1932

Abstract

Neutrophils are critical to innate immunity, including host defense against bacterial and fungal infections. They achieve their host defense role by phagocytosing pathogens, secreting their granules full of cytotoxic enzymes, or expelling neutrophil extracellular traps (NETs) during the process of NETosis. NETs are weblike DNA structures decorated with histones and antimicrobial proteins released by activated neutrophils. Initially described as a means for neutrophils to neutralize pathogens, NET release also occurs in sterile inflammation, promotes thrombosis, and can mediate tissue damage. To effectively manipulate this double-edged sword to fight a particular disease, researchers must work toward understanding the mechanisms driving NETosis. Such understanding would allow the generation of new drugs to promote or prevent NETosis as needed. While knowledge regarding the (patho)physiological roles of NETosis is accumulating, little is known about the cellular and biophysical bases of this process. In this review, we describe and discuss our current knowledge of the molecular, cellular, and biophysical mechanisms mediating NET release as well as open questions in the field.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cellbio-020520-111016
2020-10-06
2024-10-14
Loading full text...

Full text loading...

/deliver/fulltext/cellbio/36/1/annurev-cellbio-020520-111016.html?itemId=/content/journals/10.1146/annurev-cellbio-020520-111016&mimeType=html&fmt=ahah

Literature Cited

  1. Abi Abdallah DS, Lin C, Ball CJ, King MR, Duhamel GE, Denkers EY 2012. Toxoplasma gondii triggers release of human and mouse neutrophil extracellular traps. Infect. Immun. 80:2768–77
    [Google Scholar]
  2. Adrover JM, Aroca-Crevillén A, Crainiciuc G, Ostos F, Rojas-Vega Y et al. 2020. Programmed ‘disarming’ of the neutrophil proteome reduces the magnitude of inflammation. Nat. Immunol. 21:2135–44
    [Google Scholar]
  3. Akashi K, Traver D, Miyamoto T, Weissman IL 2000. A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature 404:6774193–97
    [Google Scholar]
  4. Amulic B, Knackstedt SL, Abu Abed U, Deigendesch N, Harbort CJ et al. 2017. Cell-cycle proteins control production of neutrophil extracellular traps. Dev. Cell 43:4449–62.e5
    [Google Scholar]
  5. Ando S, Tokui T, Yamauchi T, Sugiura H, Tanabe K, Inagaki M 1991. Evidence that Ser-82 is a unique phosphorylation site on vimentin for Ca2+-calmodulin-dependent protein kinase II. Biochem. Biophys. Res. Commun. 175:3955–62
    [Google Scholar]
  6. Armstrong JK, Wenby RB, Meiselman HJ, Fisher TC 2004. The hydrodynamic radii of macromolecules and their effect on red blood cell aggregation. Biophys. J. 87:64259–70
    [Google Scholar]
  7. Asaga H, Yamada M, Senshu T 1998. Selective deimination of vimentin in calcium ionophore-induced apoptosis of mouse peritoneal macrophages. Biochem. Biophys. Res. Commun. 243:3641–46
    [Google Scholar]
  8. Belaaouaj A, McCarthy R, Baumann M, Gao Z, Ley TJ et al. 1998. Mice lacking neutrophil elastase reveal impaired host defense against gram negative bacterial sepsis. Nat. Med. 4:5615–18
    [Google Scholar]
  9. Belmont LD, Hyman AA, Sawin KE, Mitchison TJ 1990. Real-time visualization of cell cycle-dependent changes in microtubule dynamics in cytoplasmic extracts. Cell 62:3579–89
    [Google Scholar]
  10. Berends ETM, Horswill AR, Haste NM, Monestier M, Nizet V, von Köckritz-Blickwede M 2010. Nuclease expression by Staphylococcus aureus facilitates escape from neutrophil extracellular traps. J. Innate Immun. 2:6576–86
    [Google Scholar]
  11. Bianchi M, Hakkim A, Brinkmann V, Siler U, Seger RA et al. 2009. Restoration of NET formation by gene therapy in CGD controls aspergillosis. Blood 114:132619–22
    [Google Scholar]
  12. Branzk N, Lubojemska A, Hardison SE, Wang Q, Gutierrez MG et al. 2014. Neutrophils sense microbial size and selectively release neutrophil extracellular traps in response to large pathogens. Nat. Immunol. 15:111017–25
    [Google Scholar]
  13. Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y et al. 2004. Neutrophil extracellular traps kill bacteria. Science 303:56631532–35
    [Google Scholar]
