1932

Abstract

Thriving in times of resource scarcity requires an incredible flexibility of behavioral, physiological, cellular, and molecular functions that must change within a relatively short time. Hibernation is a collection of physiological strategies that allows animals to inhabit inhospitable environments, where they experience extreme thermal challenges and scarcity of food and water. Many different kinds of animals employ hibernation, and there is a spectrum of hibernation phenotypes. Here, we focus on obligatory mammalian hibernators to identify the unique challenges they face and the adaptations that allow hibernators to overcome them. This includes the cellular and molecular strategies used to combat low environmental and body temperatures and lack of food and water. We discuss metabolic, neuronal, and hormonal cues that regulate hibernation and how they are thought to be coordinated by internal clocks. Last, we touch on questions that are left to be addressed in the field of hibernation research. Studies from the last century and more recent work reveal that hibernation is not simply a passive reduction in body temperature and vital parameters but rather an active process seasonally regulated at the molecular, cellular, and organismal levels.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cellbio-012820-095945
2020-10-06
2024-10-04
Loading full text...

Full text loading...

/deliver/fulltext/cellbio/36/1/annurev-cellbio-012820-095945.html?itemId=/content/journals/10.1146/annurev-cellbio-012820-095945&mimeType=html&fmt=ahah

Literature Cited

  1. Al-Arabi A, Andrews JF. 2005. The metabolic effect of thyrotropin releasing hormone (TRH) and norepinephrine (NE) in cold-acclimated obese rats. Biomed. Sci. Instrum. 41:62–67
    [Google Scholar]
  2. Albuquerque EX, Deshpande SS, Guth L 1978. Physiological properties of the innervated and denervated neuromuscular junction of hibernating and nonhibernating ground squirrels. Exp. Neurol. 62:2347–73
    [Google Scholar]
  3. Andrews MT. 2004. Genes controlling the metabolic switch in hibernating mammals. Biochem. Soc. Trans. 32:61021–24
    [Google Scholar]
  4. Andrews MT. 2019. Molecular interactions underpinning the phenotype of hibernation in mammals. J. Exp. Biol. 222:2jeb160606
    [Google Scholar]
  5. Andrews MT, Russeth KP, Drewes LR, Henry P-G 2009. Adaptive mechanisms regulate preferred utilization of ketones in the heart and brain of a hibernating mammal during arousal from torpor. Am. J. Physiol. Regul. Integr. Comp. Physiol. 296:2R383–93
    [Google Scholar]
  6. Aristotle 350 BCE. The History of Animals transl. D Wentworth Thompson, Book 8, Part 13–17 The Internet Classics Archive http://classics.mit.edu/Aristotle/history_anim.mb.txt
    [Google Scholar]
  7. Armitage KB, Shulenberger E. 1972. Evidence for a circannual metabolic cycle in Citellus tridecemlineatus, a hibernator. Comp. Biochem. Physiol. A Physiol. 42:3667–88
    [Google Scholar]
  8. Arnold W. 1988. Social thermoregulation during hibernation in alpine marmots (Marmota marmota). J. Comp. Physiol. B 158:2151–56
    [Google Scholar]
  9. Ashcroft F. 2000. Life at the Extremes Berkeley: Univ. Calif. Press
    [Google Scholar]
  10. Ballinger MA, Schwartz C, Andrews MT 2017. Enhanced oxidative capacity of ground squirrel brain mitochondria during hibernation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 312:3R301–10
    [Google Scholar]
  11. Banks WA, Coon AB, Robinson SM, Moinuddin A, Shultz JM et al. 2004. Triglycerides induce leptin resistance at the blood-brain barrier. Diabetes 53:51253–60
    [Google Scholar]
  12. Barger JL, Brand MD, Barnes BM, Boyer BB 2003. Tissue-specific depression of mitochondrial proton leak and substrate oxidation in hibernating Arctic ground squirrels. Am. J. Physiol. Regul. Integr. Comp. Physiol. 284:5R1306–13
    [Google Scholar]
  13. Barnes BM. 1996. Relationships between hibernation and reproduction in male ground squirrels. Adaptations to the Cold: Tenth International Hibernation Symposium F Geiser, AJ Hulbert, SC Nicol 71–80 Armidale, Aust: Univ. N. Engl. Press
    [Google Scholar]
  14. Barnes BM, Ritter D. 1993. Patterns of body temperature change in hibernating Arctic ground squirrels. Life in the Cold: Ecological, Physiological, and Molecular Mechanisms C Carey, GL Florant, BA Wunder, B Horwitz 119–30 Boulder, CO: Westview Press
    [Google Scholar]
  15. Bautista DM, Siemens J, Glazer JM, Tsuruda PR, Basbaum AI et al. 2007. The menthol receptor TRPM8 is the principal detector of environmental cold. Nature 448:7150204–8
    [Google Scholar]
