1932

Abstract

Reconstitution is an experimental strategy that seeks to recapitulate biological events outside their natural contexts using a reduced set of components. Classically, biochemical reconstitution has been extensively applied to identify the minimal set of molecules sufficient for recreating the basic chemistry of life. By analogy, reconstitution approaches to developmental biology recapitulate aspects of developmental events outside an embryo, with the goal of revealing the basic genetic circuits or physical cues sufficient for recreating developmental decisions. The rapidly growing repertoire of genetic, molecular, microscopic, and bioengineering tools is expanding the complexity and precision of reconstitution experiments. We review the emerging field of synthetic developmental biology, with a focus on the ways in which reconstitution strategies and new biological tools have enhanced our modern understanding of fundamental questions in developmental biology.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cellbio-020620-090650
2020-10-06
2024-06-15
Loading full text...

Full text loading...

/deliver/fulltext/cellbio/36/1/annurev-cellbio-020620-090650.html?itemId=/content/journals/10.1146/annurev-cellbio-020620-090650&mimeType=html&fmt=ahah

Literature Cited

  1. Andrae J, Gallini R, Betsholtz C 2008. Role of platelet-derived growth factors in physiology and medicine. Genes Dev 22:101276–312
    [Google Scholar]
  2. Aydin B, Mazzoni EO. 2019. Cell reprogramming: the many roads to success. Annu. Rev. Cell Dev. Biol. 35:433–52
    [Google Scholar]
  3. Benne R, Hershey JW. 1978. Mechanism of action of protein synthesis initiation factors from rabbit reticulocytes. J. Biol. Chem. 253:93078–87
    [Google Scholar]
  4. Blau HM, Chiu C-P, Webster C 1983. Cytoplasmic activation of human nuclear genes in stable heterocaryons. Cell 32:41171–80
    [Google Scholar]
  5. Briggs JA, Li VC, Lee S, Woolf CJ, Klein A, Kirschner MW 2017. Mouse embryonic stem cells can differentiate via multiple paths to the same state. eLife 6:e26945
    [Google Scholar]
  6. Briscoe J, Small S. 2015. Morphogen rules: design principles of gradient-mediated embryo patterning. Development 142:233996–4009
    [Google Scholar]
  7. Chang JB, Ferrell JE Jr 2013. Mitotic trigger waves and the spatial coordination of the Xenopus cell cycle. Nature 500:7464603–7
    [Google Scholar]
  8. Cheng X, Ferrell JE Jr 2018. Apoptosis propagates through the cytoplasm as trigger waves. Science 361:6402607–12
    [Google Scholar]
  9. Chitu V, Stanley ER. 2006. Colony-stimulating factor 1 in immunity and inflammation. Curr. Opin. Immunol. 18:139–48
    [Google Scholar]
  10. Crocker J, Tsai A, Stern DL 2017. A fully synthetic transcriptional platform for a multicellular eukaryote. Cell Rep 18:1287–96
    [Google Scholar]
  11. Davidson D. 1983. The mechanism of feather pattern development in the chick. 1. The time of determination of feather position. J. Embryol. Exp. Morphol. 74:245–59
    [Google Scholar]
  12. Davies J. 2017. Using synthetic biology to explore principles of development. Development 144:71146–58
    [Google Scholar]
  13. Davis RL, Weintraub H, Lassar AB 1987. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 51:6987–1000
    [Google Scholar]
  14. Deneke VE, Melbinger A, Vergassola M, Di Talia S 2016. Waves of Cdk1 activity in S phase synchronize the cell cycle in Drosophila embryos. Dev. Cell 38:4399–412