  14. Byrd AS, O'Brien XM, Johnson CM, Lavigne LM, Reichner JS 2013. An extracellular matrix-based mechanism of rapid neutrophil extracellular trap formation in response to Candida albicans. J. . Immunol 190:84136–48
    [Google Scholar]
  15. Byrd AS, O'Brien XM, Laforce-Nesbitt SS, Parisi VE, Hirakawa MP et al. 2016. NETosis in neonates: evidence of a reactive oxygen species-independent pathway in response to fungal challenge. J. Infect. Dis. 213:4634–39
    [Google Scholar]
  16. Caielli S, Athale S, Domic B, Murat E, Chandra M et al. 2016. Oxidized mitochondrial nucleoids released by neutrophils drive type I interferon production in human lupus. J. Exp. Med. 213:5697–713
    [Google Scholar]
  17. Campbell MS, Lovell MA, Gorbsky GJ 1995. Stability of nuclear segments in human neutrophils and evidence against a role for microfilaments or microtubules in their genesis during differentiation of HL60 myelocytes. J. Leukoc. Biol. 58:6659–66
    [Google Scholar]
  18. Chapman EA, Lyon M, Simpson D, Mason D, Beynon RJ et al. 2019. Caught in a trap? Proteomic analysis of neutrophil extracellular traps in rheumatoid arthritis and systemic lupus erythematosus. Front. Immunol. 10:423
    [Google Scholar]
  19. Chen K, Nishi H, Travers R, Tsuboi N, Martinod K et al. 2012. Endocytosis of soluble immune complexes leads to their clearance by FcγRIIIB but induces neutrophil extracellular traps via FcγRIIA in vivo. Blood 120:224421–31
    [Google Scholar]
  20. Chen KW, Monteleone M, Boucher D, Sollberger G, Ramnath D et al. 2018. Noncanonical inflammasome signaling elicits gasdermin D–dependent neutrophil extracellular traps. Sci. Immunol. 3:26eaar6676
    [Google Scholar]
  21. Chouinard-Pelletier G, Leduc M, Guay D, Coulombe S, Leask RL, Jones EA 2012. Use of inert gas jets to measure the forces required for mechanical gene transfection. Biomed. Eng. Online 11:67
    [Google Scholar]
  22. Chow OA, von Köckritz-Blickwede M, Bright AT, Hensler ME, Zinkernagel AS et al. 2010. Statins enhance formation of phagocyte extracellular traps. Cell Host Microbe 8:5445–54
    [Google Scholar]
  23. Christophorou MA, Castelo-Branco G, Halley-Stott RP, Oliveira CS, Loos R et al. 2014. Citrullination regulates pluripotency and histone H1 binding to chromatin. Nature 507:7490104–8
    [Google Scholar]
  24. Clark SR, Ma AC, Tavener SA, McDonald B, Goodarzi Z et al. 2007. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat. Med. 13:4463–69
    [Google Scholar]
  25. Cuthbert GL, Daujat S, Snowden AW, Erdjument-Bromage H, Hagiwara T et al. 2004. Histone deimination antagonizes arginine methylation. Cell 118:5545–53
    [Google Scholar]
  26. Dahl KN, Kahn SM, Wilson KL, Discher DE 2004. The nuclear envelope lamina network has elasticity and a compressibility limit suggestive of a molecular shock absorber. J. Cell Sci. 117:204779–86
    [Google Scholar]
  27. Dale DC, Hammond WP. 1988. Cyclic neutropenia: a clinical review. Blood Rev 2:3178–85
    [Google Scholar]
  28. de Bont CM, Koopman WJH, Boelens WC, Pruijn GJM 2018. Stimulus-dependent chromatin dynamics, citrullination, calcium signalling and ROS production during NET formation. Biochim. Biophys. Acta Mol. Cell Res. 1865(11, Pt. A) 1621–29
    [Google Scholar]
  29. de Oliveira S, Rosowski EE, Huttenlocher A 2016. Neutrophil migration in infection and wound repair: going forward in reverse. Nat. Rev. Immunol. 16:6378–91
    [Google Scholar]
  30. de Vasconcelos NM, Van Opdenbosch N, Van Gorp H, Parthoens E, Lamkanfi M 2019. Single-cell analysis of pyroptosis dynamics reveals conserved GSDMD-mediated subcellular events that precede plasma membrane rupture. Cell Death Differ 26:146–61
    [Google Scholar]
  31. Delgado-Rizo V, Martínez-Guzmán MA, Iñiguez-Gutierrez L, García-Orozco A, Alvarado-Navarro A, Fafutis-Morris M 2017. Neutrophil extracellular traps and its implications in inflammation: an overview. Front. Immunol. 8:81
    [Google Scholar]
  32. Demers M, Krause DS, Schatzberg D, Martinod K, Voorhees JR et al. 2012. Cancers predispose neutrophils to release extracellular DNA traps that contribute to cancer-associated thrombosis. PNAS 109:3213076–81
    [Google Scholar]
  33. Denais CM, Gilbert RM, Isermann P, McGregor AL, te Lindert M et al. 2016. Nuclear envelope rupture and repair during cancer cell migration. Science 352:6283353–58
    [Google Scholar]