  16. Bekkevold CM, Robertson KL, Reinhard MK, Battles AH, Rowland NE 2013. Dehydration parameters and standards for laboratory mice. J. Am. Assoc. Lab. Anim. Sci. 52:3233–39
    [Google Scholar]
  17. Berg AH, Combs TP, Du X, Brownlee M, Scherer PE 2001. The adipocyte-secreted protein Acrp30 enhances hepatic insulin action. Nat. Med. 7:8947–53
    [Google Scholar]
  18. Betley JN, Xu S, Cao ZFH, Gong R, Magnus CJ et al. 2015. Neurons for hunger and thirst transmit a negative-valence teaching signal. Nature 521:7551180–85
    [Google Scholar]
  19. Bichet DG. 2019. Regulation of thirst and vasopressin release. Annu. Rev. Physiol. 81:359–73
    [Google Scholar]
  20. Bito LZ, Roberts JC. 1974. The effects of hibernation on the chemical composition of cerebrospinal and intraocular fluids, blood plasma and brain tissue of the woodchuck (Marmota monax). Comp. Biochem. Physiol. A Physiol. 47:1173–93
    [Google Scholar]
  21. Bitting L, Sutin EL, Watson FL, Leard LE, O'Hara BF et al. 1994. C-fos mRNA increases in the ground squirrel suprachiasmatic nucleus during arousal from hibernation. Neurosci. Lett. 165:1117–21
    [Google Scholar]
  22. Blanco MB, Dausmann KH, Faherty SL, Klopfer P, Krystal AD et al. 2016. Hibernation in a primate: Does sleep occur. R. Soc. Open Sci. 3:8160282
    [Google Scholar]
  23. Blouet C, Schwartz GJ. 2012. Brainstem nutrient sensing in the nucleus of the solitary tract inhibits feeding. Cell Metab 16:5579–87
    [Google Scholar]
  24. Bosc C, Andrieux A, Job D 2003. STOP proteins. Biochemistry 42:4212125–32
    [Google Scholar]
  25. Boswell T, Richardson RD, Schwartz MW, D'Alessio DA, Woods SC et al. 1993. NPY and galanin in a hibernator: hypothalamic gene expression and effects on feeding. Brain Res. Bull. 32:4379–84
    [Google Scholar]
  26. Boswell T, Woods SC, Kenagy GJ 1994. Seasonal changes in body mass, insulin, and glucocorticoids of free-living golden-mantled ground squirrels. Gen. Comp. Endocrinol. 96:3339–46
    [Google Scholar]
  27. Boyer BB, Ormseth OA, Buck L, Nicolson M, Pelleymounter MA, Barnes BM 1997. Leptin prevents posthibernation weight gain but does not reduce energy expenditure in Arctic ground squirrels. Comp. Biochem. Physiol. C 118:3405–12
    [Google Scholar]
  28. Bratincsák A, McMullen D, Miyake S, Tóth ZE, Hallenbeck JM, Palkovits M 2007. Spatial and temporal activation of brain regions in hibernation: c-fos expression during the hibernation bout in thirteen-lined ground squirrel. J. Comp. Neurol. 505:4443–58
    [Google Scholar]
  29. Buck CL, Barnes BM. 2000. Effects of ambient temperature on metabolic rate, respiratory quotient, and torpor in an Arctic hibernator. Am. J. Physiol. Regul. Integr. Comp. Physiol. 279:1R255–62
    [Google Scholar]
  30. Buck MJ, Squire TL, Andrews MT 2002. Coordinate expression of the PDK4 gene: a means of regulating fuel selection in a hibernating mammal. Physiol. Genom. 8:15–13
    [Google Scholar]
  31. Carey HV, Andrews MT, Martin SL 2003. Mammalian hibernation: cellular and molecular responses to depressed metabolism and low temperature. Physiol. Rev. 83:41153–81
    [Google Scholar]
  32. Carey HV, Assadi-Porter FM. 2017. The hibernator microbiome: host-bacterial interactions in an extreme nutritional symbiosis. Annu. Rev. Nutr. 37:477–500
    [Google Scholar]
  33. Chatfield PO, Lyman CP, Purpura DP 1951. The effects of temperature on the spontaneous and induced electrical activity in the cerebral cortex of the golden hamster. Electroencephalogr. Clin. Neurophysiol. 3:2225–30
    [Google Scholar]
  34. Chen JF, Yang M, Zhong W, Wang D 2008. Seasonal changes in body mass, serum leptin concentration and UCP1 content in Daurian ground squirrels (Spermophilus dauricus). Hypometabolism in Animals: Torpor, Hibernation and Cryobiology BG Lovegrove, AE McKechnie 269–80 Pietermaritzburg, S. Afr: Univ. KwaZulu-Natal Press
    [Google Scholar]
  35. Clark JT, Kalra PS, Crowley WR, Kalra SP 1984. Neuropeptide Y and human pancreatic polypeptide stimulate feeding behavior in rats. Endocrinology 115:1427–29
    [Google Scholar]
  36. Clemens LE, Heldmaier G, Exner C 2009. Keep cool: Memory is retained during hibernation in Alpine marmots. Physiol. Behav. 98:1–27884
    [Google Scholar]
  37. Concannon P, Levac K, Rawson R, Tennant B, Bensadoun A 2001. Seasonal changes in serum leptin, food intake, and body weight in photoentrained woodchucks. Am. J. Physiol. Regul. Integr. Comp. Physiol. 281:3R951–59
    [Google Scholar]
  38. Coomans CP, Ramkisoensing A, Meijer JH 2015. The suprachiasmatic nuclei as a seasonal clock. Front. Neuroendocrinol. 37:29–42
    [Google Scholar]
