1932

Abstract

Understanding human embryology has historically relied on comparative approaches using mammalian model organisms. With the advent of low-input methods to investigate genetic and epigenetic mechanisms and efficient techniques to assess gene function, we can now study the human embryo directly. These advances have transformed the investigation of early embryogenesis in nonrodent species, thereby providing a broader understanding of conserved and divergent mechanisms. Here, we present an overview of the major events in human preimplantation development and place them in the context of mammalian evolution by comparing these events in other eutherian and metatherian species. We describe the advances of studies on postimplantation development and discuss stem cell models that mimic postimplantation embryos. A comparative perspective highlights the importance of analyzing different organisms with molecular characterization and functional studies to reveal the principles of early development. This growing field has a fundamental impact in regenerative medicine and raises important ethical considerations.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cellbio-022020-024900
2020-10-06
2024-06-25
Loading full text...

Full text loading...

/deliver/fulltext/cellbio/36/1/annurev-cellbio-022020-024900.html?itemId=/content/journals/10.1146/annurev-cellbio-022020-024900&mimeType=html&fmt=ahah

Literature Cited

  1. Alda-Catalinas C, Bredikhin D, Hernando-Herraez I, Kubinyecz O, Santos F et al. 2020. A single-cell transcriptomics CRISPR-activation screen identifies epigenetic regulators of the zygotic genome activation program. Cell Syst 11:2541.e9
    [Google Scholar]
  2. Amita M, Adachi K, Alexenko AP, Sinha S, Schust DJ et al. 2013. Complete and unidirectional conversion of human embryonic stem cells to trophoblast by BMP4. PNAS 110:E1212–21
    [Google Scholar]
  3. Ander SE, Diamond MS, Coyne CB 2019. Immune responses at the maternal-fetal interface. Sci. Immunol. 4:eaat6114
    [Google Scholar]
  4. Aoki F, Worrad DM, Schultz RM 1997. Regulation of transcriptional activity during the first and second cell cycles in the preimplantation mouse embryo. Dev. Biol. 181:296–307
    [Google Scholar]
  5. Aplin JD, Meseguer M, Simon C, Ortíz ME, Croxatto H, Jones CJ 2001. MUC1, glycans and the cell-surface barrier to embryo implantation. Biochem. Soc. Trans. 29:153–56
    [Google Scholar]
  6. Arnold SJ, Robertson EJ. 2009. Making a commitment: cell lineage allocation and axis patterning in the early mouse embryo. Nat. Rev. Mol. Cell Biol. 10:91–103
    [Google Scholar]
  7. Artus J, Piliszek A, Hadjantonakis AK 2011. The primitive endoderm lineage of the mouse blastocyst: sequential transcription factor activation and regulation of differentiation by Sox17. Dev. Biol. 350:393–404
    [Google Scholar]
  8. ASRM (Am. Soc. Reprod. Med.). 2020. Ethics in embryo research: a position statement by the ASRM Ethics in Embryo Research Task Force and the ASRM Ethics Committee. Fertil. Steril. 113:270–94
    [Google Scholar]
  9. Avilion AA, Nicolis SK, Pevny LH, Perez L, Vivian N, Lovell-Badge R 2003. Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev 17:126–40
    [Google Scholar]
  10. Aziz M, Alexandre H. 1991. The origin of the nascent blastocoele in preimplantation mouse embryos ultrastructural cytochemistry and effect of chloroquine. Roux's Arch. Dev. Biol. 200:77–85
    [Google Scholar]
  11. Barcroft LC, Offenberg H, Thomsen P, Watson AJ 2003. Aquaporin proteins in murine trophectoderm mediate transepithelial water movements during cavitation. Dev. Biol. 256:342–54
    [Google Scholar]
  12. Bazer FW, Spencer TE, Johnson GA, Burghardt RC, Wu G 2009. Comparative aspects of implantation. Reproduction 138:195–209
    [Google Scholar]
  13. Bedzhov I, Zernicka-Goetz M. 2014. Self-organizing properties of mouse pluripotent cells initiate morphogenesis upon implantation. Cell 156:1032–44
    [Google Scholar]
  14. Behr R, Heneweer C, Viebahn C, Denker HW, Thie M 2005. Epithelial-mesenchymal transition in colonies of rhesus monkey embryonic stem cells: a model for processes involved in gastrulation. Stem Cells 23:805–16
    [Google Scholar]
  15. Benirschke K. 1973. Book review: The human placenta. J. D. Boyd and W. J. Hamilton. Heffer, Cambridge, 365 pp. 1970. Teratology 8:77–78
    [Google Scholar]
  16. Berg DK, Smith CS, Pearton DJ, Wells DN, Broadhurst R et al. 2011. Trophectoderm lineage determination in cattle. Dev. Cell 20:244–55
    [Google Scholar]
  17. Bermejo-Alvarez P, Rizos D, Lonergan P, Gutierrez-Adan A 2011. Transcriptional sexual dimorphism in elongating bovine embryos: implications for XCI and sex determination genes. Reproduction 141:801–8
    [Google Scholar]
  18. Bernardo AS, Faial T, Gardner L, Niakan KK, Ortmann D et al. 2011. BRACHYURY and CDX2 mediate BMP-induced differentiation of human and mouse pluripotent stem cells into embryonic and extraembryonic lineages. Cell Stem Cell 9:144–55
    [Google Scholar]
  19. Betteridge KJ. 1989. The structure and function of the equine capsule in relation to embryo manipulation and transfer. Equine Vet. J. 21:92–100
    [Google Scholar]
  20. Bininda-Emonds ORP, Cardillo M, Jones KE, MacPhee RDE, Beck RMD et al. 2007. The delayed rise of present-day mammals. Nature 446:507–12 Corrigendum. 2008. Nature 456 274
    [Google Scholar]
  21. Blakeley P, Fogarty NM, del Valle I, Wamaitha SE, Hu TX et al. 2015. Defining the three cell lineages of the human blastocyst by single-cell RNA-seq. Development 142:3151–65 Erratum. 2015 Development 142:3613
    [Google Scholar]
  22. Blomberg LA, Telugu BP. 2012. Twenty years of embryonic stem cell research in farm animals. Reprod. Domest. Anim. 47:Suppl. 480–85
    [Google Scholar]
  23. Bloor DJ, Wilson Y, Kibschull M, Traub O, Leese HJ et al. 2004. Expression of connexins in human preimplantation embryos in vitro. Reprod. Biol. Endocrinol. 2:25
    [Google Scholar]
  24. Bogliotti YS, Wu J, Vilarino M, Okamura D, Soto DA et al. 2018. Efficient derivation of stable primed pluripotent embryonic stem cells from bovine blastocysts. PNAS 115:2090–95
    [Google Scholar]
  25. Boroviak T, Loos R, Lombard P, Okahara J, Behr R et al. 2015. Lineage-specific profiling delineates the emergence and progression of naive pluripotency in mammalian embryogenesis. Dev. Cell 35:366–82
    [Google Scholar]