  34. Ding J, Wang K, Liu W, She Y, Sun Q et al. 2016. Pore-forming activity and structural autoinhibition of the gasdermin family. Nature 535:7610111–16
    [Google Scholar]
  35. Dixit N, Simon SI. 2012. Chemokines, selectins and intracellular calcium flux: temporal and spatial cues for leukocyte arrest. Front. Immunol. 3:188
    [Google Scholar]
  36. Douda DN, Khan MA, Grasemann H, Palaniyar N 2015. SK3 channel and mitochondrial ROS mediate NADPH oxidase-independent NETosis induced by calcium influx. PNAS 112:92817–22
    [Google Scholar]
  37. Downey GP, Chan CK, Trudel S, Grinstein S 1990. Actin assembly in electropermeabilized neutrophils: role of intracellular calcium. J. Cell Biol. 110:61975–82
    [Google Scholar]
  38. Duarte S, Viedma-Poyatos Á, Navarro-Carrasco E, Martínez AE, Pajares MA, Pérez-Sala D 2019. Vimentin filaments interact with the actin cortex in mitosis allowing normal cell division. Nat. Commun. 10:4200
    [Google Scholar]
  39. Duranton J, Belorgey D, Carrère J, Donato L, Moritz T, Bieth JG 2000. Effect of DNase on the activity of neutrophil elastase, cathepsin G and proteinase 3 in the presence of DNA. FEBS Lett 473:2154–56
    [Google Scholar]
  40. Ellenberg J, Siggia ED, Moreira JE, Smith CL, Presley JF et al. 1997. Nuclear membrane dynamics and reassembly in living cells: targeting of an inner nuclear membrane protein in interphase and mitosis. J. Cell Biol. 138:61193–206
    [Google Scholar]
  41. Farley K, Stolley JM, Zhao P, Cooley J, Remold-O'Donnell E 2012. A SerpinB1 regulatory mechanism is essential for restricting neutrophil extracellular trap generation. J. Immunol. 189:94574–81
    [Google Scholar]
  42. Fiume R, Keune WJ, Faenza I, Bultsma Y, Ramazzotti G et al. 2012. Nuclear phosphoinositides: location, regulation and function. Subcell. Biochem. 59:335–61
    [Google Scholar]
  43. Fuchs TA, Abed U, Goosmann C, Hurwitz R, Schulze I et al. 2007. Novel cell death program leads to neutrophil extracellular traps. J. Cell Biol. 176:2231–41
    [Google Scholar]
  44. Fuchs TA, Brill A, Duerschmied D, Schatzberg D, Monestier M et al. 2010. Extracellular DNA traps promote thrombosis. PNAS 107:3615880–85
    [Google Scholar]
  45. Gabriel C, McMaster WR, Girard D, Descoteaux A 2010. Leishmania donovani promastigotes evade the antimicrobial activity of neutrophil extracellular traps. J. Immunol. 185:74319–27
    [Google Scholar]
  46. Gasser O, Hess C, Miot S, Deon C, Sanchez J-C, Schifferli JA 2003. Characterisation and properties of ectosomes released by human polymorphonuclear neutrophils. Exp. Cell Res. 285:2243–57
    [Google Scholar]
  47. Gennaro R, Pozzan T, Romeo D 1984. Monitoring of cytosolic free Ca2+ in C5a-stimulated neutrophils: loss of receptor-modulated Ca2+ stores and Ca2+ uptake in granule-free cytoplasts. PNAS 81:51416–20
    [Google Scholar]
  48. Goldmann O, Medina E. 2013. The expanding world of extracellular traps: not only neutrophils but much more. Front. Immunol. 3:420
    [Google Scholar]
  49. Gordon S, Plüddemann A. 2018. Macrophage clearance of apoptotic cells: a critical assessment. Front. Immunol. 9:127
    [Google Scholar]
  50. Görgens A, Radtke S, Möllmann M, Cross M, Dürig J et al. 2013. Revision of the human hematopoietic tree: Granulocyte subtypes derive from distinct hematopoietic lineages. Cell Rep 3:51539–52
    [Google Scholar]
  51. Gößwein S, Lindemann A, Mahajan A, Maueröder C, Martini E et al. 2019. Citrullination licenses calpain to decondense nuclei in neutrophil extracellular trap formation. Front. Immunol. 10:2481
    [Google Scholar]
  52. Guiducci E, Lemberg C, Küng N, Schraner E, Theocharides APA, LeibundGut-Landmann S 2018. Candida albicans-induced NETosis is independent of peptidylarginine deiminase 4. Front. Immunol. 9:1573
    [Google Scholar]
  53. Guizzunti G, Seemann J. 2016. Mitotic Golgi disassembly is required for bipolar spindle formation and mitotic progression. PNAS 113:43E6590–99
    [Google Scholar]
  54. Guo L, Santschi PH. 2007. Ultrafiltration and its applications to sampling and characterisation of aquatic colloids. Environmental Colloids and Particles, Vol. 10 KJ Wilkinson, JR Lead 159–221 New York: John Wiley & Sons
    [Google Scholar]