  39. Daan S, Barnes BM, Strijkstra AM 1991. Warming up for sleep? Ground squirrels sleep during arousals from hibernation. Neurosci. Lett. 128:2265–68
    [Google Scholar]
  40. Dardente H, Hazlerigg DG, Ebling FJP 2014. Thyroid hormone and seasonal rhythmicity. Front. Endocrinol. 5:19
    [Google Scholar]
  41. Davis DE. 1976. Hibernation and circannual rhythms of food consumption in marmots and ground squirrels. Q. Rev. Biol. 51:4477–514
    [Google Scholar]
  42. Deboer T, Tobler I. 2003. Sleep regulation in the Djungarian hamster: comparison of the dynamics leading to the slow-wave activity increase after sleep deprivation and daily torpor. Sleep 26:5567–72
    [Google Scholar]
  43. Dhaka A, Murray AN, Mathur J, Earley TJ, Petrus MJ, Patapoutian A 2007. TRPM8 is required for cold sensation in mice. Neuron 54:3371–78
    [Google Scholar]
  44. Drew KL, Buck CL, Barnes BM, Christian SL, Rasley BT, Harris MB 2007. Central nervous system regulation of mammalian hibernation: implications for metabolic suppression and ischemia tolerance. J. Neurochem. 102:61713–26
    [Google Scholar]
  45. Drew KL, Rice ME, Kuhn TB, Smith MA 2001. Neuroprotective adaptations in hibernation: therapeutic implications for ischemia-reperfusion, traumatic brain injury and neurodegenerative diseases. Free Radic. Biol. Med. 31:5563–73
    [Google Scholar]
  46. Epperson LE, Rose JC, Carey HV, Martin SL 2009. Seasonal proteomic changes reveal molecular adaptations to preserve and replenish liver proteins during ground squirrel hibernation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 298:2R329–40
    [Google Scholar]
  47. Feketa VV, Nikolaev YA, Merriman DK, Bagriantsev SN, Gracheva EO 2020. CNGA3 acts as a cold sensor in hypothalamic neurons. eLife 9:e55370
    [Google Scholar]
  48. Feng NY, Junkins MS, Merriman DK, Bagriantsev SN, Gracheva EO 2019. Osmolyte depletion and thirst suppression allow hibernators to survive for months without water. Curr. Biol. 29:183053–58.e3
    [Google Scholar]
  49. Florant GL, Healy JE. 2012. The regulation of food intake in mammalian hibernators: a review. J. Comp. Physiol. B 182:4451–67
    [Google Scholar]
  50. Florant GL, Hester L, Ameenuddin S, Rintoul DA 1993. The effect of a low essential fatty acid diet on hibernation in marmots. Am. J. Physiol. Regul. Integr. Comp. Physiol. 264:4R747–53
    [Google Scholar]
  51. Florant GL, Lawrence AK, Williams K, Bauman WA 1985. Seasonal changes in pancreatic B-cell function in euthermic yellow-bellied marmots. Am. J. Physiol. Regul. Integr. Comp. Physiol. 249:2R159–65
    [Google Scholar]
  52. Florant GL, Porst H, Peiffer A, Hudachek SF, Pittman C et al. 2004. Fat-cell mass, serum leptin and adiponectin changes during weight gain and loss in yellow-bellied marmots (Marmota flaviventris). J. Comp. Physiol. B 174:8633–39
    [Google Scholar]
  53. Florant GL, Singer L, Scheurink AJW, Park CR, Richardson RD, Woods SC 1991. Intraventricular insulin reduces food intake and body weight of marmots during the summer feeding period. Physiol. Behav. 49:2335–38
    [Google Scholar]
  54. Folk GE. 1974. Textbook of Environmental Physiology Philadelphia: Lea & Febiger
    [Google Scholar]
  55. Frank CL. 1994. Polyunsaturate content and diet selection by ground squirrels (Spermophilus lateralis). Ecology 75:2458–63
    [Google Scholar]
  56. Friedman JM, Halaas JL. 1998. Leptin and the regulation of body weight in mammals. Nature 395:6704763–70
    [Google Scholar]
  57. Gähwiler BH, Mamoon AM, Schlapfer WT, Tobias CA 1972. Effects of temperature on spontaneous bioelectric activity of cultured nerve cells. Brain Res 40:2527–33
    [Google Scholar]
  58. Galster W, Morrison P. 1975. Gluconeogenesis in Arctic ground squirrels between periods of hibernation. Am. J. Physiol. 228:1325–30
    [Google Scholar]
  59. Gao Q, Horvath TL. 2007. Neurobiology of feeding and energy expenditure. Annu. Rev. Neurosci. 30:367–98
    [Google Scholar]
  60. Gao Y-F, Wang J, Wang H-P, Feng B, Dang K et al. 2012. Skeletal muscle is protected from disuse in hibernating Daurian ground squirrels. Comp. Biochem. Physiol. A 161:3296–300
    [Google Scholar]
  61. Gehnrich SC, Aprille JR. 1988. Hepatic gluconeogenesis and mitochondrial function during hibernation. Comp. Biochem. Physiol. B 91:111–16
    [Google Scholar]
  62. Geiser F. 2004. Metabolic rate and body temperature reduction during hibernation and daily torpor. Annu. Rev. Physiol. 66:239–74
    [Google Scholar]
  63. Geiser F. 2008. Ontogeny and phylogeny of endothermy and torpor in mammals and birds. Comp. Biochem. Physiol. A 150:2176–80
    [Google Scholar]
  64. Geiser F, Kenagy GJ. 1987. Polyunsaturated lipid diet lengthens torpor and reduces body temperature in a hibernator. Am. J. Physiol. Regul. Integr. Comp. Physiol. 252:5R897–901
