1932

Abstract

The nuclear envelope is often depicted as a static barrier that regulates access between the nucleus and the cytosol. However, recent research has identified many conditions in cultured cells and in vivo in which nuclear membrane ruptures cause the loss of nuclear compartmentalization. These conditions include some that are commonly associated with human disease, such as migration of cancer cells through small spaces and expression of nuclear lamin disease mutations in both cultured cells and tissues undergoing nuclear migration. Nuclear membrane ruptures are rapidly repaired in the nucleus but persist in nuclear compartments that form around missegregated chromosomes called micronuclei. This review summarizes what is known about the mechanisms of nuclear membrane rupture and repair in both the main nucleus and micronuclei, and highlights recent work connecting the loss of nuclear integrity to genome instability and innate immune signaling. These connections link nuclear membrane rupture to complex chromosome alterations, tumorigenesis, and laminopathy etiologies.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cellbio-020520-120627
2020-10-06
2024-06-25
Loading full text...

Full text loading...

/deliver/fulltext/cellbio/36/1/annurev-cellbio-020520-120627.html?itemId=/content/journals/10.1146/annurev-cellbio-020520-120627&mimeType=html&fmt=ahah

Literature Cited

  1. Ablasser A, Chen ZJ. 2019. cGAS in action: expanding roles in immunity and inflammation. Science 363:6431eaat8657
    [Google Scholar]
  2. Ablasser A, Goldeck M, Cavlar T, Deimling T, Witte G et al. 2013. cGAS produces a 2′-5′-linked cyclic dinucleotide second messenger that activates STING. Nature 498:7454380–84
    [Google Scholar]
  3. Anderson DJ, Vargas JD, Hsiao JP, Hetzer MW 2009. Recruitment of functionally distinct membrane proteins to chromatin mediates nuclear envelope formation in vivo. J. Cell Biol. 186:2183–91
    [Google Scholar]
  4. Bakhoum SF, Cantley LC. 2018. The multifaceted role of chromosomal instability in cancer and its microenvironment. Cell 174:61347–60
    [Google Scholar]
  5. Bakhoum SF, Ngo B, Laughney AM, Cavallo J-A, Murphy CJ et al. 2018. Chromosomal instability drives metastasis through a cytosolic DNA response. Nature 553:7689467–72
    [Google Scholar]
  6. Bercht Pfleghaar K, Taimen P, Butin-Israeli V, Shimi T, Langer-Freitag S et al. 2015. Gene-rich chromosomal regions are preferentially localized in the lamin B deficient nuclear blebs of atypical progeria cells. Nucleus 6:166–76
    [Google Scholar]
  7. Burleigh K, Maltbaek JH, Cambier S, Green R, Gale M et al. 2020. Human DNA-PK activates a STING-independent DNA sensing pathway. Sci. Immunol. 5:43eaba4219
    [Google Scholar]
  8. Burns MB, Lackey L, Carpenter MA, Rathore A, Land AM et al. 2013a. APOBEC3B is an enzymatic source of mutation in breast cancer. Nature 494:7437366–70
    [Google Scholar]
  9. Burns MB, Temiz NA, Harris RS 2013b. Evidence for APOBEC3B mutagenesis in multiple human cancers. Nat. Genet. 45:9977–83
    [Google Scholar]
  10. Camps J, Wangsa D, Falke M, Brown M, Case CM et al. 2014. Loss of lamin B1 results in prolongation of S phase and decondensation of chromosome territories. FASEB J 28:83423–34
    [Google Scholar]
  11. Cañadas I, Thummalapalli R, Kim J, Kitajima S, Jenkins R et al. 2018. Tumor innate immunity primed by specific interferon-stimulated endogenous retroviruses. Nat. Med. 24:81143–50
    [Google Scholar]
  12. Chan K, North PS, Hickson ID 2007. BLM is required for faithful chromosome segregation and its localization defines a class of ultrafine anaphase bridges. EMBO J 26:143397–409
    [Google Scholar]
  13. Chan K, Roberts SA, Klimczak LJ, Sterling JF, Saini N et al. 2015. An APOBEC3A hypermutation signature is distinguishable from the signature of background mutagenesis by APOBEC3B in human cancers. Nat. Genet. 47:91067–72
    [Google Scholar]
  14. Chan Y, Fugger K, West SC 2018. Unresolved recombination intermediates lead to ultra-fine anaphase bridges, chromosome breaks and aberrations. Nat. Cell Biol. 20:192–103
    [Google Scholar]
  15. Chen NY, Kim P, Weston TA, Edillo L, Tu Y et al. 2018. Fibroblasts lacking nuclear lamins do not have nuclear blebs or protrusions but nevertheless have frequent nuclear membrane ruptures. PNAS 115:4010100–5
    [Google Scholar]
  16. Chen NY, Yang Y, Weston TA, Belling JN, Heizer P et al. 2019. An absence of lamin B1 in migrating neurons causes nuclear membrane ruptures and cell death. PNAS 116:5125870–79
    [Google Scholar]
  17. Chen Y-A, Shen Y-L, Hsia H-Y, Tiang Y-P, Sung T-L, Chen L-Y 2017. Extrachromosomal telomere repeat DNA is linked to ALT development via cGAS-STING DNA sensing pathway. Nat. Struct. Mol. Biol. 24:121124–31
