33.
    Hille B. 1972. The permeability of the sodium channel to metal cations in myelinated nerve. J. Gen. Physiol. 59:637–58
    [Google Scholar]
  34. 34.
    Hille B. 1973. Potassium channels in myelinated nerve. Selective permeability to small cations. J. Gen. Physiol. 61:669–86
    [Google Scholar]
  35. 35.
    Hille B. 1975. Ionic selectivity, saturation, and block in sodium channels. A four-barrier model. J. Gen. Physiol. 66:535–60
    [Google Scholar]
  36. 36.
    Hille B. 1977. Ionic channels of nerve: questions for theoretical chemists. BioSystems 8:195–99
    [Google Scholar]
  37. 37.
    Hille B. 1977. Local anesthetics: hydrophilic and hydrophobic pathways for the drug-receptor reaction. J. Gen. Physiol. 69:497–515
    [Google Scholar]
  38. 38.
    Hille B. 1977. The pH-dependent rate of action of local anesthetics on the node of Ranvier. J. Gen. Physiol. 69:475–96
    [Google Scholar]
  39. 39.
    Hille B. 1984. Ionic Channels of Excitable Membranes Sunderland, MA: Sinauer Assoc. , 1st ed..
  40. 40.
    Hille B. 1992. Ionic Channels of Excitable Membranes Sunderland, MA: Sinauer Assoc. , 2nd ed..
  41. 41.
    Hille B. 2001. Ion Channels of Excitable Membranes Sunderland, MA: Sinauer Assoc. , 3rd ed..
  42. 42.
    Hille B. 2012. Bertil Hille. The History of Neuroscience in Autobiography, Vol. 7 LR Squire 140–87 Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  43. 43.
    Hille B, Schwarz W. 1978. Potassium channels as multi-ion single-file pores. J. Gen. Physiol. 72:409–42
    [Google Scholar]
  44. 44.
    Hodgkin AL, Huxley AF. 1952. The components of membrane conductance in the giant axon of Loligo. J. Physiol. 116:473–96
    [Google Scholar]
  45. 45.
    Hodgkin AL, Huxley AF. 1952. Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J. Physiol. 116:449–72
    [Google Scholar]
  46. 46.
    Hodgkin AL, Huxley AF. 1952. The dual effect of membrane potential on sodium conductance in the giant axon of Loligo. J. Physiol. 116:497–506
    [Google Scholar]
  47. 47.
    Hodgkin AL, Huxley AF. 1952. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117:500–44
    [Google Scholar]
  48. 48.
    Hodgkin AL, Huxley AF, Katz B. 1952. Measurement of current-voltage relations in the membrane of the giant axon of Loligo. J. Physiol. 116:424–48
    [Google Scholar]
  49. 49.
    Hodgkin AL, Keynes RD. 1955. The potassium permeability of a giant nerve fibre. J. Physiol. 128:61–88
    [Google Scholar]
  50. 50.
    Ikeda SR. 1996. Voltage-dependent modulation of N-type calcium channels by G-protein βγ subunits. Nature 380:255–58
    [Google Scholar]
  51. 51.
    Khodorov BI. 1991. Role of inactivation in local anesthetic action. Ann. N. Y. Acad. Sci. 625:224–48
    [Google Scholar]
  52. 52.
    Logothetis DE, Kurachi Y, Galper J, Neer EJ, Clapham DE. 1987. The βγ subunits of GTP-binding proteins activate the muscarinic K+ channel in heart. Nature 325:321–26
    [Google Scholar]
  53. 53.
    Lopatin AN, Makhina EN, Nichols CG. 1994. Potassium channel block by cytoplasmic polyamines as the mechanism of intrinsic rectification. Nature 372:366–69
    [Google Scholar]
  54. 54.
    Mathie A, Bernheim L, Hille B. 1992. Inhibition of N- and L-type calcium channels by muscarinic receptor activation in rat sympathetic neurons. Neuron 8:907–14
    [Google Scholar]
  55. 55.