    [Google Scholar]
  65. Geiser F, Kenagy GJ. 1988. Torpor duration in relation to temperature and metabolism in hibernating ground squirrels. Physiol. Zool. 61:5442–49
    [Google Scholar]
  66. Geiser F, Ruf T. 1995. Hibernation versus daily torpor in mammals and birds: physiological variables and classification of torpor patterns. Physiol. Zool. 68:6935–66
    [Google Scholar]
  67. Gessner C 1551. Lib. I. de Quadrupedibus viviparis. Conradi Gesneri medici Tigurini Historiae Animalium842–1096 https://www.biodiversitylibrary.org/item/136711#page/886/mode/1up
    [Google Scholar]
  68. Goldman SS, Willis JS. 1973. Cold resistance of the brain during hibernation: II. Na-K-activated ATPase. Cryobiology 10:3218–24
    [Google Scholar]
  69. Grabek KR, Cooke TF, Epperson LE, Spees KK, Cabral GF et al. 2019. Genetic variation drives seasonal onset of hibernation in the 13-lined ground squirrel. Commun. Biol. 2:478
    [Google Scholar]
  70. Grabek KR, Martin SL, Hindle AG 2015. Proteomics approaches shed new light on hibernation physiology. J. Comp. Physiol. B 185:6607–27
    [Google Scholar]
  71. Green CJ, Brosnan JT, Fuller BJ, Lowry M, Stubbs M, Ross BD 1984. Effect of hibernation on liver and kidney metabolism in 13-lined ground squirrels. Comp. Biochem. Physiol. B 79:2167–71
    [Google Scholar]
  72. Grigg GC, Beard LA, Augee ML 2004. The evolution of endothermy and its diversity in mammals and birds. Physiol. Biochem. Zool. 77:6982–97
    [Google Scholar]
  73. Guo Q, Mi X, Sun X, Li X, Fu W et al. 2017. Remarkable plasticity of Na+, K+-ATPase, Ca2+-ATPase and SERCA contributes to muscle disuse atrophy resistance in hibernating Daurian ground squirrels. Sci. Rep. 7:110509
    [Google Scholar]
  74. Gwinner E. 1986. Circannual Rhythms Heidelberg, Ger.: Springer
    [Google Scholar]
  75. Hahn TM, Breininger JF, Baskin DG, Schwartz MW 1998. Coexpression of Agrp and NPY in fasting-activated hypothalamic neurons. Nat. Neurosci. 1:4271–72
    [Google Scholar]
  76. Hamilton JD, Pfeiffer EW. 1977. Effects of cold exposure and dehydration on renal function in black-tailed prairie dogs. J. Appl. Physiol. 42:2295–99
    [Google Scholar]
  77. Harlow HJ. 1997. Winter body fat, food consumption and nonshivering thermogenesis of representative spontaneous and facultative hibernators: the white-tailed prairie dog and black-tailed prairie dog. J. Therm. Biol. 22:121–30
    [Google Scholar]
  78. Hazlerigg DG, Lincoln GA. 2011. Hypothesis: Cyclical histogenesis is the basis of circannual timing. J. Biol. Rhythm. 26:6471–85
    [Google Scholar]
  79. Healy JE, Bateman JL, Ostrom CE, Florant GL 2011. Peripheral ghrelin stimulates feeding behavior and positive energy balance in a sciurid hibernator. Horm. Behav. 59:4512–19
    [Google Scholar]
  80. Healy JE, Ostrom CE, Wilkerson GK, Florant GL 2010. Plasma ghrelin concentrations change with physiological state in a sciurid hibernator (Spermophilus lateralis). Gen. Comp. Endocrinol. 166:2372–78
    [Google Scholar]
  81. Heldmaier G, Ortmann S, Elvert R 2004. Natural hypometabolism during hibernation and daily torpor in mammals. Respir. Physiol. Neurobiol. 141:3317–29
    [Google Scholar]
  82. Heller HC. 1979. Hibernation: neural aspects. Annu. Rev. Physiol. 41:305–21
    [Google Scholar]
  83. Heller HC, Colliver GW, Beard J 1977. Thermoregulation during entrance into hibernation. Pflüg. Arch. 369:155–59
    [Google Scholar]
  84. Heller HC, Ruby NF. 2004. Sleep and circadian rhythms in mammalian torpor. Annu. Rev. Physiol. 66:275–89
    [Google Scholar]
  85. Hendriks KDW, Joschko CP, Hoogstra-Berends F, Heegsma J, Faber K-N, Henning RH 2020. Hibernator-derived cells show superior protection and survival in hypothermia compared to non-hibernator cells. Int. J. Mol. Sci. 21:51864
    [Google Scholar]
  86. Hindle AG, Karimpour-Fard A, Epperson LE, Hunter LE, Martin SL 2011. Skeletal muscle proteomics: Carbohydrate metabolism oscillates with seasonal and torpor-arousal physiology of hibernation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 301:5R1440–52
    [Google Scholar]
  87. Hoffstaetter LJ, Mastrotto M, Merriman DK, Dib-Hajj SD, Waxman SG et al. 2018. Somatosensory neurons enter a state of altered excitability during hibernation. Curr. Biol. 28:182998–3004.e3
    [Google Scholar]
  88. Horwitz BA, Chau SM, Hamilton JS, Song C, Gorgone J et al. 2013. Temporal relationships of blood pressure, heart rate, baroreflex function, and body temperature change over a hibernation bout in Syrian hamsters. Am. J. Physiol. Regul. Integr. Comp. Physiol. 305:7R759–68