  26. Boroviak T, Nichols J. 2017. Primate embryogenesis predicts the hallmarks of human naïve pluripotency. Development 144:175–86
    [Google Scholar]
  27. Boroviak T, Stirparo GG, Dietmann S, Hernando-Herraez I, Mohammed H et al. 2018. Single cell transcriptome analysis of human, marmoset and mouse embryos reveals common and divergent features of preimplantation development. Development 145:dev167833
    [Google Scholar]
  28. Bou G, Liu S, Sun M, Zhu J, Xue B et al. 2017. CDX2 is essential for cell proliferation and polarity in porcine blastocysts. Development 144:1296–306
    [Google Scholar]
  29. Bowen JA, Burghardt RC. 2000. Cellular mechanisms of implantation in domestic farm animals. Semin. Cell Dev. Biol. 11:93–104
    [Google Scholar]
  30. Braude P, Bolton V, Moore S 1988. Human gene expression first occurs between the four- and eight-cell stages of preimplantation development. Nature 332:459–61
    [Google Scholar]
  31. Briggs SF, Dominguez AA, Chavez SL, Pera RAR 2015. Single-cell XIST expression in human preimplantation embryos and newly reprogrammed female induced pluripotent stem cells. Stem Cells 33:1771–81
    [Google Scholar]
  32. Brons IG, Smithers LE, Trotter MW, Rugg-Gunn P, Sun B et al. 2007. Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature 448:191–95
    [Google Scholar]
  33. Brown CJ, Ballabio A, Rupert JL, Lafreniere RG, Grompe M et al. 1991. A gene from the region of the human X inactivation centre is expressed exclusively from the inactive X chromosome. Nature 349:38–44
    [Google Scholar]
  34. Buehr M, Meek S, Blair K, Yang J, Ure J et al. 2008. Capture of authentic embryonic stem cells from rat blastocysts. Cell 135:1287–98
    [Google Scholar]
  35. Canizo JR, Ynsaurralde Rivolta AE, Vazquez Echegaray C, Suvá M, Alberio V et al. 2019. A dose-dependent response to MEK inhibition determines hypoblast fate in bovine embryos. BMC Dev. Biol. 19:13
    [Google Scholar]
  36. Cao S, Han J, Wu J, Li Q, Liu S et al. 2014. Specific gene-regulation networks during the pre-implantation development of the pig embryo as revealed by deep sequencing. BMC Genom 15:4
    [Google Scholar]
  37. Cao Z, Xu T, Tong X, Wang Y, Zhang D et al. 2019. Maternal yes-associated protein participates in porcine blastocyst development via modulation of trophectoderm epithelium barrier function. Cells 8:1606
    [Google Scholar]
  38. Casanova M, Moscatelli M, Chauviere LE, Huret C, Samson J et al. 2019. A primate-specific retroviral enhancer wires the XACT lncRNA into the core pluripotency network in humans. Nat. Commun. 10:5652
    [Google Scholar]
  39. Cauffman G, De Rycke M, Sermon K, Liebaers I, Van de Velde H 2009. Markers that define stemness in ESC are unable to identify the totipotent cells in human preimplantation embryos. Hum. Reprod. 24:63–70
    [Google Scholar]
  40. Chambers I, Colby D, Robertson M, Nichols J, Lee S et al. 2003. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113:643–55
    [Google Scholar]
  41. Chan CJ, Costanzo M, Ruiz-Herrero T, Monke G, Petrie RJ et al. 2019. Hydraulic control of mammalian embryo size and cell fate. Nature 571:112–16
    [Google Scholar]
  42. Chang SC, Brown CJ. 2010. Identification of regulatory elements flanking human XIST reveals species differences. BMC Mol. Biol. 11:20
    [Google Scholar]
  43. Chang TA, Bondarenko GI, Gerami-Naini B, Drenzek JG, Durning M et al. 2018. Trophoblast differentiation, invasion and hormone secretion in a three-dimensional in vitro implantation model with rhesus monkey embryos. Reprod. Biol. Endocrinol. 16:24
    [Google Scholar]
  44. Chazaud C, Yamanaka Y, Pawson T, Rossant J 2006. Early lineage segregation between epiblast and primitive endoderm in mouse blastocysts through the Grb2-MAPK pathway. Dev. Cell 10:615–24
    [Google Scholar]
  45. Chen AE, Egli D, Niakan KK, Deng J, Akutsu H et al. 2009. Optimal timing of inner cell mass isolation increases the efficiency of human embryonic stem cell derivation and allows generation of sibling cell lines. Cell Stem Cell 4:103–6
    [Google Scholar]
  46. Chen C-H, Xu J, Chang W-F, Liu C-C, Su H-Y et al. 2012. Dynamic profiles of Oct-4, Cdx-2 and acetylated H4K5 in in-vivo-derived rabbit embryos. Reprod. Biomed. Online 25:358–70
    [Google Scholar]
  47. Chen Z, Zhang Y. 2019. Loss of DUX causes minor defects in zygotic genome activation and is compatible with mouse development. Nat. Genet. 51:947–51
    [Google Scholar]
  48. Chew KY, Shaw G, Yu H, Pask AJ, Renfree MB 2014. Heterochrony in the regulation of the developing marsupial limb. Dev. Dyn. 243:324–38
    [Google Scholar]
  49. Chhabra S, Liu L, Goh R, Kong X, Warmflash A 2019. Dissecting the dynamics of signaling events in the BMP, WNT, and NODAL cascade during self-organized fate patterning in human gastruloids. PLOS Biol 17:e3000498
    [Google Scholar]
  50. Clemson CM, McNeil JA, Willard HF, Lawrence JB 1996. XIST RNA paints the inactive X chromosome at interphase: evidence for a novel RNA involved in nuclear/chromosome structure. J. Cell Biol. 132:259–75
    [Google Scholar]
  51. Clevers H. 2016. Modeling development and disease with organoids. Cell 165:1586–97
    [Google Scholar]
  52. Cockburn K, Rossant J. 2010. Making the blastocyst: lessons from the mouse. J. Clin. Investig. 120:995–1003
    [Google Scholar]
  53. Coucouvanis E, Martin GR. 1995. Signals for death and survival: a two-step mechanism for cavitation in the vertebrate embryo. Cell 83:279–87
    [Google Scholar]
  54. Crosby IM, Gandolfi F, Moor RM 1988. Control of protein synthesis during early cleavage of sheep embryos. Reproduction 82:769–75
    [Google Scholar]
  55. Daigneault BW, Rajput S, Smith GW, Ross PJ 2018. Embryonic POU5F1 is required for expanded bovine blastocyst formation. Sci. Rep. 8:7753
    [Google Scholar]
  56. De Iaco A, Coudray A, Duc J, Trono D 2019. DPPA2 and DPPA4 are necessary to establish a 2C-like state in mouse embryonic stem cells. EMBO Rep 20:e47382
    [Google Scholar]
  57. De Iaco A, Verp S, Offner S, Grun D, Trono D 2020. DUX is a non-essential synchronizer of zygotic genome activation. Development 147:dev177725
    [Google Scholar]
  58. de Mello JCM, Fernandes GR, Vibranovski MD, Pereira LV 2017. Early X chromosome inactivation during human preimplantation development revealed by single-cell RNA-sequencing. Sci. Rep. 7:10794
    [Google Scholar]
  59. Deglincerti A, Croft GF, Pietila LN, Zernicka-Goetz M, Siggia ED, Brivanlou AH 2016. Self-organization of the in vitro attached human embryo. Nature 533:251–54