    [Google Scholar]
  18. Cho S, Vashisth M, Abbas A, Majkut S, Vogel K et al. 2019. Mechanosensing by the lamina protects against nuclear rupture, DNA damage, and cell-cycle arrest. Dev. Cell 49:6920–35.e5
    [Google Scholar]
  19. Chowdhury D, Beresford PJ, Zhu P, Zhang D, Sung J-S et al. 2006. The exonuclease TREX1 is in the SET complex and acts in concert with NM23-H1 to degrade DNA during granzyme A-mediated cell death. Mol. Cell. 23:1133–42
    [Google Scholar]
  20. Civril F, Deimling T, de Mann CC, Ablasser A, Moldt M et al. 2013. Structural mechanism of cytosolic DNA sensing by cGAS. Nature 498:7454332–37
    [Google Scholar]
  21. Cleal K, Jones RE, Grimstead JW, Hendrickson EA, Baird DM 2019. Chromothripsis during telomere crisis is independent of NHEJ, and consistent with a replicative origin. Genome Res 29:5737–49
    [Google Scholar]
  22. Coffinier C, Chang S, Nobumori C, Tu Y, Farber EA et al. 2010. Abnormal development of the cerebral cortex and cerebellum in the setting of lamin B2 deficiency. PNAS 107:115076–81
    [Google Scholar]
  23. Cohen S, Marr AK, Garcin P, Panté N 2011. Nuclear envelope disruption involving host caspases plays a role in the parvovirus replication cycle. J. Virol. 85:104863–74
    [Google Scholar]
  24. Comaills V, Kabeche L, Morris R, Buisson R, Yu M et al. 2016. Genomic instability is induced by persistent proliferation of cells undergoing epithelial-to-mesenchymal transition. Cell Rep 17:102632–47
    [Google Scholar]
  25. Coquel F, Silva M-J, Técher H, Zadorozhny K, Sharma S et al. 2018. SAMHD1 acts at stalled replication forks to prevent interferon induction. Nature 557:770357–61
    [Google Scholar]
  26. Crasta K, Ganem NJ, Dagher R, Lantermann AB, Ivanova EV et al. 2012. DNA breaks and chromosome pulverization from errors in mitosis. Nature 482:738353–58
    [Google Scholar]
  27. Dahl KN, Engler AJ, Pajerowski JD, Discher DE 2005. Power-law rheology of isolated nuclei with deformation mapping of nuclear substructures. Biophys. J. 89:42855–64
    [Google Scholar]
  28. Daughtry BL, Rosenkrantz JL, Lazar NH, Fei SS, Redmayne N et al. 2019. Single-cell sequencing of primate preimplantation embryos reveals chromosome elimination via cellular fragmentation and blastomere exclusion. Genome Res 29:3367–82
    [Google Scholar]
  29. De Cecco M, Ito T, Petrashen AP, Elias AE, Skvir NJ et al. 2019. L1 drives IFN in senescent cells and promotes age-associated inflammation. Nature 566:774273–78
    [Google Scholar]
  30. de Noronha CM, Sherman MP, Lin HW, Cavrois MV, Moir RD et al. 2001. Dynamic disruptions in nuclear envelope architecture and integrity induced by HIV-1 Vpr. Science 294:55441105–8
    [Google Scholar]
  31. De Vos WH, Houben F, Kamps M, Malhas A, Verheyen F et al. 2011. Repetitive disruptions of the nuclear envelope invoke temporary loss of cellular compartmentalization in laminopathies. Hum. Mol. Genet. 20:214175–86
    [Google Scholar]
  32. Dechat T, Korbei B, Vaughan OA, Vlcek S, Hutchison CJ, Foisner R 2000. Lamina-associated polypeptide 2alpha binds intranuclear A-type lamins. J. Cell. Sci. 113:193473–84
    [Google Scholar]
  33. Denais CM, Gilbert RM, Isermann P, McGregor AL, te Lindert M et al. 2016. Nuclear envelope rupture and repair during cancer cell migration. Science 352:6283353–58
    [Google Scholar]
  34. Deviri D, Discher DE, Safran SA 2017. Rupture dynamics and chromatin herniation in deformed nuclei. Biophys. J. 113:51060–71
    [Google Scholar]
  35. Deviri D, Pfeifer CR, Dooling LJ, Ivanovska IL, Discher DE, Safran SA 2019. Scaling laws indicate distinct nucleation mechanisms of holes in the nuclear lamina. Nat. Phys. 15:823–29
    [Google Scholar]
  36. Dou Z, Ghosh K, Vizioli M, Zhu J, Sen P et al. 2017. Cytoplasmic chromatin triggers inflammation in senescence and cancer. Nature 550:7676402–6
    [Google Scholar]
  37. Dou Z, Xu C, Donahue G, Shimi T, Pan J-A et al. 2015. Autophagy mediates degradation of nuclear lamina. Nature 527:7576105–9
    [Google Scholar]
  38. Du M, Chen ZJ. 2018. DNA-induced liquid phase condensation of cGAS activates innate immune signaling. Science 361:6403eaat1022
    [Google Scholar]
  39. Earle AJ, Kirby TJ, Fedorchak GR, Isermann P, Patel J et al. 2020. Mutant lamins cause nuclear envelope rupture and DNA damage in skeletal muscle cells. Nat. Mater. 19:46473
    [Google Scholar]
  40. Evans CJ, Aguilera RJ. 2003. DNase II: genes, enzymes and function. Gene 322:1–15
    [Google Scholar]
  41. Fenech M. 2007. Cytokinesis-block micronucleus cytome assay. Nat. Protoc. 2:51084–104
    [Google Scholar]