    [Google Scholar]
  89. Huang X, Koutcherov I, Lin S, Wang H, Storlien L 1996. Localization of leptin receptor mRNA expression in mouse brain. Neuroreport 7:15–172635–38
    [Google Scholar]
  90. Jani A, Martin SL, Jain S, Keys D, Edelstein CL 2013. Renal adaptation during hibernation. Am. J. Physiol. Ren. Physiol. 305:11F1521–32
    [Google Scholar]
  91. Jethwa PH, Warner A, Nilaweera KN, Brameld JM, Keyte JW et al. 2007. VGF-derived peptide, TLQP-21, regulates food intake and body weight in Siberian hamsters. Endocrinology 148:84044–55
    [Google Scholar]
  92. Julius D. 2013. TRP channels and pain. Annu. Rev. Cell Dev. Biol. 29:355–84
    [Google Scholar]
  93. Kahn SE, Hull RL, Utzschneider KM 2006. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 444:7121840–46
    [Google Scholar]
  94. Kehl TH, Morrison P. 1960. Peripheral nerve function and hibernation in the thirteen-lined ground squirrel, Spermophilus tridecemlineatus. Bull. Mus. Comp. Zool. Harv. 124:387–403
    [Google Scholar]
  95. Kenagy GJ. 1980. Interrelation of endogenous annual rhythms of reproduction and hibernation in the golden-mantled ground squirrel. J. Comp. Physiol. 135:4333–39
    [Google Scholar]
  96. Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K 1999. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 402:6762656–60
    [Google Scholar]
  97. Kolomiytseva IK, Perepelkina NI, Zharikova AD, Popov VI 2008. Membrane lipids and morphology of brain cortex synaptosomes isolated from hibernating Yakutian ground squirrel. Comp. Biochem. Physiol. B 151:4386–91
    [Google Scholar]
  98. Krilowicz BL, Edgar DM, Heller HC 1989. Action potential duration increases as body temperature decreases during hibernation. Brain Res 498:173–80
    [Google Scholar]
  99. Krystal AD, Schopler B, Kobbe S, Williams C, Rakatondrainibe H et al. 2013. The relationship of sleep with temperature and metabolic rate in a hibernating primate. PLOS ONE 8:9e69914
    [Google Scholar]
  100. Labrecque N, Cermakian N. 2015. Circadian clocks in the immune system. J. Biol. Rhythm. 30:4277–90
    [Google Scholar]
  101. Langlet F, Levin BE, Luquet S, Mazzone M, Messina A et al. 2013. Tanycytic VEGF-A boosts blood-hypothalamus barrier plasticity and access of metabolic signals to the arcuate nucleus in response to fasting. Cell Metab 17:4607–17
    [Google Scholar]
  102. Larkin JE, Heller HC. 1999. Sleep after arousal from hibernation is not homeostatically regulated. Am. J. Physiol. Regul. Integr. Comp. Physiol. 276:2R522–29
    [Google Scholar]
  103. Laursen WJ, Mastrotto M, Pesta D, Funk OH, Goodman JB et al. 2015. Neuronal UCP1 expression suggests a mechanism for local thermogenesis during hibernation. PNAS 112:51607–12
    [Google Scholar]
  104. Laursen WJ, Schneider ER, Merriman DK, Bagriantsev SN, Gracheva EO 2016. Low-cost functional plasticity of TRPV1 supports heat tolerance in squirrels and camels. PNAS 113:4011342–47
    [Google Scholar]
  105. Lee TM, Zucker I. 1991. Suprachiasmatic nucleus and photic entrainment of circannual rhythms in ground squirrels. J. Biol. Rhythm. 9:4315–30
    [Google Scholar]
  106. Leib DE, Zimmerman CA, Knight ZA 2016. Thirst. Curr. Biol. 26:24R1260–65
    [Google Scholar]
  107. León-Espinosa G, Antón-Fernández A, Tapia-González S, DeFelipe J, Muñoz A 2018. Modifications of the axon initial segment during the hibernation of the Syrian hamster. Brain Struct. Funct. 223:94307–21
    [Google Scholar]
  108. Lewis JE, Ebling FJP. 2017. Tanycytes as regulators of seasonal cycles in neuroendocrine function. Front. Neurol. 8:79
    [Google Scholar]
  109. Lovegrove BG. 2012. A single origin of heterothermy in mammals. Living in a Seasonal World: Thermoregulatory and Metabolic Adaptations T Ruf, C Bieber, W Arnold, E Millesi 3–11 Berlin: Springer
    [Google Scholar]
  110. Lusk G. 1924. Animal calorimetry: twenty-fourth paper. Analysis of the oxidation of mixtures of carbohydrate and fat. J. Biol. Chem. 59:141–42
    [Google Scholar]
  111. Lyman CP, O'Brien RC. 1963. Autonomic control of circulation during the hibernating cycle in ground squirrels. J. Physiol. 168:3477–99
    [Google Scholar]
  112. Lyman CP, Willis JS, Malan A, Wang LCH 1982. Hibernation and Torpor in Mammals and Birds New York: Academic
    [Google Scholar]
  113. MacDonald JA, Storey KB. 1999. Regulation of ground squirrel Na+K+-ATPase activity by reversible phosphorylation during hibernation. Biochem. Biophys. Res. Commun. 254:2424–29
    [Google Scholar]
  114. Malan A. 2010. Is the torpor-arousal cycle of hibernation controlled by a non-temperature-compensated circadian clock. J. Biol. Rhythm. 25:3166–75