  55. Gupta AK, Giaglis S, Hasler P, Hahn S 2014. Efficient neutrophil extracellular trap induction requires mobilization of both intracellular and extracellular calcium pools and is modulated by cyclosporine A. PLOS ONE 9:5e97088
    [Google Scholar]
  56. Güttinger S, Laurell E, Kutay U 2009. Orchestrating nuclear envelope disassembly and reassembly during mitosis. Nat. Rev. Mol. Cell Biol. 10:3178–91
    [Google Scholar]
  57. Hagiwara T, Hidaka Y, Yamada M 2005. Deimination of histone H2A and H4 at arginine 3 in HL-60 granulocytes. Biochemistry 44:155827–34
    [Google Scholar]
  58. Hakkim A, Fuchs TA, Martinez NE, Hess S, Prinz H et al. 2011. Activation of the Raf-MEK-ERK pathway is required for neutrophil extracellular trap formation. Nat. Chem. Biol. 7:275–77
    [Google Scholar]
  59. Hakkim A, Fürnrohr BG, Amann K, Laube B, Abed UA et al. 2010. Impairment of neutrophil extracellular trap degradation is associated with lupus nephritis. PNAS 107:219813–18
    [Google Scholar]
  60. Hamam HJ, Khan MA, Palaniyar N 2019. Histone acetylation promotes neutrophil extracellular trap formation. Biomolecules 9:132
    [Google Scholar]
  61. Hellberg C, Molony L, Zheng L, Andersson T 1996. Ca2+ signalling mechanisms of the β2 integrin on neutrophils: involvement of phospholipase Cγ2 and Ins(1,4,5)P3. Biochem. J. 317:2403–9
    [Google Scholar]
  62. Hidalgo A, Chilvers ER, Summers C, Koenderman L 2019. The neutrophil life cycle. Trends Immunol 40:7584–97
    [Google Scholar]
  63. Hosseinzadeh A, Thompson PR, Segal BH, Urban CF 2016. Nicotine induces neutrophil extracellular traps. J. Leukoc. Biol. 100:51105–12
    [Google Scholar]
  64. Hrachovinová I, Cambien B, Hafezi-Moghadam A, Kappelmayer J, Camphausen RT et al. 2003. Interaction of P-selectin and PSGL-1 generates microparticles that correct hemostasis in a mouse model of hemophilia A. Nat. Med. 9:81020–25
    [Google Scholar]
  65. Hung R-J, Pak CW, Terman JR 2011. Direct redox regulation of F-actin assembly and disassembly by Mical. Science 334:60631710–13
    [Google Scholar]
  66. Hung R-J, Yazdani U, Yoon J, Wu H, Yang T et al. 2010. Mical links semaphorins to F-actin disassembly. Nature 463:7282823–27
    [Google Scholar]
  67. Immler R, Simon SI, Sperandio M 2018. Calcium signalling and related ion channels in neutrophil recruitment and function. Eur. J. Clin. Investig. 48:Suppl. 2e12964
    [Google Scholar]
  68. Janota CS, Calero-Cuenca FJ, Costa J, Gomes ER 2017. SnapShot: nucleo-cytoskeletal interactions. Cell 169:5970.e1
    [Google Scholar]
  69. Jones JE, Slack JL, Fang P, Zhang X, Subramanian V et al. 2012. Synthesis and screening of a haloacetamidine containing library to identify PAD4 selective inhibitors. ACS Chem. Biol. 7:1160–65
    [Google Scholar]
  70. Jorch SK, Kubes P. 2017. An emerging role for neutrophil extracellular traps in noninfectious disease. Nat. Med. 23:3279–87
    [Google Scholar]
  71. Kandasamy K, Bezavada L, Escue RB, Parthasarathi K 2013. Lipopolysaccharide induces endoplasmic store Ca2+-dependent inflammatory responses in lung microvessels. PLOS ONE 8:5e63465
    [Google Scholar]
  72. Kearney PL, Bhatia M, Jones NG, Yuan L, Glascock MC et al. 2005. Kinetic characterization of protein arginine deiminase 4: a transcriptional corepressor implicated in the onset and progression of rheumatoid arthritis. Biochemistry 44:3110570–82
    [Google Scholar]
  73. Kenny EF, Herzig A, Krüger R, Muth A, Mondal S et al. 2017. Diverse stimuli engage different neutrophil extracellular trap pathways. eLife 6:e24437
    [Google Scholar]
  74. Keshari RS, Jyoti A, Dubey M, Kothari N, Kohli M et al. 2012. Cytokines induced neutrophil extracellular traps formation: implication for the inflammatory disease condition. PLOS ONE 7:10e48111
    [Google Scholar]
  75. Khandpur R, Carmona-Rivera C, Vivekanandan-Giri A, Gizinski A, Yalavarthi S et al. 2013. NETs are a source of citrullinated autoantigens and stimulate inflammatory responses in rheumatoid arthritis. Sci. Transl. Med. 5:178178ra40
    [Google Scholar]
  76. Kleinig H. 1970. Nuclear membranes from mammalian liver: II. Lipid composition. J. Cell Biol. 46:2396–402
    [Google Scholar]
  77. Koch GL, Booth C, Wooding FB 1988. Dissociation and re-assembly of the endoplasmic reticulum in live cells. J. Cell Sci. 91:4511–22
    [Google Scholar]