    [Google Scholar]
  60. Denker H-W. 2000. Structural dynamics and function of early embryonic coats. Cells Tissues Org 166:180–207
    [Google Scholar]
  61. Denker H-W, Tyndale-Biscoe CH. 1986. Embryo implantation and proteinase activities in a marsupial (Macropus eugenii). Cell Tissue Res 246:279–91
    [Google Scholar]
  62. Dietrich JE, Hiiragi T. 2007. Stochastic patterning in the mouse pre-implantation embryo. Development 134:4219–31
    [Google Scholar]
  63. Doetschman TC, Eistetter H, Katz M, Schmidt W, Kemler R 1985. The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. Development 87:27–45
    [Google Scholar]
  64. Dominguez F, Galan A, Martín JJL, Remohi J, Pellicer A, Simón C 2003. Hormonal and embryonic regulation of chemokine receptors CXCR1, CXCR4, CCR5 and CCR2B in the human endometrium and the human blastocyst. Mol. Hum. Reprod. 9:189–98
    [Google Scholar]
  65. Dumortier JG, Le Verge-Serandour M, Tortorelli AF, Mielke A, de Plater L et al. 2019. Hydraulic fracturing and active coarsening position the lumen of the mouse blastocyst. Science 365:465–68
    [Google Scholar]
  66. Eckersley-Maslin M, Alda-Catalinas C, Blotenburg M, Kreibich E, Krueger C, Reik W 2019. Dppa2 and Dppa4 directly regulate the Dux-driven zygotic transcriptional program. Genes Dev 33:194–208
    [Google Scholar]
  67. Eiraku M, Takata N, Ishibashi H, Kawada M, Sakakura E et al. 2011. Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature 472:51–56
    [Google Scholar]
  68. Enders AC, Schlafke S, Hendrickx AG 1986. Differentiation of the embryonic disc, amnion, and yolk sac in the rhesus monkey. Am. J. Anat. 177:161–85
    [Google Scholar]
  69. Ezashi T, Yuan Y, Roberts RM 2016. Pluripotent stem cells from domesticated mammals. Annu. Rev. Anim. Biosci. 4:223–53
    [Google Scholar]
  70. Fierro-González JC, White MD, Silva JC, Plachta N 2013. Cadherin-dependent filopodia control preimplantation embryo compaction. Nat. Cell Biol. 15:1424–33
    [Google Scholar]
  71. Fleming TP, McConnell J, Johnson MH, Stevenson BR 1989. Development of tight junctions de novo in the mouse early embryo: control of assembly of the tight junction-specific protein, ZO-1. J. Cell Biol. 108:1407–18
    [Google Scholar]
  72. Fogarty NME, McCarthy A, Snijders KE, Powell BE, Kubikova N et al. 2017. Genome editing reveals a role for OCT4 in human embryogenesis. Nature 550:67–73
    [Google Scholar]
  73. Fong C-Y, Bongso A, Sathananthan H, Ho J, Ng S-C 2001. Ultrastructural observations of enzymatically treated human blastocysts: zona-free blastocyst transfer and rescue of blastocysts with hatching difficulties. Hum. Reprod. 16:540–6
    [Google Scholar]
  74. Frankenberg S. 2018. Pre-gastrula development of non-eutherian mammals. Curr. Top. Dev. Biol. 128:237–66
    [Google Scholar]
  75. Frankenberg S, Selwood L. 1998. An ultrastructural study of the role of an extracellular matrix during normal cleavage in a marsupial, the brushtail possum. Mol. Reprod. Dev. 50:420–33
    [Google Scholar]
  76. Frankenberg S, Shaw G, Freyer C, Pask AJ, Renfree MB 2013. Early cell lineage specification in a marsupial: a case for diverse mechanisms among mammals. Development 140:965–75
    [Google Scholar]
  77. Frum T, Halbisen MA, Wang C, Amiri H, Robson P, Ralston A 2013. Oct4 cell-autonomously promotes primitive endoderm development in the mouse blastocyst. Dev. Cell 25:610–22
    [Google Scholar]
  78. Frum T, Murphy TM, Ralston A 2018. HIPPO signaling resolves embryonic cell fate conflicts during establishment of pluripotency in vivo. eLife 7:e42298
    [Google Scholar]
  79. Frum T, Watts JL, Ralston A 2019. TEAD4, YAP1 and WWTR1 prevent the premature onset of pluripotency prior to the 16-cell stage. Development 146:dev179861
    [Google Scholar]
  80. Fuchs C, Scheinast M, Pasteiner W, Lagger S, Hofner M et al. 2012. Self-organization phenomena in embryonic stem cell-derived embryoid bodies: axis formation and breaking of symmetry during cardiomyo-genesis. Cells Tissues Org 195:377–91
    [Google Scholar]
  81. Gao L, Wu K, Liu Z, Yao X, Yuan S et al. 2018. Chromatin accessibility landscape in human early embryos and its association with evolution. Cell 173:248–59.e15
    [Google Scholar]
  82. Ghassemifar MR, Eckert JJ, Houghton FD, Picton HM, Leese HJ, Fleming TP 2003. Gene expression regulating epithelial intercellular junction biogenesis during human blastocyst development in vitro. Mol. Hum. Reprod. 9:245–52
    [Google Scholar]
  83. Giraldez AJ, Mishima Y, Rihel J, Grocock RJ, Van Dongen S et al. 2006. Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science 312:75–79
    [Google Scholar]
  84. Goissis MD, Cibelli JB. 2014. Functional characterization of SOX2 in bovine preimplantation embryos. Biol. Reprod. 90:30
    [Google Scholar]
  85. Goszczynski DE, Cheng H, Demyda-Peyrás S, Medrano JF, Wu J, Ross PJ 2019. In vitro breeding: application of embryonic stem cells to animal production. Biol. Reprod. 100:885–95
    [Google Scholar]
  86. Grant J, Mahadevaiah SK, Khil P, Sangrithi MN, Royo H et al. 2012. Rsx is a metatherian RNA with Xist-like properties in X-chromosome inactivation. Nature 487:254–58
    [Google Scholar]
  87. Griffith OW, Chavan AR, Protopapas S, Maziarz J, Romero R, Wagner GP 2017. Embryo implantation evolved from an ancestral inflammatory attachment reaction. PNAS 114:E6566–75
    [Google Scholar]
  88. Grow EJ, Flynn RA, Chavez SL, Bayless NL, Wossidlo M et al. 2015. Intrinsic retroviral reactivation in human preimplantation embryos and pluripotent cells. Nature 522:221–25
    [Google Scholar]
  89. Guo G, Huss M, Tong GQ, Wang C, Sun LL et al. 2010. Resolution of cell fate decisions revealed by single-cell gene expression analysis from zygote to blastocyst. Dev. Cell 18:675–85
    [Google Scholar]
  90. Haider S, Meinhardt G, Saleh L, Kunihs V, Gamperl M et al. 2018. Self-renewing trophoblast organoids recapitulate the developmental program of the early human placenta. Stem Cell Rep 11:537–51
    [Google Scholar]
  91. Halstead MM, Ma X, Schultz RM, Ross PJ 2020. Chromatin remodeling in bovine embryos indicates species-specific regulation of genome activation. bioRxiv 874479. https://doi.org/10.1101/2019.12.12.874479
    [Crossref]
  92. Hamilton WJ, Mossman HW. 1972. Hamilton, Boyd and Mossman's Human Embryology: Prenatal Development of Form and Function Cambridge, UK: Heffer. , 4th ed..