    [Google Scholar]
  15. Dequéant M-L, Pourquié O. 2008. Segmental patterning of the vertebrate embryonic axis. Nat. Rev. Genet. 9:5370–82
    [Google Scholar]
  16. Ebrahimkhani MR, Ebisuya M. 2019. Synthetic developmental biology: build and control multicellular systems. Curr. Opin. Chem. Biol. 52:9–15
    [Google Scholar]
  17. Elowitz MB, Lim WA. 2010. Build life to understand it. Nature 468:7326889–90
    [Google Scholar]
  18. Fakhouri WD, Ay A, Sayal R, Dresch J, Dayringer E, Arnosti DN 2010. Deciphering a transcriptional regulatory code: modeling short‐range repression in the Drosophila embryo. Mol. Syst. Biol. 6:1341
    [Google Scholar]
  19. Fletcher DA. 2016. Bottom-up biology: harnessing engineering to understand nature. Dev. Cell 38:6587–89
    [Google Scholar]
  20. Grunwald GB. 1991. The conceptual and experimental foundations of vertebrate embryonic cell adhesion research. Dev. Biol. 7:129–58
    [Google Scholar]
  21. Gurdon JB, Elsdale TR, Fischberg M 1958. Sexually mature individuals of Xenopus laevis from the transplantation of single somatic nuclei. Nature 182:462764–65
    [Google Scholar]
  22. Hart Y, Reich-Zeliger S, Antebi YE, Zaretsky I, Mayo AE et al. 2014. Paradoxical signaling by a secreted molecule leads to homeostasis of cell levels. Cell 158:51022–32
    [Google Scholar]
  23. Howard J, Grill SW, Bois JS 2011. Turing's next steps: the mechanochemical basis of morphogenesis. Nat. Rev. Mol. Cell Biol. 12:6392–98
    [Google Scholar]
  24. Hubaud A, Regev I, Mahadevan L, Pourquié O 2017. Excitable dynamics and Yap-dependent mechanical cues drive the segmentation clock. Cell 171:3668–82.e11
    [Google Scholar]
  25. Huch M, Knoblich JA, Lutolf MP, Martinez-Arias A 2017. The hope and the hype of organoid research. Development 144:6938–41
    [Google Scholar]
  26. Hughes AJ, Miyazaki H, Coyle MC, Zhang J, Laurie MT et al. 2018. Engineered tissue folding by mechanical compaction of the mesenchyme. Dev. Cell 44:2165–78.e6
    [Google Scholar]
  27. Jiang TX, Jung HS, Widelitz RB, Chuong CM 1999. Self-organization of periodic patterns by dissociated feather mesenchymal cells and the regulation of size, number and spacing of primordia. Development 126:224997–5009
    [Google Scholar]
  28. Johnson HE, Toettcher JE. 2019. Signaling dynamics control cell fate in the early Drosophila embryo. Dev. Cell 48:3361–70.e3
    [Google Scholar]
  29. Keller R, Danilchik M. 1988. Regional expression, pattern and timing of convergence and extension during gastrulation of Xenopus laevis. . Development 103:1193–209
    [Google Scholar]
  30. Kirillova AO, Kraus YA, Markov AV 2018. Dissociation–reaggregation experiments in cnidarians as a model system for the study of the regulative capacity of metazoan development. Biol. Bull. Rev. 8:1–11
    [Google Scholar]
  31. Kmita M, Duboule D. 2003. Organizing axes in time and space: 25 years of colinear tinkering. Science 301:5631331–33
    [Google Scholar]
  32. Krieg M, Arboleda-Estudillo Y, Puech PH, Käfer J, Graner F et al. 2008. Tensile forces govern germ-layer organization in zebrafish. Nat. Cell Biol. 10:4429–36
    [Google Scholar]
  33. Lassar AB, Paterson BM, Weintraub H 1986. Transfection of a DNA locus that mediates the conversion of 10T12 fibroblasts to myoblasts. Cell 47:5649–56
    [Google Scholar]