  42. Fouquerel E, Barnes RP, Uttam S, Watkins SC, Bruchez MP, Opresko PL 2019. Targeted and persistent 8-oxoguanine base damage at telomeres promotes telomere loss and crisis. Mol. Cell 75:1117–30.e6
    [Google Scholar]
  43. Furusawa T, Rochman M, Taher L, Dimitriadis EK, Nagashima K et al. 2015. Chromatin decompaction by the nucleosomal binding protein HMGN5 impairs nuclear sturdiness. Nat. Commun. 6:16138
    [Google Scholar]
  44. Gao D, Li T, Li X-D, Chen X, Li Q-Z et al. 2015. Activation of cyclic GMP-AMP synthase by self-DNA causes autoimmune diseases. PNAS 112:42E5699–705
    [Google Scholar]
  45. Gao P, Ascano M, Wu Y, Barchet W, Gaffney BL et al. 2013. Cyclic [G(2′,5′)pA(3′,5′)p] is the metazoan second messenger produced by DNA-activated cyclic GMP-AMP synthase. Cell 153:51094–107
    [Google Scholar]
  46. Gatta AT, Carlton JG. 2019. The ESCRT-machinery: closing holes and expanding roles. Curr. Opin. Cell Biol. 59:121–32
    [Google Scholar]
  47. Gentili M, Lahaye X, Nadalin F, Nader G, Lombardi E et al. 2019. The N-terminal domain of cGAS determines preferential association with centromeric DNA and innate immune activation in the nucleus. Cell Rep 26:92377–93.e13
    [Google Scholar]
  48. Glück S, Guey B, Gulen M, Wolter K, Kang T-W et al. 2017. Innate immune sensing of cytosolic chromatin fragments through cGAS promotes senescence. Nat. Cell Biol. 19:91061–70
    [Google Scholar]
  49. Goldman RD, Shumaker DK, Erdos MR, Eriksson M, Goldman AE et al. 2004. Accumulation of mutant lamin A causes progressive changes in nuclear architecture in Hutchinson-Gilford progeria syndrome. PNAS 101:248963–68
    [Google Scholar]
  50. Gratia M, Rodero MP, Conrad C, Bou Samra E, Maurin M et al. 2019. Bloom syndrome protein restrains innate immune sensing of micronuclei by cGAS. J. Exp. Med. 216:51199–213
    [Google Scholar]
  51. Gruenbaum Y, Foisner R. 2015. Lamins: nuclear intermediate filament proteins with fundamental functions in nuclear mechanics and genome regulation. Annu. Rev. Biochem. 84:131–64
    [Google Scholar]
  52. Gu M, LaJoie D, Chen OS, von Appen A, Ladinsky MS et al. 2017. LEM2 recruits CHMP7 for ESCRT-mediated nuclear envelope closure in fission yeast and human cells. PNAS 114:11E2166–75
    [Google Scholar]
  53. Gui X, Yang H, Li T, Tan X, Shi P et al. 2019. Autophagy induction via STING trafficking is a primordial function of the cGAS pathway. Nature 567:7747262–66
    [Google Scholar]
  54. Gulen MF, Koch U, Haag SM, Schuler F, Apetoh L et al. 2017. Signalling strength determines proapoptotic functions of STING. Nat Commun 8:1427
    [Google Scholar]
  55. Guo X, Ni J, Liang Z, Xue J, Fenech MF, Wang X 2019. The molecular origins and pathophysiological consequences of micronuclei: new insights into an age-old problem. Mutat. Res. 779:1–35
    [Google Scholar]
  56. Hale CM, Shrestha AL, Khatau SB, Stewart-Hutchinson PJ, Hernandez L et al. 2008. Dysfunctional connections between the nucleus and the actin and microtubule networks in laminopathic models. Biophys. J. 95:115462–75
    [Google Scholar]
  57. Halfmann CT, Sears RM, Katiyar A, Busselman BW, Aman LK et al. 2019. Repair of nuclear ruptures requires barrier-to-autointegration factor. J. Cell Biol. 218:2136–49
    [Google Scholar]
  58. Harada T, Swift J, Irianto J, Shin J-W, Spinler KR et al. 2014. Nuclear lamin stiffness is a barrier to 3D migration, but softness can limit survival. J. Cell Biol. 204:5669–82
    [Google Scholar]
  59. Haraguchi T, Kojidani T, Koujin T, Shimi T, Osakada H et al. 2008. Live cell imaging and electron microscopy reveal dynamic processes of BAF-directed nuclear envelope assembly. J. Cell. Sci. 121:Pt 152540–54
    [Google Scholar]
  60. Haraguchi T, Koujin T, Segura-Totten M, Lee KK, Matsuoka Y et al. 2001. BAF is required for emerin assembly into the reforming nuclear envelope. J. Cell. Sci. 114:Pt 244575–85
    [Google Scholar]
  61. Harding SM, Benci JL, Irianto J, Discher DE, Minn AJ, Greenberg RA 2017. Mitotic progression following DNA damage enables pattern recognition within micronuclei. Nature 548:7668466–70
    [Google Scholar]
  62. Hatch EM, Fischer AH, Deerinck TJ, Hetzer MW 2013. Catastrophic nuclear envelope collapse in cancer cell micronuclei. Cell 154:147–60
    [Google Scholar]
  63. Hatch EM, Hetzer MW. 2016. Nuclear envelope rupture is induced by actin-based nucleus confinement. J. Cell Biol. 215:127–36
    [Google Scholar]
  64. Hatch EM, Levy DL. 2020. Nucleus structure and dynamics. Mol. Biol. Cell 31:6397
    [Google Scholar]
  65. He B, Gnawali N, Hinman AW, Mattingly AJ, Osimani A, Cimini D 2019. Chromosomes missegregated into micronuclei contribute to chromosomal instability by missegregating at the next division. Oncotarget 10:282660–74