  78. Kolaczkowska E, Jenne CN, Surewaard BGJ, Thanabalasuriar A, Lee W-Y et al. 2015. Molecular mechanisms of NET formation and degradation revealed by intravital imaging in the liver vasculature. Nat. Commun. 6:6673
    [Google Scholar]
  79. Krause K-H, Campbell KP, Welsh MJ, Lew DP 1990. The calcium signal and neutrophil activation. Clin. Biochem. 23:2159–66
    [Google Scholar]
  80. Kunda P, Pelling AE, Liu T, Baum B 2008. Moesin controls cortical rigidity, cell rounding, and spindle morphogenesis during mitosis. Curr. Biol. 18:291–101
    [Google Scholar]
  81. Lappann M, Danhof S, Guenther F, Olivares‐Florez S, Mordhorst IL, Vogel U 2013. In vitro resistance mechanisms of Neisseria meningitidis against neutrophil extracellular traps. Mol. Microbiol. 89:3433–49
    [Google Scholar]
  82. Lardy HA, Johnson D, McMurray WC 1958. Antibiotics as tools for metabolic studies. I. A survey of toxic antibiotics in respiratory, phosphorylative and glycolytic systems. Arch. Biochem. Biophys. 78:2587–97
    [Google Scholar]
  83. Larson L, Arnaudeau S, Gibson B, Li W, Krause R et al. 2005. Gelsolin mediates calcium-dependent disassembly of Listeria actin tails. PNAS 102:61921–26
    [Google Scholar]
  84. Leshner M, Wang S, Lewis C, Zheng H, Chen XA et al. 2012. PAD4 mediated histone hypercitrullination induces heterochromatin decondensation and chromatin unfolding to form neutrophil extracellular trap-like structures. Front. Immunol. 3:307
    [Google Scholar]
  85. Lewis HD, Liddle J, Coote JE, Atkinson SJ, Barker MD et al. 2015. Inhibition of PAD4 activity is sufficient to disrupt mouse and human NET formation. Nat. Chem. Biol. 11:3189–91
    [Google Scholar]
  86. Ley K, Hoffman HM, Kubes P, Cassatella MA, Zychlinsky A et al. 2018. Neutrophils: new insights and open questions. Sci. Immunol. 3:30eaat4579
    [Google Scholar]
  87. Li P, Li M, Lindberg MR, Kennett MJ, Xiong N, Wang Y 2010. PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps. J. Exp. Med. 207:91853–62
    [Google Scholar]
  88. Li Y, Werth VP, Mall M, Liu M-L 2019. Nuclear lamin B is crucial to the nuclear envelope integrity and extracellular trap release in neutrophils. bioRxiv 647529. https://doi.org/10.1101/647529
    [Crossref]
  89. Liu C, Hermann TE. 1978. Characterization of ionomycin as a calcium ionophore. J. Biol. Chem. 253:175892–94
    [Google Scholar]
  90. Lood C, Blanco LP, Purmalek MM, Carmona-Rivera C, De Ravin SS et al. 2016. Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease. Nat. Med. 22:2146–53
    [Google Scholar]
  91. Martinod K, Demers M, Fuchs TA, Wong SL, Brill A et al. 2013. Neutrophil histone modification by peptidylarginine deiminase 4 is critical for deep vein thrombosis in mice. PNAS 110:218674–79
    [Google Scholar]
  92. Martinod K, Witsch T, Farley K, Gallant M, Remold‐O'Donnell E, Wagner DD 2016. Neutrophil elastase-deficient mice form neutrophil extracellular traps in an experimental model of deep vein thrombosis. J. Thromb. Haemost. 14:3551–58
    [Google Scholar]
  93. Mayadas TN, Cullere X, Lowell CA 2014. The multifaceted functions of neutrophils. Annu. Rev. Pathol. Mech. Dis. 9:181–218
    [Google Scholar]
  94. McDonald B, Urrutia R, Yipp BG, Jenne CN, Kubes P 2012. Intravascular neutrophil extracellular traps capture bacteria from the bloodstream during sepsis. Cell Host Microbe 12:3324–33
    [Google Scholar]
  95. McIlroy DJ, Jarnicki AG, Au GG, Lott N, Smith DW et al. 2014. Mitochondrial DNA neutrophil extracellular traps are formed after trauma and subsequent surgery. J. Crit. Care 29:61133.e1–.e5
    [Google Scholar]
  96. Mejía SP, Cano LE, López JA, Hernandez O, González Á 2015. Human neutrophils produce extracellular traps against Paracoccidioides brasiliensis. . Microbiology 161:Pt 51008–17
    [Google Scholar]
  97. Mesri M, Altieri DC. 1998. Endothelial cell activation by leukocyte microparticles. J. Immunol. 161:84382–87
    [Google Scholar]
  98. Metzler KD, Fuchs TA, Nauseef WM, Reumaux D, Roesler J et al. 2011. Myeloperoxidase is required for neutrophil extracellular trap formation: implications for innate immunity. Blood 117:3953–59
    [Google Scholar]
  99. Metzler KD, Goosmann C, Lubojemska A, Zychlinsky A, Papayannopoulos V 2014. A myeloperoxidase-containing complex regulates neutrophil elastase release and actin dynamics during NETosis. Cell Rep 8:3883–96