  34. Lauschke VM, Tsiairis CD, François P, Aulehla A 2013. Scaling of embryonic patterning based on phase-gradient encoding. Nature 493:7430101–5
    [Google Scholar]
  35. LeBon L, Lee TV, Sprinzak D, Jafar-Nejad H, Elowitz MB 2014. Fringe proteins modulate Notch-ligand cis and trans interactions to specify signaling states. eLife 3:e02950
    [Google Scholar]
  36. Li P, Markson JS, Wang S, Chen S, Vachharajani V, Elowitz MB 2018. Morphogen gradient reconstitution reveals Hedgehog pathway design principles. Science 360:6388543–48
    [Google Scholar]
  37. Lienert F, Lohmueller JJ, Garg A, Silver PA 2014. Synthetic biology in mammalian cells: next generation research tools and therapeutics. Nat. Rev. Mol. Cell Biol. 15:295–107
    [Google Scholar]
  38. Mammoto T, Ingber DE. 2010. Mechanical control of tissue and organ development. Development 137:91407–20
    [Google Scholar]
  39. Mathur M, Xiang JS, Smolke CD 2017. Mammalian synthetic biology for studying the cell. J. Cell Biol. 216:173–82
    [Google Scholar]
  40. Matsuda M, Koga M, Woltjen K, Nishida E, Ebisuya M 2015. Synthetic lateral inhibition governs cell-type bifurcation with robust ratios. Nat. Commun. 6:6195
    [Google Scholar]
  41. McKenna A, Gagnon JA. 2019. Recording development with single cell dynamic lineage tracing. Development 146:12dev169730
    [Google Scholar]
  42. Moloney DJ, Panin VM, Johnston SH, Chen J, Shao L et al. 2000. Fringe is a glycosyltransferase that modifies Notch. Nature 406:6794369–75
    [Google Scholar]
  43. Morris SA, Daley GQ. 2013. A blueprint for engineering cell fate: current technologies to reprogram cell identity. Cell Res 23:133–48
    [Google Scholar]
  44. Müller P, Rogers KW, Jordan BM, Lee JS, Robson D et al. 2012. Differential diffusivity of Nodal and Lefty underlies a reaction-diffusion patterning system. Science 336:6082721–24
    [Google Scholar]
  45. Müller P, Rogers KW, Yu SR, Brand M, Schier AF 2013. Morphogen transport. Development 140:81621–38
    [Google Scholar]
  46. Mumm JS, Kopan R. 2000. Notch signaling: from the outside. Dev. Biol. 228:2151–65
    [Google Scholar]
  47. Nieuwkoop PD. 1969. The formation of the mesoderm in urodelean amphibians. I. Induction by the endoderm. Wilhelm Roux Arch. Entwickl. Mech. Org. 162:4341–73
    [Google Scholar]
  48. Ramos AI, Barolo S. 2013. Low-affinity transcription factor binding sites shape morphogen responses and enhancer evolution. Philos. Trans. R. Soc. B 368:163220130018
    [Google Scholar]
  49. Rogers KW, Lord ND, Gagnon JA, Pauli A, Zimmerman S et al. 2017. Nodal patterning without Lefty inhibitory feedback is functional but fragile. eLife 6:e28785
    [Google Scholar]
  50. Rogers KW, Schier AF. 2011. Morphogen gradients: from generation to interpretation. Annu. Rev. Cell Dev. Biol. 27:377–407
    [Google Scholar]
  51. Rossi G, Manfrin A, Lutolf MP 2018. Progress and potential in organoid research. Nat. Rev. Genet. 19:11671–87
    [Google Scholar]
  52. Salazar-Ciudad I. 2003. Mechanisms of pattern formation in development and evolution. Development 130:102027–37
    [Google Scholar]
  53. Santorelli M, Lam C, Morsut L 2019. Synthetic development: building mammalian multicellular structures with artificial genetic programs. Curr. Opin. Biotechnol. 59:130–40
    [Google Scholar]
  54. Sayre MH, Tschochner H, Kornberg RD 1992. Reconstitution of transcription with five purified initiation factors and RNA polymerase II from Saccharomyces cerevisiae. J. Biol. Chem 267:3223376–82