    [Google Scholar]
  66. Headley MB, Bins A, Nip A, Roberts EW, Looney MR et al. 2016. Visualization of immediate immune responses to pioneer metastatic cells in the lung. Nature 531:7595513–17
    [Google Scholar]
  67. Helfand BT, Wang Y, Pfleghaar K, Shimi T, Taimen P, Shumaker DK 2012. Chromosomal regions associated with prostate cancer risk localize to lamin B-deficient microdomains and exhibit reduced gene transcription. J. Pathol. 226:5735–45
    [Google Scholar]
  68. Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S et al. 2000. A Toll-like receptor recognizes bacterial DNA. Nature 408:6813740–45
    [Google Scholar]
  69. Hornung V, Ablasser A, Charrel-Dennis M, Bauernfeind F, Horvath G et al. 2009. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 458:7237514–18
    [Google Scholar]
  70. Irianto J, Pfeifer CR, Bennett RR, Xia Y, Ivanovska IL et al. 2016. Nuclear constriction segregates mobile nuclear proteins away from chromatin. Mol. Biol. Cell 27:254011–20
    [Google Scholar]
  71. Irianto J, Xia Y, Pfeifer CR, Athirasala A, Ji J et al. 2017. DNA damage follows repair factor depletion and portends genome variation in cancer cells after pore migration. Curr. Biol. 27:2210–23
    [Google Scholar]
  72. Ishikawa H, Barber GN. 2008. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature 455:7213674–78
    [Google Scholar]
  73. Jagannathan M, Cummings R, Yamashita YM 2018. A conserved function for pericentromeric satellite DNA. eLife 7:e34122
    [Google Scholar]
  74. Jahed Z, Mofrad MR. 2019. The nucleus feels the force, LINCed in or not. ! Curr. Opin. Cell Biol. 58:114–19
    [Google Scholar]
  75. Jamin A, Wiebe MS. 2015. Barrier to Autointegration Factor (BANF1): interwoven roles in nuclear structure, genome integrity, innate immunity, stress responses and progeria. Curr. Opin. Cell Biol. 34:61–68
    [Google Scholar]
  76. Jiang H, Xue X, Panda S, Kawale A, Hooy RM et al. 2019. Chromatin‐bound cGAS is an inhibitor of DNA repair and hence accelerates genome destabilization and cell death. EMBO J 38:21e102718
    [Google Scholar]
  77. Karoutas A, Szymanski W, Rausch T, Guhathakurta S, Rog-Zielinska EA et al. 2019. The NSL complex maintains nuclear architecture stability via lamin A/C acetylation. Nat. Cell Biol. 21:101248–60
    [Google Scholar]
  78. Khatau SB, Hale CM, Stewart-Hutchinson PJ, Patel MS, Stewart CL et al. 2009. A perinuclear actin cap regulates nuclear shape. PNAS 106:4519017–22
    [Google Scholar]
  79. Kinugasa Y, Hirano Y, Sawai M, Ohno Y, Shindo T et al. 2019. The very-long-chain fatty acid elongase Elo2 rescues lethal defects associated with loss of the nuclear barrier function in fission yeast cells. J. Cell. Sci. 132:10jcs229021
    [Google Scholar]
  80. Kitajima S, Ivanova E, Guo S, Yoshida R, Campisi M et al. 2019. Suppression of STING associated with LKB1 loss in KRAS-driven lung cancer. Cancer Discov 9:134–45
    [Google Scholar]
  81. Kneissig M, Keuper K, de Pagter MS, van Roosmalen MJ, Martin J et al. 2019. Micronuclei-based model system reveals functional consequences of chromothripsis in human cells. eLife 8:e50292
    [Google Scholar]
  82. Konno H, Yamauchi S, Berglund A, Putney RM, Mulé JJ, Barber GN 2018. Suppression of STING signaling through epigenetic silencing and missense mutation impedes DNA damage mediated cytokine production. Oncogene 37:152037–51
    [Google Scholar]
  83. Korbel JO, Campbell PJ. 2013. Criteria for inference of chromothripsis in cancer genomes. Cell 152:61226–36
    [Google Scholar]
  84. Kort DH, Chia G, Treff NR, Tanaka AJ, Xing T et al. 2016. Human embryos commonly form abnormal nuclei during development: a mechanism of DNA damage, embryonic aneuploidy, and developmental arrest. Hum. Reprod. 31:2312–23
    [Google Scholar]
  85. Kranzusch PJ, Lee A, Berger JM, Doudna JA 2013. Structure of human cGAS reveals a conserved family of second-messenger enzymes in innate immunity. Cell Rep 3:51362–68
    [Google Scholar]
  86. Kume K, Cantwell H, Burrell A, Nurse P 2019. Nuclear membrane protein Lem2 regulates nuclear size through membrane flow. Nat. Commun. 10:11871
    [Google Scholar]
  87. LaJoie D, Ullman KS. 2017. Coordinated events of nuclear assembly. Curr. Opin. Cell Biol. 46:39–45
    [Google Scholar]
  88. Lan Y, Londoño D, Bouley R, Rooney MS, Hacohen N 2014. DNase2a deficiency uncovers lysosomal clearance of damaged nuclear DNA via autophagy. Cell Rep 9:1180–92
    [Google Scholar]
  89. Landry S, Narvaiza I, Linfesty DC, Weitzman MD 2011. APOBEC3A can activate the DNA damage response and cause cell‐cycle arrest. EMBO Rep 12:5444–50
    [Google Scholar]