    [Google Scholar]
  93. Hammadeh ME, Fischer-Hammadeh C, Ali KR 2011. Assisted hatching in assisted reproduction: a state of the art. J. Assisted Reprod. Genet. 28:119–28
    [Google Scholar]
  94. Harrison SE, Sozen B, Christodoulou N, Kyprianou C, Zernicka-Goetz M 2017. Assembly of embryonic and extraembryonic stem cells to mimic embryogenesis in vitro. Science 356:eaal1810
    [Google Scholar]
  95. Hendrickson PG, Doráis JA, Grow EJ, Whiddon JL, Lim J-W et al. 2017. Conserved roles of mouse DUX and human DUX4 in activating cleavage-stage genes and MERVL/HERVL retrotransposons. Nat. Genet. 49:925–34
    [Google Scholar]
  96. Hertig AT. 1945. On the development of the amnion and exocoelomic membrane in the pre-villous human ovum. Yale J. Biol. Med. 18:107–15
    [Google Scholar]
  97. Hertig AT, Rock J, Adams EC 1956. A description of 34 human ova within the first 17 days of development. Am. J. Anat. 98:435–93
    [Google Scholar]
  98. Hill JP. 1910. Memoirs: The early development of the marsupialia, with special reference to the native cat (Dasyurus viverrinus). J. Cell Sci. 56:1–134
    [Google Scholar]
  99. Hogan BL, Cooper AR, Kurkinen M 1980. Incorporation into Reichert's membrane of laminin-like extracellular proteins synthesized by parietal endoderm cells of the mouse embryo. Dev. Biol. 80:289–300
    [Google Scholar]
  100. Hou Z, An L, Han J, Yuan Y, Chen D, Tian J 2018. Revolutionize livestock breeding in the future: an animal embryo-stem cell breeding system in a dish. J. Anim. Sci. Biotechnol. 9:90
    [Google Scholar]
  101. Hsu YC. 1971. Post-blastocyst differentiation in vitro. Nature 231:100–2
    [Google Scholar]
  102. Hyslop L, Stojkovic M, Armstrong L, Walter T, Stojkovic P et al. 2005. Downregulation of NANOG induces differentiation of human embryonic stem cells to extraembryonic lineages. Stem Cells 23:1035–43
    [Google Scholar]
  103. Hyun I, Munsie M, Pera MF, Rivron NC, Rossant J 2020. Toward guidelines for research on human embryo models formed from stem cells. Stem Cell Rep 14:169–74
    [Google Scholar]
  104. Inoue A, Jiang L, Lu F, Zhang Y 2017. Genomic imprinting of Xist by maternal H3K27me3. Genes Dev 31:1927–32
    [Google Scholar]
  105. Itskovitz-Eldor J, Schuldiner M, Karsenti D, Eden A, Yanuka O et al. 2000. Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers. Mol. Med. 6:88–95
    [Google Scholar]
  106. Jenkinson EJ, Wilson IB. 1970. In vitro support system for the study of blastocyst differentiation in the mouse. Nature 228:776–78
    [Google Scholar]
  107. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–21
    [Google Scholar]
  108. Jones CJP, Skepper JN, Renfree MB, Aplin JD 2014. Trophoblast specialisations during pregnancy in the tammar wallaby, Macropus eugenii: a morphological and lectin histochemical study. Placenta 35:467–75
    [Google Scholar]
  109. Kang M, Garg V, Hadjantonakis AK 2017. Lineage establishment and progression within the inner cell mass of the mouse blastocyst requires FGFR1 and FGFR2. Dev. Cell 41:496–510.e5
    [Google Scholar]
  110. Kanka J. 2003. Gene expression and chromatin structure in the pre-implantation embryo. Theriogenology 59:3–19
    [Google Scholar]
  111. Kobolak J, Kiss K, Polgar Z, Mamo S, Rogel-Gaillard C et al. 2009. Promoter analysis of the rabbit POU5F1 gene and its expression in preimplantation stage embryos. BMC Mol. Biol. 10:88
    [Google Scholar]
  112. Korotkevich E, Niwayama R, Courtois A, Friese S, Berger N et al. 2017. The apical domain is required and sufficient for the first lineage segregation in the mouse embryo. Dev. Cell 40:235–47.e7
    [Google Scholar]
  113. Kress A, Selwood L. 2006. Marsupial hypoblast: formation and differentiation of the bilaminar blastocyst in Sminthopsis macroura. . Cells Tissues Org 182:155–70
    [Google Scholar]
  114. Kuijk EW, Du Puy L, Van Tol HTA, Oei CHY, Haagsman HP et al. 2008. Differences in early lineage segregation between mammals. Dev. Dyn. 237:918–27
    [Google Scholar]
  115. Kuijk EW, van Tol LTA, Van de Velde H, Wubbolts R, Welling M et al. 2012. The roles of FGF and MAP kinase signaling in the segregation of the epiblast and hypoblast cell lineages in bovine and human embryos. Development 139:871–82
    [Google Scholar]
  116. Kunath T, Arnaud D, Uy GD, Okamoto I, Chureau C et al. 2005. Imprinted X-inactivation in extra-embryonic endoderm cell lines from mouse blastocysts. Development 132:1649–61
    [Google Scholar]
  117. Lancaster MA, Renner M, Martin CA, Wenzel D, Bicknell LS et al. 2013. Cerebral organoids model human brain development and microcephaly. Nature 501:373–79
    [Google Scholar]
  118. Lanner F, Rossant J. 2010. The role of FGF/Erk signaling in pluripotent cells. Development 137:3351–60
    [Google Scholar]
  119. Lee JT, Davidow LS, Warshawsky D 1999. Tsix, a gene antisense to Xist at the X-inactivation centre. Nat. Genet. 21:400–4
    [Google Scholar]
  120. Li P, Tong C, Mehrian-Shai R, Jia L, Wu N et al. 2008. Germline competent embryonic stem cells derived from rat blastocysts. Cell 135:1299–310
    [Google Scholar]
  121. Linneberg-Agerholm M, Wong YF, Romero Herrera JA, Monteiro RS, Anderson KGV, Brickman JM 2019. Naïve human pluripotent stem cells respond to Wnt, Nodal and LIF signalling to produce expandable naïve extra-embryonic endoderm. Development 146:dev180620
    [Google Scholar]
  122. Liu L, Leng L, Liu C, Lu C, Yuan Y et al. 2019. An integrated chromatin accessibility and transcriptome landscape of human pre-implantation embryos. Nat. Commun. 10:364
    [Google Scholar]
  123. Lopata A, Kohlman DJ, Bowes LG, Watkins WB 1995. Culture of marmoset blastocysts on matrigel: a model of differentiation during the implantation period. Anat. Rec. 241:469–86
    [Google Scholar]
  124. Louvet S, Aghion J, Santa-Maria A, Mangeat P, Maro B 1996. Ezrin becomes restricted to outer cells following asymmetrical division in the preimplantation mouse embryo. Dev. Biol. 177:568–79