    [Google Scholar]
  115. Mandelblat-Cerf Y, Kim A, Burgess CR, Subramanian S, Tannous BA et al. 2017. Bidirectional anticipation of future osmotic challenges by vasopressin neurons. Neuron 93:157–65
    [Google Scholar]
  116. Marcheva B, Ramsey KM, Peek CB, Affinati A, Maury E, Bass J 2013. Circadian clocks and metabolism. Handb. Exp. Pharmacol. 217:127–55
    [Google Scholar]
  117. Masento NA, Golightly M, Field DT, Butler LT, van Reekum CM 2014. Effects of hydration status on cognitive performance and mood. Br. J. Nutr. 111:101841–52
    [Google Scholar]
  118. Mateo JM, Johnston RE. 2000. Retention of social recognition after hibernation in Belding's ground squirrels. Anim. Behav. 59:3491–99
    [Google Scholar]
  119. Matos-Cruz V, Schneider ER, Mastrotto M, Merriman DK, Bagriantsev SN, Gracheva EO 2017. Molecular prerequisites for diminished cold sensitivity in ground squirrels and hamsters. Cell Rep 21:123329–37
    [Google Scholar]
  120. Maury E. 2019. Off the clock: from circadian disruption to metabolic disease. Int. J. Mol. Sci. 20:71597
    [Google Scholar]
  121. McKemy DD, Neuhausser WM, Julius D 2002. Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature 416:687652–58
    [Google Scholar]
  122. Millesi E, Prossinger H, Dittami JP, Fieder M 2001. Hibernation effects on memory in European ground squirrels (Spermophilus citellus). J. Biol. Rhythm. 16:3264–71
    [Google Scholar]
  123. Mrosovsky N. 1975. The amplitude and period of circannual cycles of body weight in golden-mantled ground squirrels with medial hypothalamic lesions. Brain Res 99:197–116
    [Google Scholar]
  124. Mrosovsky N, Boshes M. 1986. Meal patterns and food intakes of ground squirrels during circannual cycles. Appetite 7:2163–75
    [Google Scholar]
  125. Mugahid DA, Sengul TG, You X, Wang Y, Steil L et al. 2019. Proteomic and transcriptomic changes in hibernating grizzly bears reveal metabolic and signaling pathways that protect against muscle atrophy. Sci. Rep. 9:19975
    [Google Scholar]
  126. Muleme HM, Walpole AC, Staples JF 2006. Mitochondrial metabolism in hibernation: metabolic suppression, temperature effects, and substrate preferences. Physiol. Biochem. Zool. 79:3474–83
    [Google Scholar]
  127. Niswender KD, Schwartz MW. 2003. Insulin and leptin revisited: adiposity signals with overlapping physiological and intracellular signaling capabilities. Front. Neuroendocrinol. 24:11–10
    [Google Scholar]
  128. Ollmann MM, Wilson BD, Yang Y-K, Kerns JA, Chen Y et al. 1997. Antagonism of central melanocortin receptors in vitro and in vivo by agouti-related protein. Science 278:5335135–38
    [Google Scholar]
  129. Olson JM, Jinka TR, Larson LK, Danielson JJ, Moore JT et al. 2013. Circannual rhythm in body temperature, torpor, and sensitivity to A1 adenosine receptor agonist in Arctic ground squirrels. J. Biol. Rhythm. 28:3201–7
    [Google Scholar]
  130. Ormseth OA, Nicolson M, Pelleymounter MA, Boyer BB 1996. Leptin inhibits prehibernation hyperphagia and reduces body weight in Arctic ground squirrels. Am. J. Physiol. Regul. Integr. Comp. Physiol. 271:6R1775–79
    [Google Scholar]
  131. Ou J, Ball JM, Luan Y, Zhao T, Miyagishima KJ et al. 2018. iPSCs from a hibernator provide a platform for studying cold adaptation and its potential medical applications. Cell 173:4851–63.e16
    [Google Scholar]
  132. Oxf. Univ. Press 2020. Hibernation. Oxford English Dictionary https://www.oed.com/view/Entry/86665?rskey=0xRn2r&result=1&isAdvanced=false#eid
    [Google Scholar]
  133. Peier AM, Reeve AJ, Andersson DA, Moqrich A, Earley TJ et al. 2002. A heat-sensitive TRP channel expressed in keratinocytes. Science 296:55752046–49
    [Google Scholar]
  134. Pengelley ET, Asmundson SJ, Barnes B, Aloia RC 1976. Relationship of light intensity and photoperiod to circannual rhythmicity in the hibernating ground squirrel, Citellus lateralis. Comp. Biochem. Physiol. A Physiol. 53:3273–77
    [Google Scholar]
  135. Pengelley ET, Fisher KC. 1963. The effect of temperature and photoperiod on the yearly hibernating behavior of captive golden-mantled ground squirrels (Citellus lateralis tescorum). Can. J. Zool. 41:61103–20
    [Google Scholar]
  136. Pliny 77 CE. The Natural History of Pliny transl. J Bostock, HT Riley , Vol. 2311 Project Gutenberg http://www.gutenberg.org/files/57493/57493-h/57493-h.htm
    [Google Scholar]
  137. Popov VI, Medvedev NI, Patrushev IV, Ignat'ev DA, Morenkov ED, Stewart MG 2007. Reversible reduction in dendritic spines in CA1 of rat and ground squirrel subjected to hypothermia-normothermia in vivo: a three-dimensional electron microscope study. Neuroscience 149:3549–60