  90. Le Berre M, Aubertin J, Piel M 2012. Fine control of nuclear confinement identifies a threshold deformation leading to lamina rupture and induction of specific genes. Integr. Biol. 4:111406–14
    [Google Scholar]
  91. Lee-Kirsch M, Gong M, Chowdhury D, Senenko L, Engel K et al. 2007. Mutations in the gene encoding the 3′-5′ DNA exonuclease TREX1 are associated with systemic lupus erythematosus. Nat. Genet. 39:91065–67
    [Google Scholar]
  92. Lenz-Bohme B, Wismar J, Fuchs S, Reifegerste R, Buchner E et al. 1997. Insertional mutation of the Drosophila nuclear lamin Dm0 gene results in defective nuclear envelopes, clustering of nuclear pore complexes, and accumulation of annulate lamellae. J. Cell Biol. 137:51001–16
    [Google Scholar]
  93. Li Y, Schwab C, Ryan SL, Papaemmanuil E, Robinson HM et al. 2014. Constitutional and somatic rearrangement of chromosome 21 in acute lymphoblastic leukaemia. Nature 508:749498–102
    [Google Scholar]
  94. Lindenboim L, Sasson T, Worman HJ, Borner C, Stein R 2014. Cellular stress induces Bax-regulated nuclear bubble budding and rupture followed by nuclear protein release. Nucleus 5:6527–41
    [Google Scholar]
  95. Liu H, Zhang H, Wu X, Ma D, Wu J et al. 2018. Nuclear cGAS suppresses DNA repair and promotes tumorigenesis. Nature 563:7729131–36
    [Google Scholar]
  96. Liu J, Rolef Ben-Shahar T, Riemer D, Treinin M, Spann P et al. 2000. Essential roles for Caenorhabditis elegans lamin gene in nuclear organization, cell cycle progression, and spatial organization of nuclear pore complexes. Mol. Biol. Cell. 11:113937–47
    [Google Scholar]
  97. Liu S, Kwon M, Mannino M, Yang N, Renda F et al. 2018. Nuclear envelope assembly defects link mitotic errors to chromothripsis. Nature 561:7724551–55
    [Google Scholar]
  98. Ly P, Brunner SF, Shoshani O, Kim D, Lan W et al. 2019. Chromosome segregation errors generate a diverse spectrum of simple and complex genomic rearrangements. Nat. Genet. 51:4705–15
    [Google Scholar]
  99. Ly P, Teitz LS, Kim DH, Shoshani O, Skaletsky H et al. 2016. Selective Y centromere inactivation triggers chromosome shattering in micronuclei and repair by non-homologous end joining. Nat. Cell Biol. 19:68–75
    [Google Scholar]
  100. Maciejowski J, Chatzipli A, Dananberg A, de Lange T, Campbell P 2019. APOBEC3B-dependent kataegis and TREX1-driven chromothripsis in telomere crisis. bioRxiv 725366. https://doi.org/10.1101/725366
    [Crossref]
  101. Maciejowski J, de Lange T 2017. Telomeres in cancer: tumour suppression and genome instability. Nat. Rev. Mol. Cell Biol. 18:3175–86
    [Google Scholar]
  102. Maciejowski J, Li Y, Bosco N, Campbell PJ, de Lange T 2015. Chromothripsis and kataegis induced by telomere crisis. Cell 163:71641–54
    [Google Scholar]
  103. Mackenzie KJ, Carroll P, Martin C-A, Murina O, Fluteau A et al. 2017. cGAS surveillance of micronuclei links genome instability to innate immunity. Nature 548:7668461–65
    [Google Scholar]
  104. Maeshima K, Iino H, Hihara S, Funakoshi T, Watanabe A et al. 2010. Nuclear pore formation but not nuclear growth is governed by cyclin-dependent kinases (Cdks) during interphase. Nat. Struct. Mol. Biol. 17:91065–71
    [Google Scholar]
  105. Mardin BR, Drainas AP, Waszak SM, Weischenfeldt J, Isokane M et al. 2015. A cell‐based model system links chromothripsis with hyperploidy. Mol. Syst. Biol. 11:9828
    [Google Scholar]
  106. Mistriotis P, Wisniewski EO, Bera K, Keys J, Li Y et al. 2019. Confinement hinders motility by inducing RhoA-mediated nuclear influx, volume expansion, and blebbing. J. Cell Biol. 218:124093–111
    [Google Scholar]
  107. Mohr L, Toufektchan E, Chu K, Maciejowski J 2020. ER-directed TREX1 limits cGAS recognition of micronuclei. bioRxiv 102103. https://doi.org/10.1101/2020.05.18.102103
    [Crossref]
  108. Muchir A, Medioni J, Laluc M, Massart C, Arimura T et al. 2004. Nuclear envelope alterations in fibroblasts from patients with muscular dystrophy, cardiomyopathy, and partial lipodystrophy carrying lamin A/C gene mutations. Muscle Nerve 30:4444–50
    [Google Scholar]
  109. Muchir A, van Engelen BG, Lammens M, Mislow JM, McNally E et al. 2003. Nuclear envelope alterations in fibroblasts from LGMD1B patients carrying nonsense Y259X heterozygous or homozygous mutation in lamin A/C gene. Exp. Cell Res. 291:2352–62
    [Google Scholar]
  110. Nader GPF, Agüera-Gonzalez S, Routet F, Gratia M, Maurin M et al. 2020. Compromised nuclear envelope integrity drives tumor cell invasion. bioRxiv 110122. https://doi.org/10.1101/2020.05.22.110122
    [Crossref]
  111. Nassour J, Radford R, Correia A, Fusté J, Schoell B et al. 2019. Autophagic cell death restricts chromosomal instability during replicative crisis. Nature 565:7741659–63
    [Google Scholar]