    [Google Scholar]
  100. Mishra P, Chan DC. 2014. Mitochondrial dynamics and inheritance during cell division, development and disease. Nat. Rev. Mol. Cell Biol. 15:10634–46
    [Google Scholar]
  101. Mohanty T, Sjögren J, Kahn F, Abu-Humaidan AHA, Fisker N et al. 2015. A novel mechanism for NETosis provides antimicrobial defense at the oral mucosa. Blood 126:182128–37
    [Google Scholar]
  102. Morshed M, Hlushchuk R, Simon D, Walls AF, Obata-Ninomiya K et al. 2014. NADPH oxidase-independent formation of extracellular DNA traps by basophils. J. Immunol. 192:115314–23
    [Google Scholar]
  103. Muth A, Subramanian V, Beaumont E, Nagar M, Kerry P et al. 2017. Development of a selective inhibitor of protein arginine deiminase 2. J. Med. Chem. 60:73198–211
    [Google Scholar]
  104. Nakashima K, Hagiwara T, Ishigami A, Nagata S, Asaga H et al. 1999. Molecular characterization of peptidylarginine deiminase in HL-60 cells induced by retinoic acid and 1α,25-dihydroxyvitamin D3. J. Biol. Chem. 274:3927786–92
    [Google Scholar]
  105. Nakashima K, Hagiwara T, Yamada M 2002. Nuclear localization of peptidylarginine deiminase V and histone deimination in granulocytes. J. Biol. Chem. 277:5149562–68
    [Google Scholar]
  106. Nakayama-Hamada M, Suzuki A, Kubota K, Takazawa T, Ohsaka M et al. 2005. Comparison of enzymatic properties between hPADI2 and hPADI4. Biochem. Biophys. Res. Commun. 327:1192–200
    [Google Scholar]
  107. Neeli I, Khan SN, Radic M 2008. Histone deimination as a response to inflammatory stimuli in neutrophils. J. Immunol. 180:31895–902
    [Google Scholar]
  108. Nelson WJ, Traub P. 1982. Purification and further characterization of the Ca2+-activated proteinase specific for the intermediate filament proteins vimentin and desmin. J. Biol. Chem. 257:105544–53
    [Google Scholar]
  109. Neubert E, Meyer D, Rocca F, Günay G, Kwaczala-Tessmann A et al. 2018. Chromatin swelling drives neutrophil extracellular trap release. Nat. Commun. 9:3767
    [Google Scholar]
  110. Nguyen GT, Green ER, Mecsas J 2017. Neutrophils to the ROScue: mechanisms of NADPH oxidase activation and bacterial resistance. Front. Cell. Infect. Microbiol. 7:373
    [Google Scholar]
  111. Okada Y. 2017. Proteinases and matrix degradation. Kelley and Firestein's Textbook of Rheumatology GS Firestein, RC Budd, SE Gabriel, IB McInnes, JR O'Dell 106–25 Philadelphia, PA: Elsevier. , 10th ed..
    [Google Scholar]
  112. Okubo K, Kamiya M, Urano Y, Nishi H, Herter JM et al. 2016. Lactoferrin suppresses neutrophil extracellular traps release in inflammation. EBioMedicine 10:204–15
    [Google Scholar]
  113. Papayannopoulos V, Metzler KD, Hakkim A, Zychlinsky A 2010. Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J. Cell Biol. 191:3677–91
    [Google Scholar]
  114. Parker H, Dragunow M, Hampton MB, Kettle AJ, Winterbourn CC 2012. Requirements for NADPH oxidase and myeloperoxidase in neutrophil extracellular trap formation differ depending on the stimulus. J. Leukoc. Biol. 92:4841–49
    [Google Scholar]
  115. Petretto A, Bruschi M, Pratesi F, Croia C, Candiano G et al. 2019. Neutrophil extracellular traps (NET) induced by different stimuli: a comparative proteomic analysis. PLOS ONE 14:7e0218946
    [Google Scholar]
  116. Pilsczek FH, Salina D, Poon KKH, Fahey C, Yipp BG et al. 2010. A novel mechanism of rapid nuclear neutrophil extracellular trap formation in response to Staphylococcus aureus. J. Immunol 185:127413–25
    [Google Scholar]
  117. Pires RH, Felix SB, Delcea M 2016. The architecture of neutrophil extracellular traps investigated by atomic force microscopy. Nanoscale 8:2914193–202
    [Google Scholar]
  118. Pluskota E, Woody NM, Szpak D, Ballantyne CM, Soloviev DA et al. 2008. Expression, activation, and function of integrin αMβ2 (Mac-1) on neutrophil-derived microparticles. Blood 112:62327–35
    [Google Scholar]
  119. Raab M, Gentili M, de Belly H, Thiam HR, Vargas P et al. 2016. ESCRT III repairs nuclear envelope ruptures during cell migration to limit DNA damage and cell death. Science 352:6283359–62
    [Google Scholar]
  120. Radic M, Neeli I. 2013. Opposition between PKC isoforms regulates histone deimination and neutrophil extracellular chromatin release. Front. Immunol. 4:38