    [Google Scholar]
  125. Luckett WP. 1975. The development of primordial and definitive amniotic cavities in early Rhesus monkey and human embryos. Am. J. Anat. 144:149–67
    [Google Scholar]
  126. Luckett WP. 1978. Origin and differentiation of the yolk sac and extraembryonic mesoderm in presomite human and rhesus monkey embryos. Am. J. Anat. 152:59–97
    [Google Scholar]
  127. Luo Z-X, Yuan C-X, Meng Q-J, Ji Q 2011. A Jurassic eutherian mammal and divergence of marsupials and placentals. Nature 476:442–45
    [Google Scholar]
  128. Lyon MF. 1961. Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature 190:372–73
    [Google Scholar]
  129. Ma H, Zhai J, Wan H, Jiang X, Wang X et al. 2019. In vitro culture of cynomolgus monkey embryos beyond early gastrulation. Science 366:eaax7890
    [Google Scholar]
  130. Maddox-Hyttel P, Alexopoulos NI, Vajta G, Lewis I, Rogers P et al. 2003. Immunohistochemical and ultrastructural characterization of the initial post-hatching development of bovine embryos. Reproduction 125:607–23
    [Google Scholar]
  131. Maddox-Hyttel P, Dinnyes A, Laurincik J, Rath D, Niemann H et al. 2001. Gene expression during pre- and peri-implantation embryonic development in pigs. Reproduction Suppl 58:175–89
    [Google Scholar]
  132. Madeja ZE, Sosnowski J, Hryniewicz K, Warzych E, Pawlak P et al. 2013. Changes in sub-cellular localisation of trophoblast and inner cell mass specific transcription factors during bovine preimplantation development. BMC Dev. Biol. 13:32
    [Google Scholar]
  133. Mahadevaiah SK, Sangrithi MN, Hirota T, Turner JMA 2020. A single-cell transcriptome atlas of marsupial embryogenesis and X-inactivation. Nature https://doi.org/10.1038/s41586-020-2629-6
    [Crossref] [Google Scholar]
  134. Maitre JL, Niwayama R, Turlier H, Nedelec F, Hiiragi T 2015. Pulsatile cell-autonomous contractility drives compaction in the mouse embryo. Nat. Cell Biol. 17:849–55
    [Google Scholar]
  135. Maitre JL, Turlier H, Illukkumbura R, Eismann B, Niwayama R et al. 2016. Asymmetric division of contractile domains couples cell positioning and fate specification. Nature 536:344–48
    [Google Scholar]
  136. Mak W, Nesterova TB, de Napoles M, Appanah R, Yamanaka S et al. 2004. Reactivation of the paternal X chromosome in early mouse embryos. Science 303:666–69
    [Google Scholar]
  137. Marahrens Y, Panning B, Dausman J, Strauss W, Jaenisch R 1997. Xist-deficient mice are defective in dosage compensation but not spermatogenesis. Genes Dev 11:156–66
    [Google Scholar]
  138. Marikawa Y, Tamashiro DA, Fujita TC, Alarcón VB 2009. Aggregated P19 mouse embryonal carcinoma cells as a simple in vitro model to study the molecular regulations of mesoderm formation and axial elongation morphogenesis. Genesis 47:93–106
    [Google Scholar]
  139. Martyn I, Brivanlou AH, Siggia ED 2019. A wave of WNT signaling balanced by secreted inhibitors controls primitive streak formation in micropattern colonies of human embryonic stem cells. Development 146:dev172791
    [Google Scholar]
  140. Mate KE, Robinson ES, Pedersen RA, Vandeberg JL 1994. Timetable of in vivo embryonic development in the grey short-tailed opossum (Monodelphis domestica). Mol. Reprod. Dev. 39:365–74
    [Google Scholar]
  141. Meirelles FV, Caetano AR, Watanabe YF, Ripamonte P, Carambula SF et al. 2004. Genome activation and developmental block in bovine embryos. Anim. Reprod. Sci. 82–83:13–20
    [Google Scholar]
  142. Menchero S, Rollan I, Lopez-Izquierdo A, Andreu MJ, Sainz de Aja J et al. 2019. Transitions in cell potency during early mouse development are driven by Notch. eLife 8:e42930
    [Google Scholar]
  143. Meseguer M, Aplin JD, Caballero-Campo P, O'Connor JE, Martín JC et al. 2001. Human endometrial mucin MUC1 is up-regulated by progesterone and down-regulated in vitro by the human blastocyst. Biol. Reprod. 64:590–601
    [Google Scholar]
  144. Migeon BR, Chowdhury AK, Dunston JA, McIntosh I 2001. Identification of TSIX, encoding an RNA antisense to human XIST, reveals differences from its murine counterpart: implications for X inactivation. Am. J. Hum. Genet. 69:951–60
    [Google Scholar]
  145. Mistri TK, Arindrarto W, Ng WP, Wang C, Lim LH et al. 2018. Dynamic changes in Sox2 spatio-temporal expression promote the second cell fate decision through Fgf4/Fgfr2 signaling in preimplantation mouse embryos. Biochem. J. 475:1075–89
    [Google Scholar]
  146. Mitsui K, Tokuzawa Y, Itoh H, Segawa K, Murakami M et al. 2003. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113:631–42
    [Google Scholar]
  147. Moffett A, Chazara O, Colucci F 2017. Maternal allo-recognition of the fetus. Fertil. Steril. 107:1269–72
    [Google Scholar]
  148. Molotkov A, Mazot P, Brewer JR, Cinalli RM, Soriano P 2017. Distinct requirements for FGFR1 and FGFR2 in primitive endoderm development and exit from pluripotency. Dev. Cell 41:511–26.e4
    [Google Scholar]
  149. Moore HD, Gems S, Hearn JP 1985. Early implantation stages in the marmoset monkey (Callithrix jacchus). Am. J. Anat. 172:265–78
    [Google Scholar]
  150. Morgani SM, Metzger JJ, Nichols J, Siggia ED, Hadjantonakis AK 2018. Micropattern differentiation of mouse pluripotent stem cells recapitulates embryo regionalized cell fate patterning. eLife 7:e32839
    [Google Scholar]
  151. Moris N, Anlas K, van den Brink SC, Alemany A, Schröder J et al. 2020. An in vitro model of early anteroposterior organization during human development. Nature 582:7812410–15
    [Google Scholar]
  152. Morrison JT, Bantilan NS, Wang VN, Nellett KM, Cruz YP 2013. Expression patterns of Oct4, Cdx2, Tead4, and Yap1 proteins during blastocyst formation in embryos of the marsupial, Monodelphis domestica Wagner. Evol. Dev. 15:171–85
    [Google Scholar]
  153. Nakamura T, Okamoto I, Sasaki K, Yabuta Y, Iwatani C et al. 2016. A developmental coordinate of pluripotency among mice, monkeys and humans. Nature 537:57–62