  112. Nik-Zainal S, Alexandrov LB, Wedge DC, Loo P, Greenman CD et al. 2012. Mutational processes molding the genomes of 21 breast cancers. Cell 149:5979–93
    [Google Scholar]
  113. Olmos Y, Hodgson L, Mantell J, Verkade P, Carlton JG 2015. ESCRT-III controls nuclear envelope reformation. Nature 522:7555236–39
    [Google Scholar]
  114. Olmos Y, Perdrix-Rosell A, Carlton JG 2016. Membrane binding by CHMP7 coordinates ESCRT-III-dependent nuclear envelope reformation. Curr. Biol. 26:192635–41
    [Google Scholar]
  115. Pampalona J, Roscioli E, Silkworth WT, Bowden B, Genescà A et al. 2016. Chromosome bridges maintain kinetochore-microtubule attachment throughout mitosis and rarely break during anaphase. PLOS ONE 11:1e0147420
    [Google Scholar]
  116. Paulsen T, Kumar P, Koseoglu MM, Dutta A 2018. Discoveries of extrachromosomal circles of DNA in normal and tumor cells. Trends Genet 34:4270–78
    [Google Scholar]
  117. Penfield L, Shankar R, Szentgyörgyi E, Laffitte A, Mauro MS et al. 2020. Regulated lipid synthesis and LEM2/CHMP7 jointly control nuclear envelope closure. J. Cell Biol. 219:5e201908179
    [Google Scholar]
  118. Penfield L, Wysolmerski B, Mauro M, Farhadifar R, Martinez MA et al. 2018. Dynein-pulling forces counteract lamin-mediated nuclear stability during nuclear envelope repair. Mol. Biol. Cell 29:7852–68
    [Google Scholar]
  119. Pfeifer CR, Xia Y, Zhu K, Liu D, Irianto J et al. 2018. Constricted migration increases DNA damage and independently represses cell cycle. Mol. Biol. Cell 29:161948–62
    [Google Scholar]
  120. Porwal M, Cohen S, Snoussi K, Popa-Wagner R, Anderson F et al. 2013. Parvoviruses cause nuclear envelope breakdown by activating key enzymes of mitosis. PLOS Pathog 9:10e1003671
    [Google Scholar]
  121. Raab M, Gentili M, de Belly H, Thiam HR, Vargas P et al. 2016. ESCRT III repairs nuclear envelope ruptures during cell migration to limit DNA damage and cell death. Science 352:6283359–62
    [Google Scholar]
  122. Roberts SA, Lawrence MS, Klimczak LJ, Grimm SA, Fargo D et al. 2013. An APOBEC cytidine deaminase mutagenesis pattern is widespread in human cancers. Nat. Genet. 45:9970–76
    [Google Scholar]
  123. Roberts SA, Sterling J, Thompson C, Harris S, Mav D et al. 2012. Clustered mutations in yeast and in human cancers can arise from damaged long single-strand DNA regions. Mol. Cell 46:4424–35
    [Google Scholar]
  124. Robijns J, Molenberghs F, Sieprath T, Corne TDJ, Verschuuren M, De Vos WH 2016. In silico synchronization reveals regulators of nuclear ruptures in lamin A/C deficient model cells. Sci. Rep. 6:30325
    [Google Scholar]
  125. Rodero MP, Tesser A, Bartok E, Rice GI, Mina E et al. 2017. Type I interferon-mediated autoinflammation due to DNase II deficiency. Nat. Commun. 8:2176
    [Google Scholar]
  126. Rowat AC, Foster LJ, Nielsen MM, Weiss M, Ipsen JH 2005. Characterization of the elastic properties of the nuclear envelope. J. R. Soc. Interface 2:263–69
    [Google Scholar]
  127. Sakofsky CJ, Saini N, Klimczak LJ, Chan K, Malc EP et al. 2019. Repair of multiple simultaneous double-strand breaks causes bursts of genome-wide clustered hypermutation. PLOS Biol 17:9e3000464
    [Google Scholar]
  128. Samwer M, Schneider MWG, Hoefler R, Schmalhorst PS, Jude JG et al. 2017. DNA cross-bridging shapes a single nucleus from a set of mitotic chromosomes. Cell 170:5956–72.e23
    [Google Scholar]
  129. Sapra KT, Qin Z, Dubrovsky-Gaupp A, Aebi U, Müller DJ et al. 2019. Nonlinear mechanics of lamin filaments and the meshwork topology build an emergent nuclear lamina. bioRxiv 846550. https://doi.org/10.1101/846550
    [Crossref]
  130. Schreiner SM, Koo PK, Zhao Y, Mochrie SGJ, King MC 2015. The tethering of chromatin to the nuclear envelope supports nuclear mechanics. Nat. Commun. 6:7159
    [Google Scholar]
  131. Shah P, Wolf K, Lammerding J 2017. Bursting the bubble—nuclear envelope rupture as a path to genomic instability. ? Trends Cell Biol 27:8546–55
    [Google Scholar]
  132. Shimi T, Kittisopikul M, Tran J, Goldman AE, Adam SA et al. 2015. Structural organization of nuclear lamins A, C, B1, and B2 revealed by superresolution microscopy. Mol. Biol. Cell 26:224075–86
    [Google Scholar]
  133. Shimi T, Pfleghaar K, Kojima S-I, Pack C-G, Solovei I et al. 2008. The A- and B-type nuclear lamin networks: microdomains involved in chromatin organization and transcription. Genes Dev 22:243409–21
    [Google Scholar]
  134. Soto M, García-Santisteban I, Krenning L, Medema RH, Raaijmakers JA 2018. Chromosomes trapped in micronuclei are liable to segregation errors. J. Cell. Sci. 131:13jcs214742
    [Google Scholar]