    Morales-Perez CL, Noviello CM, Hibbs RE 2016. X-ray structure of the human α4β2 nicotinic receptor. Nature 538:411–15
    [Google Scholar]
  56. 56.
    Nonner W. 1969. A new voltage clamp method for Ranvier nodes. Pflugers Arch 309:176–92
    [Google Scholar]
  57. 57.
    Payandeh J, Scheuer T, Zheng N, Catterall WA 2011. The crystal structure of a voltage-gated sodium channel. Nature 475:353–58
    [Google Scholar]
  58. 58.
    Pfaffinger PJ, Leibowitz MD, Subers EM, Nathanson NM, Almers W, Hille B. 1988. Agonists that suppress M-current elicit phosphoinositide turnover and Ca2+ transients, but these events do not explain M-current suppression. Neuron 1:477–84
    [Google Scholar]
  59. 59.
    Pfaffinger PJ, Martin JM, Hunter DD, Nathanson NM, Hille B. 1985. GTP-binding proteins couple cardiac muscarinic receptors to a K channel. Nature 317:536–38
    [Google Scholar]
  60. 60.
    Schwarz W, Palade PT, Hille B. 1977. Local anesthetics. Effect of pH on use-dependent block of sodium channels in frog muscle. Biophys. J. 20:343–68
    [Google Scholar]
  61. 61.
    Smrcka AV, Hepler JR, Brown KO, Sternweis PC. 1991. Regulation of polyphosphoinositide-specific phospholipase C activity by purified Gq. Science 251:804–7
    [Google Scholar]
  62. 62.
    Stauch B, Johansson LC, McCorvy JD, Patel N, Han GW et al. 2019. Structural basis of ligand recognition at the human MT1 melatonin receptor. Nature 569:284–88
    [Google Scholar]
  63. 63.
    Strichartz GR. 1973. The inhibition of sodium currents in myelinated nerve by quaternary derivatives of lidocaine. J. Gen. Physiol. 62:37–57
    [Google Scholar]
  64. 64.
    Suh BC, Hille B. 2002. Recovery from muscarinic modulation of M current channels requires phosphatidylinositol 4,5-bisphosphate synthesis. Neuron 35:507–20
    [Google Scholar]
  65. 65.
    Suh BC, Hille B. 2008. PIP2 is a necessary cofactor for ion channel function: how and why?. Annu. Rev. Biophys. 37:175–95
    [Google Scholar]
  66. 66.
    Sun J, MacKinnon R. 2020. Structural basis of human KCNQ1 modulation and gating. Cell 180:340–47
    [Google Scholar]
  67. 67.
    Tse A, Hille B. 1992. GnRH-induced Ca2+ oscillations and rhythmic hyperpolarizations of pituitary gonadotropes. Science 255:462–64
    [Google Scholar]
  68. 68.
    Tse A, Tse FW, Almers W, Hille B 1993. Rhythmic exocytosis stimulated by GnRH-induced calcium oscillations in rat gonadotropes. Science 260:82–84
    [Google Scholar]
  69. 69.
    Tse FW, Tse A, Hille B. 1994. Cyclic Ca2+ changes in intracellular stores of gonadotropes during gonadotropin-releasing hormone-stimulated Ca2+ oscillations. PNAS 91:9750–54
    [Google Scholar]
  70. 70.
    Vandenberg CA. 1987. Inward rectification of a potassium channel in cardiac ventricular cells depends on internal magnesium ions. PNAS 84:2560–64
    [Google Scholar]
  71. 71.
    Wang HS, Pan Z, Shi W, Brown BS, Wymore RS et al. 1998. KCNQ2 and KCNQ3 potassium channel subunits: molecular correlates of the M-channel. Science 282:1890–93
    [Google Scholar]
  72. 72.
    Woodhull AM. 1973. Ionic blockage of sodium channels in nerve. J. Gen. Physiol. 61:687–708
    [Google Scholar]
/content/journals/10.1146/annurev-biophys-120121-074034
Loading
/content/journals/10.1146/annurev-biophys-120121-074034
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error