    [Google Scholar]
  121. Raftery MJ, Lalwani P, Krautkrämer E, Peters T, Scharffetter-Kochanek K et al. 2014. β2 integrin mediates hantavirus-induced release of neutrophil extracellular traps. J. Exp. Med. 211:71485–97
    [Google Scholar]
  122. Rossaint J, Herter JM, Van Aken H, Napirei M, Döring Y et al. 2014. Synchronized integrin engagement and chemokine activation is crucial in neutrophil extracellular trap-mediated sterile inflammation. Blood 123:162573–84
    [Google Scholar]
  123. Ruan J, Xia S, Liu X, Lieberman J, Wu H 2018. Cryo-EM structure of the gasdermin A3 membrane pore. Nature 557:770362–67
    [Google Scholar]
  124. Saitoh T, Komano J, Saitoh Y, Misawa T, Takahama M et al. 2012. Neutrophil extracellular traps mediate a host defense response to human immunodeficiency virus-1. Cell Host Microbe 12:1109–16
    [Google Scholar]
  125. Sborgi L, Rühl S, Mulvihill E, Pipercevic J, Heilig R et al. 2016. GSDMD membrane pore formation constitutes the mechanism of pyroptotic cell death. EMBO J 35:161766–78
    [Google Scholar]
  126. Schappe MS, Szteyn K, Stremska ME, Mendu SK, Downs TK et al. 2018. Chanzyme TRPM7 mediates the Ca2+ influx essential for lipopolysaccharide-induced Toll-like receptor 4 endocytosis and macrophage activation. Immunity 48:159–74.e5
    [Google Scholar]
  127. Schliwa M, Euteneuer U, Bulinski JC, Izant JG 1981. Calcium lability of cytoplasmic microtubules and its modulation by microtubule-associated proteins. PNAS 78:21037–41
    [Google Scholar]
  128. Schorr W, Swandulla D, Zeilhofer HU 1999. Mechanisms of IL-8-induced Ca2+ signaling in human neutrophil granulocytes. Eur. J. Immunol. 29:3897–904
    [Google Scholar]
  129. Shi J, Zhao Y, Wang K, Shi X, Wang Y et al. 2015. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526:7575660–65
    [Google Scholar]
  130. Smith BC, Denu JM. 2009. Chemical mechanisms of histone lysine and arginine modifications. Biochim. Biophys. Acta Gene Regul. Mech. 1789:145–57
    [Google Scholar]
  131. Smith CD, Wells WW. 1983. Phosphorylation of rat liver nuclear envelopes. II. Characterization of in vitro lipid phosphorylation. J. Biol. Chem. 258:159368–73
    [Google Scholar]
  132. Sollberger G, Choidas A, Burn GL, Habenberger P, Lucrezia RD et al. 2018. Gasdermin D plays a vital role in the generation of neutrophil extracellular traps. Sci. Immunol. 3:26eaar6689
    [Google Scholar]
  133. Sorvillo N, Cherpokova D, Martinod K, Wagner DD 2019. Extracellular DNA NET-works with dire consequences for health. Circ. Res. 125:4470–88
    [Google Scholar]
  134. Spruill WA, Zysk JR, Tres LL, Kierszenbaum AL 1983. Calcium/calmodulin-dependent phosphorylation of vimentin in rat sertoli cells. PNAS 80:3760–64
    [Google Scholar]
  135. Sun B, Dwivedi N, Bechtel TJ, Paulsen JL, Muth A et al. 2017. Citrullination of NF-κB p65 promotes its nuclear localization and TLR-induced expression of IL-1β and TNFα. Sci. Immunol. 2:12eaal3062
    [Google Scholar]
  136. Tatsiy O, McDonald PP. 2018. Physiological stimuli induce PAD4-dependent, ROS-independent NETosis, with early and late events controlled by discrete signaling pathways. Front. Immunol. 9:2036
    [Google Scholar]
  137. Thanabalasuriar A, Scott BNV, Peiseler M, Willson ME, Zeng Z et al. 2019. Neutrophil extracellular traps confine Pseudomonas aeruginosa ocular biofilms and restrict brain invasion. Cell Host Microbe 25:4526–36.e4
    [Google Scholar]
  138. Thiam HR, Wong SL, Qiu R, Kittisopikul M, Vahabikashi A et al. 2020. NETosis proceeds by cytoskeleton and endomembrane disassembly and PAD4-mediated chromatin decondensation and nuclear envelope rupture. PNAS 117:137326–37
    [Google Scholar]
  139. Thompson PR, Fast W. 2006. Histone citrullination by protein arginine deiminase: Is arginine methylation a green light or a roadblock?. ACS Chem. Biol. 1:7433–41
    [Google Scholar]
  140. Timár CI, Lőrincz ÁM, Csépányi-Kömi R, Vályi-Nagy A, Nagy G et al. 2013. Antibacterial effect of microvesicles released from human neutrophilic granulocytes. Blood 121:3510–18
    [Google Scholar]
  141. Urban CF, Ermert D, Schmid M, Abu-Abed U, Goosmann C et al. 2009. Neutrophil extracellular traps contain calprotectin, a cytosolic protein complex involved in host defense against Candida albicans. . PLOS Pathog 5:10e1000639