  135. Stephens AD, Banigan EJ, Marko JF 2019a. Chromatin's physical properties shape the nucleus and its functions. Curr. Opin. Cell Biol. 58:76–84
    [Google Scholar]
  136. Stephens AD, Liu PZ, Banigan EJ, Almassalha LM, Backman V et al. 2018. Chromatin histone modifications and rigidity affect nuclear morphology independent of lamins. Mol. Biol. Cell 29:2220–33
    [Google Scholar]
  137. Stephens AD, Liu PZ, Kandula V, Chen H, Almassalha LM et al. 2019b. Physicochemical mechanotransduction alters nuclear shape and mechanics via heterochromatin formation. Mol. Biol. Cell 30:17232030
    [Google Scholar]
  138. Stephens PJ, Greenman CD, Fu B, Yang F, Bignell GR et al. 2011. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144:127–40
    [Google Scholar]
  139. Stetson DB, Ko JS, Heidmann T, Medzhitov R 2008. Trex1 prevents cell-intrinsic initiation of autoimmunity. Cell 134:4587–98
    [Google Scholar]
  140. Sullivan T, Escalante-Alcalde D, Bhatt H, Anver M, Bhat N et al. 1999. Loss of A-type lamin expression compromises nuclear envelope integrity leading to muscular dystrophy. J. Cell Biol. 147:5913–20
    [Google Scholar]
  141. Sun L, Wu J, Du F, Chen X, Chen ZJ 2013. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339:6121786–91
    [Google Scholar]
  142. Takahashi A, Loo T, Okada R, Kamachi F, Watanabe Y et al. 2018. Downregulation of cytoplasmic DNases is implicated in cytoplasmic DNA accumulation and SASP in senescent cells. Nat. Commun. 9:1249
    [Google Scholar]
  143. Takaki T, Montagner M, Serres MP, Le Berre M, Russell M et al. 2017. Actomyosin drives cancer cell nuclear dysmorphia and threatens genome stability. Nat. Commun. 8:16013
    [Google Scholar]
  144. Tamiello C, Kamps MAF, van den Wijngaard A, Verstraeten VLRM, Baaijens FPT et al. 2013. Soft substrates normalize nuclear morphology and prevent nuclear rupture in fibroblasts from a laminopathy patient with compound heterozygous LMNA mutations. Nucleus 4:161–73
    [Google Scholar]
  145. Taylor BJ, Nik-Zainal S, Wu Y, Stebbings LA, Raine K et al. 2013. DNA deaminases induce break-associated mutation showers with implication of APOBEC3B and 3A in breast cancer kataegis. eLife 2:e00534
    [Google Scholar]
  146. Thaller DJ, Allegretti M, Borah S, Ronchi P, Beck M, Lusk CP 2019. An ESCRT-LEM protein surveillance system is poised to directly monitor the nuclear envelope and nuclear transport system. eLife 8:e45284
    [Google Scholar]
  147. Thiam H-R, Vargas P, Carpi N, Crespo CL, Raab M et al. 2016. Perinuclear Arp2/3-driven actin polymerization enables nuclear deformation to facilitate cell migration through complex environments. Nat. Commun. 7:10997
    [Google Scholar]
  148. Tigano M, Vargas DC, Tremblay-Belzile S, Fu Y, Sfeir A 2020. Nuclear sensing of mitochondrial DNA breaks enhances immune surveillance. bioRxiv 929075. https://doi.org/10.1101/2020.01.31.929075
    [Crossref]
  149. Turgay Y, Eibauer M, Goldman AE, Shimi T, Khayat M et al. 2017. The molecular architecture of lamins in somatic cells. Nature 543:7644261–64
    [Google Scholar]
  150. Turner KM, Deshpande V, Beyter D, Koga T, Rusert J et al. 2017. Extrachromosomal oncogene amplification drives tumour evolution and genetic heterogeneity. Nature 543:7643122–25
    [Google Scholar]
  151. Ulbert S, Platani M, Boue S, Mattaj IW 2006. Direct membrane protein-DNA interactions required early in nuclear envelope assembly. J. Cell Biol. 173:4469–76
    [Google Scholar]
  152. Umbreit NT, Zhang C-Z, Lynch LD, Blaine LJ, Cheng AM et al. 2020. Mechanisms generating cancer genome complexity from a single cell division error. Science 368:6488p.eaba0712
    [Google Scholar]
  153. Vanpouille-Box C, Alard A, Aryankalayil MJ, Sarfraz Y, Diamond JM et al. 2017. DNA exonuclease Trex1 regulates radiotherapy-induced tumour immunogenicity. Nat. Commun. 8:15618
    [Google Scholar]
  154. Vargas JD, Hatch EM, Anderson DJ, Hetzer MW 2012. Transient nuclear envelope rupturing during interphase in human cancer cells. Nucleus 3:188–100
    [Google Scholar]
  155. Vázquez-Diez C, Yamagata K, Trivedi S, Haverfield J, FitzHarris G 2016. Micronucleus formation causes perpetual unilateral chromosome inheritance in mouse embryos. PNAS 113:3626–31
    [Google Scholar]
  156. Vergnes L, Péterfy M, Bergo MO, Young SG, Reue K 2004. Lamin B1 is required for mouse development and nuclear integrity. PNAS 101:2810428–33
    [Google Scholar]
  157. Versaevel M, Braquenier J-B, Riaz M, Grevesse T, Lantoine J, Gabriele S 2014. Super-resolution microscopy reveals LINC complex recruitment at nuclear indentation sites. Sci. Rep. 4:7362
    [Google Scholar]
  158. Vietri M, Schink KO, Campsteijn C, Wegner CS, Schultz SW et al. 2015. Spastin and ESCRT-III coordinate mitotic spindle disassembly and nuclear envelope sealing. Nature 522:7555231–35