    [Google Scholar]
  138. Qi Y, Takahashi N, Hileman SM, Patel HR, Berg AH et al. 2004. Adiponectin acts in the brain to decrease body weight. Nat. Med. 10:5524–29
    [Google Scholar]
  139. Reddy AB, Rey G. 2014. Metabolic and nontranscriptional circadian clocks: eukaryotes. Annu. Rev. Biochem. 83:165–89
    [Google Scholar]
  140. Regan MD, Chiang E, Martin SL, Porter WP, Assadi-Porter FM, Carey HV 2019. Shifts in metabolic fuel use coincide with maximal rates of ventilation and body surface rewarming in an arousing hibernator. Am. J. Physiol. Regul. Integr. Comp. Physiol. 316:6R764–75
    [Google Scholar]
  141. Roth TC, Rattenborg NC, Pravosudov VV 2010. The ecological relevance of sleep: the trade-off between sleep, memory and energy conservation. Philos. Trans. R. Soc. B 365:1542945–59
    [Google Scholar]
  142. Ruby NF, Dark J, Heller HC, Zucker I 1998. Suprachiasmatic nucleus: role in circannual body mass and hibernation rhythms of ground squirrels. Brain Res 782:163–72
    [Google Scholar]
  143. Ruczynski I, Siemers BM. 2011. Hibernation does not affect memory retention in bats. Biol. Lett. 7:1153–55
    [Google Scholar]
  144. Ruediger J, Van der Zee EA, Strijkstra AM, Aschoff A, Daan S, Hut RA 2007. Dynamics in the ultrastructure of asymmetric axospinous synapses in the frontal cortex of hibernating European ground squirrels (Spermophilus citellus). Synapse 61:5343–52
    [Google Scholar]
  145. Ruf T, Arnold W. 2008. Effects of polyunsaturated fatty acids on hibernation and torpor: a review and hypothesis. Am. J. Physiol. Regul. Integr. Comp. Physiol. 294:3R1044–52
    [Google Scholar]
  146. Ruf T, Geiser F. 2015. Daily torpor and hibernation in birds and mammals. Biol. Rev. 90:3891–926
    [Google Scholar]
  147. Russ U, Siemen D. 1996. Kinetic parameters of the ionic currents in myelinated axons: characterization of temperature effects in a hibernator and a nonhibernator. Pflüg. Arch. 431:6888–94
    [Google Scholar]
  148. Sáenz de Miera C, Monecke S, Bartzen-Sprauer J, Laran-Chich M-P, Pévet P et al. 2014. A circannual clock drives expression of genes central for seasonal reproduction. Curr. Biol. 24:131500–6
    [Google Scholar]
  149. Schwartz C, Andrews MT. 2013. Circannual transitions in gene expression: lessons from seasonal adaptations. Curr. Top. Dev. Biol. 105:247–73
    [Google Scholar]
  150. Schwartz C, Ballinger MA, Andrews MT 2015a. Melatonin receptor signaling contributes to neuroprotection upon arousal from torpor in thirteen-lined ground squirrels. Am. J. Physiol. Regul. Integr. Comp. Physiol. 309:10R1292–300
    [Google Scholar]
  151. Schwartz C, Hampton M, Andrews MT 2013. Seasonal and regional differences in gene expression in the brain of a hibernating mammal. PLOS ONE 8:3e58427
    [Google Scholar]
  152. Schwartz C, Hampton M, Andrews MT 2015b. Hypothalamic gene expression underlying pre-hibernation satiety. Genes Brain Behav 14:3310–18
    [Google Scholar]
  153. Sharma S, Kavuru M. 2010. Sleep and metabolism: an overview. Int. J. Endocrinol. 2010:270832
    [Google Scholar]
  154. Sheriff MJ, Fridinger RW, Tøien Ø, Barnes BM, Buck CL 2013. Metabolic rate and prehibernation fattening in free-living Arctic ground squirrels. Physiol. Biochem. Zool. 86:5515–27
    [Google Scholar]
  155. South FE. 1961. Phrenic nerve-diaphragm preparations in relation to temperature and hibernation. Am. J. Physiol. 200:3565–71
    [Google Scholar]
  156. Spector DA, Deng J, Coleman R, Wade JB 2015. The urothelium of a hibernator: the American black bear. Physiol. Rep. 3:6e12429
    [Google Scholar]
  157. Squire TL, Lowe ME, Bauer VW, Andrews MT 2003. Pancreatic triacylglycerol lipase in a hibernating mammal. II. Cold-adapted function and differential expression. Physiol. Genom. 16:1131–40
    [Google Scholar]
  158. Stanley BG, Leibowitz SF. 1984. Neuropeptide Y: stimulation of feeding and drinking by injection into the paraventricular nucleus. Life Sci 35:262635–42
    [Google Scholar]
  159. Staples JF. 2014. Metabolic suppression in mammalian hibernation: the role of mitochondria. J. Exp. Biol. 217:122032–36
    [Google Scholar]
  160. Staples JF. 2016. Metabolic flexibility: hibernation, torpor, and estivation. Compr. Physiol. 6:2737–71
    [Google Scholar]
  161. Staples JF, Brown JCL. 2008. Mitochondrial metabolism in hibernation and daily torpor: a review. J. Comp. Physiol. B 178:7811–27
    [Google Scholar]
  162. Steward C, Horan T, Schuhler S, Bennett G, Ebling F 2003. Central administration of thyrotropin releasing hormone (TRH) and related peptides inhibits feeding behavior in the Siberian hamster. Neuroreport 14:5687–91