    [Google Scholar]
  154. Nakano T, Ando S, Takata N, Kawada M, Muguruma K et al. 2012. Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell 10:771–85
    [Google Scholar]
  155. Negrón-Pérez VM, Hansen PJ. 2018. Role of yes-associated protein 1, angiomotin, and mitogen-activated kinase kinase 1/2 in development of the bovine blastocyst. Biol. Reprod. 98:170–83
    [Google Scholar]
  156. Ng RK, Dean W, Dawson C, Lucifero D, Madeja Z et al. 2008. Epigenetic restriction of embryonic cell lineage fate by methylation of Elf5.Nat. . Cell Biol 10:1280–90
    [Google Scholar]
  157. Niakan KK, Eggan K. 2013. Analysis of human embryos from zygote to blastocyst reveals distinct gene expression patterns relative to the mouse. Dev. Biol. 375:54–64
    [Google Scholar]
  158. Nichols J, Zevnik B, Anastassiadis K, Niwa H, Klewe-Nebenius D et al. 1998. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 95:379–91
    [Google Scholar]
  159. Nikas G, Ao A, Winston RM, Handyside AH 1996. Compaction and surface polarity in the human embryo in vitro. Biol. Reprod. 55:32–37
    [Google Scholar]
  160. Nishioka N, Inoue K, Adachi K, Kiyonari H, Ota M et al. 2009. The Hippo signaling pathway components Lats and Yap pattern Tead4 activity to distinguish mouse trophectoderm from inner cell mass. Dev. Cell 16:398–410
    [Google Scholar]
  161. Niu Y, Sun N, Li C, Lei Y, Huang Z et al. 2019. Dissecting primate early post-implantation development using long-term in vitro embryo culture. Science 366:eaaw5754
    [Google Scholar]
  162. Niwa H, Toyooka Y, Shimosato D, Strumpf D, Takahashi K et al. 2005. Interaction between Oct3/4 and Cdx2 determines trophectoderm differentiation. Cell 123:917–29
    [Google Scholar]
  163. Noli L, Capalbo A, Ogilvie C, Khalaf Y, Ilic D 2015. Discordant growth of monozygotic twins starts at the blastocyst stage: a case study. Stem Cell Rep 5:946–53
    [Google Scholar]
  164. Okae H, Toh H, Sato T, Hiura H, Takahashi S et al. 2018. Derivation of human trophoblast stem cells. Cell Stem Cell 22:50–63.e6
    [Google Scholar]
  165. Okamoto I, Otte AP, Allis CD, Reinberg D, Heard E 2004. Epigenetic dynamics of imprinted X inactivation during early mouse development. Science 303:644–49
    [Google Scholar]
  166. Okamoto I, Patrat C, Thepot D, Peynot N, Fauque P et al. 2011. Eutherian mammals use diverse strategies to initiate X-chromosome inactivation during development. Nature 472:370–74
    [Google Scholar]
  167. Peng G, Suo S, Chen J, Chen W, Liu C et al. 2016. Spatial transcriptome for the molecular annotation of lineage fates and cell identity in mid-gastrula mouse embryo. Dev. Cell 36:681–97
    [Google Scholar]
  168. Penny GD, Kay GF, Sheardown SA, Rastan S, Brockdorff N 1996. Requirement for Xist in X chromosome inactivation. Nature 379:131–37
    [Google Scholar]
  169. Pereira PN, Dobreva MP, Graham L, Huylebroeck D, Lawson KA, Zwijsen AN 2011. Amnion formation in the mouse embryo: the single amniochorionic fold model. BMC Dev. Biol. 11:48
    [Google Scholar]
  170. Perry JS, Rowlands IW. 1962. Early pregnancy in the pig. Reproduction 4:175–88
    [Google Scholar]
  171. Petropoulos S, Edsgard D, Reinius B, Deng Q, Panula SP et al. 2016. Single-cell RNA-seq reveals lineage and X chromosome dynamics in human preimplantation embryos. Cell 165:1012–26
    [Google Scholar]
  172. Plusa B, Piliszek A, Frankenberg S, Artus J, Hadjantonakis AK 2008. Distinct sequential cell behaviours direct primitive endoderm formation in the mouse blastocyst. Development 135:3081–91
    [Google Scholar]
  173. Ralston A, Cox BJ, Nishioka N, Sasaki H, Chea E et al. 2010. Gata3 regulates trophoblast development downstream of Tead4 and in parallel to Cdx2. Development 137:395–403
    [Google Scholar]
  174. Ramos-Ibeas P, Sang F, Zhu Q, Tang WWC, Withey S et al. 2019. Pluripotency and X chromosome dynamics revealed in pig pre-gastrulating embryos by single cell analysis. Nat. Commun. 10:500
    [Google Scholar]
  175. Rayon T, Menchero S, Nieto A, Xenopoulos P, Crespo M et al. 2014. Notch and hippo converge on Cdx2 to specify the trophectoderm lineage in the mouse blastocyst. Dev. Cell 30:410–22
    [Google Scholar]
  176. Renfree MB. 2010. Review: Marsupials: placental mammals with a difference. Placenta 31:Suppl.S21–26
    [Google Scholar]
  177. Rivron NC, Frias-Aldeguer J, Vrij EJ, Boisset JC, Korving J et al. 2018. Blastocyst-like structures generated solely from stem cells. Nature 557:106–11
    [Google Scholar]
  178. Roode M, Blair K, Snell P, Elder K, Marchant S et al. 2012. Human hypoblast formation is not dependent on FGF signalling. Dev. Biol. 361:358–63
    [Google Scholar]
  179. Rossant J. 1995. Development of the extraembryonic lineages. Semin. Dev. Biol. 6:237–47
    [Google Scholar]
  180. Russ AP, Wattler S, Colledge WH, Aparicio SA, Carlton MB et al. 2000. Eomesodermin is required for mouse trophoblast development and mesoderm formation. Nature 404:95–99
    [Google Scholar]
  181. Sado T, Wang Z, Sasaki H, Li E 2001. Regulation of imprinted X-chromosome inactivation in mice by Tsix. Development 128:1275–86
    [Google Scholar]
  182. Sasaki H. 2017. Roles and regulations of Hippo signaling during preimplantation mouse development. Dev. Growth Differ. 59:12–20
    [Google Scholar]
  183. Sasaki K, Nakamura T, Okamoto I, Yabuta Y, Iwatani C et al. 2016. The germ cell fate of cynomolgus monkeys is specified in the nascent amnion. Dev. Cell 39:169–85
    [Google Scholar]
  184. Selesniemi KL, Reedy MA, Gultice AD, Brown TL 2005. Identification of committed placental stem cell lines for studies of differentiation. Stem Cells Dev 14:535–47
    [Google Scholar]
  185. Selwood L. 1992. Mechanisms underlying the development of pattern in marsupial embryos. Curr. Top. Dev. Biol. 27:175–233
    [Google Scholar]
  186. Selwood L. 2000. Marsupial egg and embryo coats. Cells Tissues Org 166:208–19