    [Google Scholar]
  55. Sekine R, Shibata T, Ebisuya M 2018. Synthetic mammalian pattern formation driven by differential diffusivity of Nodal and Lefty. Nat. Commun. 9:5456
    [Google Scholar]
  56. Sha W, Moore J, Chen K, Lassaletta AD, Yi C-S et al. 2003. Hysteresis drives cell-cycle transitions in Xenopus laevis egg extracts. PNAS 100:3975–80
    [Google Scholar]
  57. Shahbazi MN, Siggia ED, Zernicka-Goetz M 2019. Self-organization of stem cells into embryos: a window on early mammalian development. Science 364:6444948–51
    [Google Scholar]
  58. Shyer AE, Rodrigues AR, Schroeder GG, Kassianidou E, Kumar S, Harland RM 2017. Emergent cellular self-organization and mechanosensation initiate follicle pattern in the avian skin. Science 357:6353811–15
    [Google Scholar]
  59. Siggia ED, Warmflash A. 2018. Modeling mammalian gastrulation with embryonic stem cells. Curr. Top. Dev. Biol. 129:1–23
    [Google Scholar]
  60. Simunovic M, Brivanlou AH. 2017. Embryoids, organoids and gastruloids: new approaches to understanding embryogenesis. Development 144:6976–85
    [Google Scholar]
  61. Sjöqvist M, Andersson ER. 2017. Do as I say, Not(ch) as I do: lateral control of cell fate. Dev. Biol. 447:158–70
    [Google Scholar]
  62. Smith JC. 1989. Mesoderm induction and mesoderm-inducing factors in early amphibian development. Development 105:4665–77
    [Google Scholar]
  63. Spemann H, Mangold H. 1924. Über Induktion von Embryonalanlagen durch Implantation artfremder Organisatoren. Arch. Mikrosk. Anat. Entwickl. 100:599638
    [Google Scholar]
  64. Sprinzak D, Lakhanpal A, LeBon L, Garcia-Ojalvo J, Elowitz MB 2011. Mutual inactivation of Notch receptors and ligands facilitates developmental patterning. PLOS Comput. Biol. 7:6e1002069
    [Google Scholar]
  65. Sprinzak D, Lakhanpal A, LeBon L, Santat LA, Fontes ME et al. 2010. Cis-interactions between Notch and Delta generate mutually exclusive signalling states. Nature 465:729486–90
    [Google Scholar]
  66. Steinberg MS. 1963. Reconstruction of tissues by dissociated cells. Science 141:3579401–8
    [Google Scholar]
  67. Steinberg MS, Takeichi M. 1994. Experimental specification of cell sorting, tissue spreading, and specific spatial patterning by quantitative differences in cadherin expression. PNAS 91:1206–9
    [Google Scholar]
  68. Stumpf HF. 1966. Mechanism by which cells estimate their location within the body. Nature 212:5060430–31
    [Google Scholar]
  69. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T et al. 2007. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:5861–72
    [Google Scholar]
  70. Takahashi K, Yamanaka S. 2006. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:4663–76
    [Google Scholar]
  71. Technau U, Holstein TW. 1992. Cell sorting during the regeneration of Hydra from reaggregated cells. Dev. Biol. 151:1117–27
    [Google Scholar]
  72. Toda S, Blauch LR, Tang SKY, Morsut L, Lim WA 2018. Programming self-organizing multicellular structures with synthetic cell–cell signaling. Science 361:6398156–62
    [Google Scholar]
  73. Toda S, Brunger JM, Lim WA 2019. Synthetic development: learning to program multicellular self-organization. Curr. Opin. Syst. Biol. 14:41–49
    [Google Scholar]
  74. Townes PL, Holtfreter J. 1955. Directed movements and selective adhesion of embryonic amphibian cells. J. Exp. Zool. 128:153–120