    [Google Scholar]
  159. Vietri M, Schultz SW, Bellanger A, Jones CM 2020. Unrestrained ESCRT-III drives chromosome fragmentation and micronuclear catastrophe. Nat. Cell Biol 22:785667
    [Google Scholar]
  160. Vigouroux C, Auclair M, Dubosclard E, Pouchelet M, Capeau J et al. 2001. Nuclear envelope disorganization in fibroblasts from lipodystrophic patients with heterozygous R482Q/W mutations in the lamin A/C gene. J. Cell. Sci. 114:244459–68
    [Google Scholar]
  161. Volkman HE, Cambier S, Gray EE, Stetson DB 2019. Tight nuclear tethering of cGAS is essential for preventing autoreactivity. eLife 8:e47491
    [Google Scholar]
  162. von Appen A, LaJoie D, Johnson IE, Trnka M, Pick SM et al. 2020. A role for liquid-liquid phase separation in ESCRT-mediated nuclear envelope reformation. Nature 582:781011518
    [Google Scholar]
  163. Wang H, Hu S, Chen X, Shi H, Chen C et al. 2017. cGAS is essential for the antitumor effect of immune checkpoint blockade. PNAS 114:71637–42
    [Google Scholar]
  164. Wang L, Wen M, Cao X 2019. Nuclear hnRNPA2B1 initiates and amplifies the innate immune response to DNA viruses. Science 365:6454eeav0758
    [Google Scholar]
  165. Webster BM, Thaller DJ, Jäger J, Ochmann SE, Borah S, Lusk CP 2016. Chm7 and Heh1 collaborate to link nuclear pore complex quality control with nuclear envelope sealing. EMBO J 35:222447–67
    [Google Scholar]
  166. Wiggan O, Schroder B, Krapf D, Bamburg JR, DeLuca JG 2017. Cofilin regulates nuclear architecture through a myosin-II dependent mechanotransduction module. Sci. Rep. 7:40953
    [Google Scholar]
  167. Wu J, Sun L, Chen X, Du F, Shi H et al. 2013. Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science 339:6121826–30
    [Google Scholar]
  168. Wu S, Turner KM, Nguyen N, Raviram R, Erb M et al. 2019. Circular ecDNA promotes accessible chromatin and high oncogene expression. Nature 575:699–703
    [Google Scholar]
  169. Xia T, Konno H, Ahn J, Barber GN 2015. Deregulation of STING signaling in colorectal carcinoma constrains DNA damage responses and correlates with tumorigenesis. Cell Rep 14:2282–97
    [Google Scholar]
  170. Xia T, Konno H, Barber GN 2016. Recurrent loss of STING signaling in melanoma correlates with susceptibility to viral oncolysis. Cancer Res 76:226747–59
    [Google Scholar]
  171. Xia Y, Ivanovska IL, Zhu K, Smith L, Irianto J et al. 2018. Nuclear rupture at sites of high curvature compromises retention of DNA repair factors. J. Cell Biol. 217:113796–808
    [Google Scholar]
  172. Xia Y, Pfeifer CR, Zhu K, Irianto J, Liu D et al. 2019. Rescue of DNA damage after constricted migration reveals a mechano-regulated threshold for cell cycle. J. Cell Biol. 218:82545–63
    [Google Scholar]
  173. Yang H, Wang H, Ren J, Chen Q, Chen ZJ 2017. cGAS is essential for cellular senescence. PNAS 114:23E4612–20
    [Google Scholar]
  174. Yang Z, Maciejowski J, de Lange T 2017. Nuclear envelope rupture is enhanced by loss of p53 or Rb. Mol. Cancer Res. 15:111579–86
    [Google Scholar]
  175. Young AM, Gunn AL, Hatch EM 2020. BAF facilitates interphase nuclear envelope repair through recruitment of nuclear transmembrane proteins. Mol. Biol. Cell 31:15155160
    [Google Scholar]
  176. Zhang C-Z, Spektor A, Cornils H, Francis JM, Jackson EK et al. 2015. Chromothripsis from DNA damage in micronuclei. Nature 522:7555179–84
    [Google Scholar]
  177. Zhang Q, Tamashunas AC, Agrawal A, Torbati M, Katiyar A et al. 2019. Local, transient tensile stress on the nuclear membrane causes membrane rupture. Mol. Biol. Cell 30:7899–906
    [Google Scholar]
  178. Zhou W, Whiteley AT, de Mann CC, Morehouse BR, Nowak RP et al. 2018. Structure of the human cGAS-DNA complex reveals enhanced control of immune surveillance. Cell 174:2300–11.e11
    [Google Scholar]
  179. Zierhut C, Yamaguchi N, Paredes M, Luo J-D, Carroll T, Funabiki H 2019. The cytoplasmic DNA sensor cGAS promotes mitotic cell death. Cell 178:2302–15.e23
    [Google Scholar]
  180. Zwerger M, Jaalouk DE, Lombardi ML, Isermann P, Mauermann M et al. 2013. Myopathic lamin mutations impair nuclear stability in cells and tissue and disrupt nucleo-cytoskeletal coupling. Hum. Mol. Genet. 22:122335–49
    [Google Scholar]
  181. Zwerger M, Roschitzki-Voser H, Zbinden R, Denais C, Herrmann H et al. 2015. Altering lamina assembly reveals lamina-dependent and -independent functions for A-type lamins. J. Cell. Sci. 128:193607–20
    [Google Scholar]
/content/journals/10.1146/annurev-cellbio-020520-120627
Loading
/content/journals/10.1146/annurev-cellbio-020520-120627
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error