    [Google Scholar]
  187. Seshagiri PB, McKenzie DI, Bavister BD, Williamson JL, Aiken JM 1992. Golden hamster embryonic genome activation occurs at the two-cell stage: correlation with major developmental changes. Mol. Reprod. Dev. 32:229–35
    [Google Scholar]
  188. Seshagiri PB, Sen Roy S, Sireesha G, Rao RP 2009. Cellular and molecular regulation of mammalian blastocyst hatching. J. Reprod. Immunol. 83:79–84
    [Google Scholar]
  189. Shahbazi MN, Jedrusik A, Vuoristo S, Recher G, Hupalowska A et al. 2016. Self-organization of the human embryo in the absence of maternal tissues. Nat. Cell Biol. 18:700–8
    [Google Scholar]
  190. Shahbazi MN, Scialdone A, Skorupska N, Weberling A, Recher G et al. 2017. Pluripotent state transitions coordinate morphogenesis in mouse and human embryos. Nature 552:239–43
    [Google Scholar]
  191. Shahbazi MN, Zernicka-Goetz M. 2018. Deconstructing and reconstructing the mouse and human early embryo. Nat. Cell Biol. 20:878–87
    [Google Scholar]
  192. Sharkey AM, Gardner L, Hiby S, Farrell L, Apps R et al. 2008. Killer Ig-like receptor expression in uterine NK cells is biased toward recognition of HLA-C and alters with gestational age. J. Immunol. 181:39–46
    [Google Scholar]
  193. Sharman GB. 1971. Late DNA replication in the paternally derived X chromosome of female kangaroos. Nature 230:231–32
    [Google Scholar]
  194. Sharon N, Mor I, Golan-lev T, Fainsod A, Benvenisty N 2011. Molecular and functional characterizations of gastrula organizer cells derived from human embryonic stem cells. Stem Cells 29:600–8
    [Google Scholar]
  195. Shepard TH. 1989. Book review: Developmental stages in human embryos. R. O'Rahilly and F. Müller (eds), Carnegie Institution of Washington, Washington, DC. 1987, 306 pp., $52 Teratology 4085
    [Google Scholar]
  196. Simón C, Mercader A, Garcia-Velasco J, Nikas G, Moreno C et al. 1999. Coculture of human embryos with autologous human endometrial epithelial cells in patients with implantation failure. J. Clin. Endocrinol. Metab. 84:2638–46
    [Google Scholar]
  197. Simunovic M, Brivanlou AH. 2017. Embryoids, organoids and gastruloids: new approaches to understanding embryogenesis. Development 144:976–85
    [Google Scholar]
  198. Singh H, Nardo L, Kimber SJ, Aplin JD 2010. Early stages of implantation as revealed by an in vitro model. Reproduction 139:905–14
    [Google Scholar]
  199. Song S, Liu L, Edwards SV, Wu S 2012. Resolving conflict in eutherian mammal phylogeny using phylogenomics and the multispecies coalescent model. PNAS 109:14942–47
    [Google Scholar]
  200. Sozen B, Amadei G, Cox A, Wang R, Na E et al. 2018. Self-assembly of embryonic and two extra-embryonic stem cell types into gastrulating embryo-like structures. Nat. Cell Biol. 20:979–89
    [Google Scholar]
  201. Sprague D, Waters SA, Kirk JM, Wang JR, Samollow PB et al. 2019. Nonlinear sequence similarity between the Xist and Rsx long noncoding RNAs suggests shared functions of tandem repeat domains. RNA 25:1004–19
    [Google Scholar]
  202. Stephenson RO, Yamanaka Y, Rossant J 2010. Disorganized epithelial polarity and excess trophectoderm cell fate in preimplantation embryos lacking E-cadherin. Development 137:3383–91
    [Google Scholar]
  203. Stroband HW, Van der Lende T 1990. Embryonic and uterine development during early pregnancy in pigs. J. Reprod. Fertil. Suppl. 40:261–77
    [Google Scholar]
  204. Strumpf D, Mao CA, Yamanaka Y, Ralston A, Chawengsaksophak K et al. 2005. Cdx2 is required for correct cell fate specification and differentiation of trophectoderm in the mouse blastocyst. Development 132:2093–102
    [Google Scholar]
  205. Sun R, Lei L, Liu S, Xue B, Wang J et al. 2015. Morphological changes and germ layer formation in the porcine embryos from days 7–13 of development. Zygote 23:266–76
    [Google Scholar]
  206. Takagi N, Sasaki M. 1975. Preferential inactivation of the paternally derived X chromosome in the extraembryonic membranes of the mouse. Nature 256:640–42
    [Google Scholar]
  207. Tam PP. 1998. Postimplantation mouse development: whole embryo culture and micro-manipulation. Int. J. Dev. Biol. 42:895–902
    [Google Scholar]
  208. Tam PP, Loebel DA. 2007. Gene function in mouse embryogenesis: get set for gastrulation. Nat. Rev. Genet. 8:368–81
    [Google Scholar]
  209. Tanaka S, Kunath T, Hadjantonakis AK, Nagy A, Rossant J 1998. Promotion of trophoblast stem cell proliferation by FGF4. Science 282:2072–75
    [Google Scholar]
  210. Taniguchi K, Shao Y, Townshend RF, Tsai Y-H, DeLong CJ et al. 2015. Lumen formation is an intrinsic property of isolated human pluripotent stem cells. Stem Cell Rep 5:954–62
    [Google Scholar]
  211. Tesar PJ, Chenoweth JG, Brook FA, Davies TJ, Evans EP et al. 2007. New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature 448:196–99
    [Google Scholar]
  212. Tesarik J, Kopecny V, Plachot M, Mandelbaum J 1987. High-resolution autoradiographic localization of DNA-containing sites and RNA synthesis in developing nucleoli of human preimplantation embryos: a new concept of embryonic nucleologenesis. Development 101:777–91
    [Google Scholar]
  213. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ et al. 1998. Embryonic stem cell lines derived from human blastocysts. Science 282:1145–47
    [Google Scholar]
  214. Thomson JA, Kalishman J, Golos TG, Durning M, Harris CP, Hearn JP 1996. Pluripotent cell lines derived from common marmoset (Callithrix jacchus) blastocysts. Biol. Reprod. 55:254–59
    [Google Scholar]
  215. Töhönen V, Katayama S, Vesterlund L, Jouhilahti EM, Sheikhi M et al. 2015. Novel PRD-like homeodomain transcription factors and retrotransposon elements in early human development. Nat. Commun. 6:8207
    [Google Scholar]
  216. Turco MY, Gardner L, Kay RG, Hamilton RS, Prater M et al. 2018. Trophoblast organoids as a model for maternal–fetal interactions during human placentation. Nature 564:263–67