    [Google Scholar]
  75. Tsai TY-C, Sikora M, Xia P, Colak-Champollion T, Knaut H et al. 2019. An adhesion code ensures robust pattern formation during tissue morphogenesis. bioRxiv 803635. https://doi.org/10.1101/803635
    [Crossref]
  76. Tsiairis CD, Aulehla A. 2016. Self-organization of embryonic genetic oscillators into spatiotemporal wave patterns. Cell 164:4656–67
    [Google Scholar]
  77. Turing A. 1952. The chemical basis of morphogenesis. Philos. Trans. R. Soc. B 237:64137–72
    [Google Scholar]
  78. Velasco S, Ibrahim MM, Kakumanu A, Garipler G, Aydin B et al. 2017. A multi-step transcriptional and chromatin state cascade underlies motor neuron programming from embryonic stem cells. Cell Stem Cell 20:2205–17.e8
    [Google Scholar]
  79. Vergassola M, Deneke VE, Di Talia S 2018. Mitotic waves in the early embryogenesis of Drosophila: bistability traded for speed. PNAS 115:10E2165–74
    [Google Scholar]
  80. Vierbuchen T, Ostermeier A, Pang ZP, Kokubu Y, Südhof TC, Wernig M 2010. Direct conversion of fibro-blasts to functional neurons by defined factors. Nature 463:72841035–41
    [Google Scholar]
  81. Vincent BJ, Estrada J, DePace AH 2016. The appeasement of Doug: a synthetic approach to enhancer biology. Integr. Biol. 8:4475–84
    [Google Scholar]
  82. Warmflash A, Sorre B, Etoc F, Siggia ED, Brivanlou AH 2014. A method to recapitulate early embryonic spatial patterning in human embryonic stem cells. Nat. Methods 11:8847–54
    [Google Scholar]
  83. Wichterle H, Lieberam I, Porter JA, Jessell TM 2002. Directed differentiation of embryonic stem cells into motor neurons. Cell 110:3385–97
    [Google Scholar]
  84. Widelitz RB, Jiang TX, Chen CW, Stott NS, Jung HS, Chuong CM 1999. Wnt-7a in feather morphogenesis: involvement of anterior–posterior asymmetry and proximal–distal elongation demonstrated with an in vitro reconstitution model. Development 126:122577–87
    [Google Scholar]
  85. Wieschaus E, Nüsslein-Volhard C. 2016. The Heidelberg screen for pattern mutants of Drosophila: a personal account. Annu. Rev. Cell Dev. Biol. 32:1–46
    [Google Scholar]
  86. Wolpert L. 1969. Positional information and the spatial pattern of cellular differentiation. J. Theor. Biol. 25:11–47
    [Google Scholar]
  87. Xiong F, Tentner AR, Huang P, Gelas A, Mosaliganti KR et al. 2013. Specified neural progenitors sort to form sharp domains after noisy Shh signaling. Cell 153:3550–61
    [Google Scholar]
  88. Yeeles JTP, Janska A, Early A, Diffley JFX 2017. How the eukaryotic replisome achieves rapid and efficient DNA replication. Mol. Cell 65:1105–16
    [Google Scholar]
  89. Yoshioka-Kobayashi K, Matsumiya M, Niino Y, Isomura A, Kori H et al. 2020. Coupling delay controls synchronized oscillation in the segmentation clock. Nature 580:7801119–23
    [Google Scholar]
  90. Zheng Y, Xue X, Shao Y, Wang S, Esfahani SN et al. 2019. Controlled modelling of human epiblast and amnion development using stem cells. Nature 573:7774421–25
    [Google Scholar]
  91. Zhou X, Franklin RA, Adler M, Jacox JB, Bailis W et al. 2018. Circuit design features of a stable two-cell system. Cell 172:4744–57.e17
    [Google Scholar]
/content/journals/10.1146/annurev-cellbio-020620-090650
Loading
/content/journals/10.1146/annurev-cellbio-020620-090650
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error