    [Google Scholar]
  163. Storey KB, Storey JM. 1990. Metabolic rate depression and biochemical adaptation in anaerobiosis, hibernation and estivation. Q. Rev. Biol. 65:2145–74
    [Google Scholar]
  164. Strijkstra AM, Daan S. 1998. Dissimilarity of slow-wave activity enhancement by torpor and sleep deprivation in a hibernator. Am. J. Physiol. Regul. Integr. Comp. Physiol. 275:4R1110–17
    [Google Scholar]
  165. Strijkstra AM, Hut RA, de Wilde MC, Stieler J, Van der Zee EA 2003. Hippocampal synaptophysin immunoreactivity is reduced during natural hypothermia in ground squirrels. Neurosci. Lett. 344:129–32
    [Google Scholar]
  166. Strumwasser F. 1958. Thermoregulatory, brain and behavioral mechanisms during entrance into hibernation in the squirrel. Citellus beecheyi. Am. J. Physiol. 196:115–22
    [Google Scholar]
  167. Suri LNM, Cruz A, Veldhuizen RAW, Staples JF, Possmayer F et al. 2013. Adaptations to hibernation in lung surfactant composition of 13-lined ground squirrels influence surfactant lipid phase segregation properties. Biochim. Biophys. Acta Biomembr. 1828:81707–14
    [Google Scholar]
  168. Suri LNM, McCaig L, Picardi MV, Ospina OL, Veldhuizen RAW et al. 2012. Adaptation to low body temperature influences pulmonary surfactant composition thereby increasing fluidity while maintaining appropriately ordered membrane structure and surface activity. Biochim. Biophys. Acta Biomembr. 1818:71581–89
    [Google Scholar]
  169. Tøien Ø, Blake J, Edgar DM, Grahn DA, Heller HC, Barnes BM 2011. Hibernation in black bears: independence of metabolic suppression from body temperature. Science 331:6019906–9
    [Google Scholar]
  170. Turbill C, Bieber C, Ruf T 2011. Hibernation is associated with increased survival and the evolution of slow life histories among mammals. Proc. R. Soc. B 278:17233355–63
    [Google Scholar]
  171. van Breukelen F, Martin SL 2015. The hibernation continuum: physiological and molecular aspects of metabolic plasticity in mammals. Physiology 30:4273–81
    [Google Scholar]
  172. von der Ohe CG, Darian-Smith C, Garner CC, Heller HC 2006. Ubiquitous and temperature-dependent neural plasticity in hibernators. J. Neurosci. 26:4110590–98
    [Google Scholar]
  173. von der Ohe CG, Garner CC, Darian-Smith C, Heller HC 2007. Synaptic protein dynamics in hibernation. J. Neurosci. 27:184–92
    [Google Scholar]
  174. Walker JM, Glotzbach SF, Berger RJ, Heller HC 1977. Sleep and hibernation in ground squirrels (Citellus spp.): electrophysiological observations. Am. J. Physiol. 233:5R213–21
    [Google Scholar]
  175. Wang LCH. 1979. Time patterns and metabolic rates of natural torpor in the Richardson's ground squirrel. Can. J. Zool. 57:1149–55
    [Google Scholar]
  176. Waterson MJ, Horvath TL. 2015. Neuronal regulation of energy homeostasis: beyond the hypothalamus and feeding. Cell Metab 22:6962–70
    [Google Scholar]
  177. Wikelski M, Martin LB, Scheuerlein A, Robinson MT, Robinson ND et al. 2008. Avian circannual clocks: adaptive significance and possible involvement of energy turnover in their proximate control. Philos. Trans. R. Soc. B 363:1490411–23
    [Google Scholar]
  178. Williams CT, Barnes BM, Kenagy GJ, Buck CL 2014. Phenology of hibernation and reproduction in ground squirrels: integration of environmental cues with endogenous programming. J. Zool. 292:2112–24
    [Google Scholar]
  179. Wu C-W, Biggar KK, Storey KB 2013. Biochemical adaptations of mammalian hibernation: exploring squirrels as a perspective model for naturally induced reversible insulin resistance. Braz. J. Med. Biol. Res. 46:11–13
    [Google Scholar]
  180. Xing X, Tang G-B, Sun M-Y, Yu C, Song S-Y et al. 2016. Leptin regulates energy intake but fails to facilitate hibernation in fattening Daurian ground squirrels (Spermophilus dauricus). J. Therm. Biol. 57:35–43
    [Google Scholar]
  181. Xing X, Yang M, Wang D-H 2015. The expression of leptin, hypothalamic neuropeptides and UCP1 before, during and after fattening in the Daurian ground squirrel (Spermophilus dauricus). Comp. Biochem. Physiol. A 184:105–12
    [Google Scholar]
  182. Zimmerman CA, Leib DE, Knight ZA 2017. Neural circuits underlying thirst and fluid homeostasis. Nat. Rev. Neurosci. 18:8459–69
    [Google Scholar]
  183. Zucker I, Boshes M, Dark J 1983. Suprachiasmatic nuclei influence circannual and circadian rhythms of ground squirrels. Am. J. Physiol. Regul. Integr. Comp. Physiol. 244:4R472–80
    [Google Scholar]
/content/journals/10.1146/annurev-cellbio-012820-095945
Loading
/content/journals/10.1146/annurev-cellbio-012820-095945
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error