    [Google Scholar]
  217. Turco MY, Moffett A. 2019. Development of the human placenta. Development 146:dev163428
    [Google Scholar]
  218. Vallot C, Patrat C, Collier AJ, Huret C, Casanova M et al. 2017. XACT noncoding RNA competes with XIST in the control of X chromosome activity during human early development. Cell Stem Cell 20:102–11
    [Google Scholar]
  219. van den Brink SC, Baillie-Johnson P, Balayo T, Hadjantonakis AK, Nowotschin S et al. 2014. Symmetry breaking, germ layer specification and axial organisation in aggregates of mouse embryonic stem cells. Development 141:4231–42
    [Google Scholar]
  220. Van Soom A, Boerjan ML, Bols PE, Vanroose G, Lein A et al. 1997. Timing of compaction and inner cell allocation in bovine embryos produced in vivo after superovulation. Biol. Reprod. 57:1041–49
    [Google Scholar]
  221. Vastenhouw NL, Cao WX, Lipshitz HD 2019. The maternal-to-zygotic transition revisited. Development 146:11dev161471
    [Google Scholar]
  222. Vestweber D, Gossler A, Boller K, Kemler R 1987. Expression and distribution of cell adhesion molecule uvomorulin in mouse preimplantation embryos. Dev. Biol. 124:451–56
    [Google Scholar]
  223. Vinot S, Le T, Ohno S, Pawson T, Maro B, Louvet-Vallée S 2005. Asymmetric distribution of PAR proteins in the mouse embryo begins at the 8-cell stage during compaction. Dev. Biol. 282:307–19
    [Google Scholar]
  224. Wang H, Dey SK. 2006. Roadmap to embryo implantation: clues from mouse models. Nat. Rev. Genet. 7:185–99
    [Google Scholar]
  225. Wang X, Liu D, He D, Suo S, Xia X et al. 2017. Transcriptome analyses of rhesus monkey preimplantation embryos reveal a reduced capacity for DNA double-strand break repair in primate oocytes and early embryos. Genome Res 27:567–79
    [Google Scholar]
  226. Warmflash A, Sorre B, Etoc F, Siggia ED, Brivanlou AH 2014. A method to recapitulate early embryonic spatial patterning in human embryonic stem cells. Nat. Methods 11:847–54
    [Google Scholar]
  227. Watson AJ, Barcroft LC. 2001. Regulation of blastocyst formation. Front. Biosci. 6:D708–30
    [Google Scholar]
  228. Watson AJ, Kidder GM. 1988. Immunofluorescence assessment of the timing of appearance and cellular distribution of Na/K-ATPase during mouse embryogenesis. Dev. Biol. 126:80–90
    [Google Scholar]
  229. Wicklow E, Blij S, Frum T, Hirate Y, Lang RA et al. 2014. HIPPO pathway members restrict SOX2 to the inner cell mass where it promotes ICM fates in the mouse blastocyst. PLOS Genet 10:e1004618
    [Google Scholar]
  230. Wilcox AJ, Baird DD, Weinberg CR 1999. Time of implantation of the conceptus and loss of pregnancy. New Engl. J. Med. 340:1796–99
    [Google Scholar]
  231. Williams BS, Biggers JD. 1990. Polar trophoblast (Rauber's layer) of the rabbit blastocyst. Anat. Rec. 227:211–22
    [Google Scholar]
  232. Witschi E. 1948. Migration of the germ cells of human embryos from the yolk sac to the primitive gonadal folds. Contrib. Embryol. 322096780
    [Google Scholar]
  233. Wong CC, Loewke KE, Bossert NL, Behr B, De Jonge CJ et al. 2010. Non-invasive imaging of human embryos before embryonic genome activation predicts development to the blastocyst stage. Nat. Biotechnol. 28:1115–21
    [Google Scholar]
  234. Wu J, Xu J, Liu B, Yao G, Wang P et al. 2018. Chromatin analysis in human early development reveals epigenetic transition during ZGA. Nature 557:256–60
    [Google Scholar]
  235. Xia W, Xu J, Yu G, Yao G, Xu K et al. 2019. Resetting histone modifications during human parental-to-zygotic transition. Science 365:353–60
    [Google Scholar]
  236. Xu R-H, Chen X, Li DS, Li R, Addicks GC et al. 2002. BMP4 initiates human embryonic stem cell differentiation to trophoblast. Nat. Biotechnol. 20:1261–64
    [Google Scholar]
  237. Yamanaka Y, Lanner F, Rossant J 2010. FGF signal-dependent segregation of primitive endoderm and epiblast in the mouse blastocyst. Development 137:715
    [Google Scholar]
  238. Yeo J-C, Jiang J, Tan Z-Y, Yim G-R, Ng J-H et al. 2014. Klf2 is an essential factor that sustains ground state pluripotency. Cell Stem Cell 14:864–72
    [Google Scholar]
  239. Yoshida M, Kajikawa E, Yamamoto D, Kurokawa D, Yonemura S et al. 2016. Conserved and divergent expression patterns of markers of axial development in the laboratory opossum. Monodelphis domestica. Dev. Dyn. 245:1176–88
    [Google Scholar]
  240. Zeller U, Freyer C. 2001. Early ontogeny and placentation of the grey short-tailed opossum, Monodelphis domestica (Didelphidae: Marsupialia): contribution to the reconstruction of the marsupial morphotype. J. Zool. Syst. Evol. Res. 39:137–58
    [Google Scholar]
  241. Zenker J, White MD, Gasnier M, Alvarez YD, Lim HYG et al. 2018. Expanding actin rings zipper the mouse embryo for blastocyst formation. Cell 173:776–91.e17
    [Google Scholar]
  242. Zernicka-Goetz M. 1994. Activation of embryonic genes during preimplantation rat development. Mol. Reprod. Dev. 38:30–35
    [Google Scholar]
  243. Zhang X, Zhang J, Wang T, Esteban MA, Pei D 2008. Esrrb activates Oct4 transcription and sustains self-renewal and pluripotency in embryonic stem cells. J. Biol. Chem. 283:35825–33
    [Google Scholar]
  244. Zheng Y, Xue X, Shao Y, Wang S, Esfahani SN et al. 2019. Controlled modelling of human epiblast and amnion development using stem cells. Nature 573:421–25
    [Google Scholar]
  245. Zhou F, Wang R, Yuan P, Ren Y, Mao Y et al. 2019. Reconstituting the transcriptome and DNA methylome landscapes of human implantation. Nature 572:660–64
    [Google Scholar]
  246. Ziomek CA, Chatot CL, Manes C 1990. Polarization of blastomeres in the cleaving rabbit embryo. J. Exp. Zool. 256:84–91
    [Google Scholar]
/content/journals/10.1146/annurev-cellbio-022020-024900
Loading
/content/journals/10.1146/annurev-cellbio-022020-024900
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error