    [Google Scholar]
  142. Urban CF, Reichard U, Brinkmann V, Zychlinsky A 2006. Neutrophil extracellular traps capture and kill Candida albicans yeast and hyphal forms. Cell. Microbiol. 8:4668–76
    [Google Scholar]
  143. van Beers JJBC, Zendman AJW, Raijmakers R, Stammen-Vogelzangs J, Pruijn GJM 2013. Peptidylarginine deiminase expression and activity in PAD2 knock-out and PAD4-low mice. Biochimie 95:2299–308
    [Google Scholar]
  144. van der Linden M, Westerlaken GHA, van der Vlist M, van Montfrans J, Meyaard L 2017. Differential signalling and kinetics of neutrophil extracellular trap release revealed by quantitative live imaging. Sci. Rep. 7:6529
    [Google Scholar]
  145. Van Steendam K, Tilleman K, Deforce D 2011. The relevance of citrullinated vimentin in the production of antibodies against citrullinated proteins and the pathogenesis of rheumatoid arthritis. Rheumatology 50:5830–37
    [Google Scholar]
  146. von Köckritz-Blickwede M, Goldmann O, Thulin P, Heinemann K, Norrby-Teglund A et al. 2008. Phagocytosis-independent antimicrobial activity of mast cells by means of extracellular trap formation. Blood 111:63070–80
    [Google Scholar]
  147. Wang H, Li T, Chen S, Gu Y, Ye S 2015. Neutrophil extracellular trap mitochondrial DNA and its autoantibody in systemic lupus erythematosus and a proof-of-concept trial of metformin. Arthritis Rheumatol 67:123190–200
    [Google Scholar]
  148. Wang Y, Li M, Stadler S, Correll S, Li P et al. 2009. Histone hypercitrullination mediates chromatin decondensation and neutrophil extracellular trap formation. J. Cell Biol. 184:2205–13
    [Google Scholar]
  149. Weinrauch Y, Drujan D, Shapiro SD, Weiss J, Zychlinsky A 2002. Neutrophil elastase targets virulence factors of enterobacteria. Nature 417:688491–94
    [Google Scholar]
  150. Weisenberg RC, Deery WJ. 1981. The mechanism of calcium-induced microtubule disassembly. Biochem. Biophys. Res. Commun. 102:3924–31
    [Google Scholar]
  151. Wilson BS, Pfeiffer JR, Smith AJ, Oliver JM, Oberdorf JA, Wojcikiewicz RJH 1998. Calcium-dependent clustering of inositol 1,4,5-trisphosphate receptors. Mol. Biol. Cell 9:61465–78
    [Google Scholar]
  152. Wolach O, Sellar RS, Martinod K, Cherpokova D, McConkey M et al. 2018. Increased neutrophil extracellular trap formation promotes thrombosis in myeloproliferative neoplasms. Sci. Transl. Med. 10:436eaan8292
    [Google Scholar]
  153. Wong SL, Demers M, Martinod K, Gallant M, Wang Y et al. 2015. Diabetes primes neutrophils to undergo NETosis, which impairs wound healing. Nat. Med. 21:7815–19
    [Google Scholar]
  154. Wong SL, Wagner DD. 2018. Peptidylarginine deiminase 4: a nuclear button triggering neutrophil extracellular traps in inflammatory diseases and aging. FASEB J 32:126358–70
    [Google Scholar]
  155. Wu S-Y, Weng C-L, Jheng M-J, Kan H-W, Hsieh S-T et al. 2019. Candida albicans triggers NADPH oxidase-independent neutrophil extracellular traps through dectin-2. PLOS Pathog 15:11e1008096
    [Google Scholar]
  156. Yipp BG, Kubes P. 2013. NETosis: How vital is it. ? Blood 122:162784–94
    [Google Scholar]
  157. Yipp BG, Petri B, Salina D, Jenne CN, Scott BNV et al. 2012. Infection-induced NETosis is a dynamic process involving neutrophil multitasking in vivo. Nat. Med. 18:91386–93
    [Google Scholar]
  158. Yoshida H, Murachi T, Tsukahara I 1984. Degradation of actin and vimentin by calpain II, a Ca2+-dependent cysteine proteinase, in bovine lens. FEBS Lett 170:2259–62
    [Google Scholar]
  159. Yousefi S, Gold JA, Andina N, Lee JJ, Kelly AM et al. 2008. Catapult-like release of mitochondrial DNA by eosinophils contributes to antibacterial defense. Nat. Med. 14:9949–53
    [Google Scholar]
  160. Yousefi S, Stojkov D, Germic N, Simon D, Wang X et al. 2019. Untangling “NETosis” from NETs. Eur. J. Immunol. 49:2221–27
    [Google Scholar]
  161. Zhang D, Chen G, Manwani D, Mortha A, Xu C et al. 2015. Neutrophil ageing is regulated by the microbiome. Nature 525:7570528–32
    [Google Scholar]
/content/journals/10.1146/annurev-cellbio-020520-111016
Loading
/content/journals/10.1146/annurev-cellbio-020520-111016
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error