1932

Abstract

Rhodopsin is the classical light sensor. Although rhodopsin has long been known to be important for image formation in the eye, the requirements for opsins in non–image formation and in extraocular light sensation were revealed much later. Most recent is the demonstration that an opsin in the fruit fly, , is expressed in pacemaker neurons in the brain and functions in light entrainment of circadian rhythms. However, the biggest surprise is that opsins have light-independent roles, countering more than a century of dogma that they function exclusively as light sensors. Through studies in , light-independent roles of opsins have emerged in temperature sensation and hearing. Although these findings have been uncovered in the fruit fly, there are hints that opsins have light-independent roles in a wide array of animals, including mammals. Thus, despite the decades of focus on opsins as light detectors, they represent an important new class of polymodal sensory receptor.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cellbio-100616-060432
2017-10-06
2024-07-22
Loading full text...

Full text loading...

/deliver/fulltext/cellbio/33/1/annurev-cellbio-100616-060432.html?itemId=/content/journals/10.1146/annurev-cellbio-100616-060432&mimeType=html&fmt=ahah

Literature Cited

  1. Albert JT, Göpfert MC. 2015. Hearing in. Drosophila. Curr. Opin. Neurobiol. 34:79–85 [Google Scholar]
  2. Allada R, Chung BY. 2010. Circadian organization of behavior and physiology in Drosophila. Annu. Rev. Physiol. 72:605–24 [Google Scholar]
  3. Alpern M, Pugh EN Jr. 1974. The density and photosensitivity of human rhodopsin in the living retina. J. Physiol. 237:341–70 [Google Scholar]
  4. Altimus CM, Güler AD, Villa KL, McNeill DS, Legates TA, Hattar S. 2008. Rods-cones and melanopsin detect light and dark to modulate sleep independent of image formation. PNAS 105:19998–20003 [Google Scholar]
  5. Arendt D, Tessmar-Raible K, Snyman H, Dorresteijn AW, Wittbrodt J. 2004. Ciliary photoreceptors with a vertebrate-type opsin in an invertebrate brain. Science 306:869–71 [Google Scholar]
  6. Atkinson CL, Feng J, Zhang DQ. 2013. Functional integrity and modification of retinal dopaminergic neurons in the rd1 mutant mouse: roles of melanopsin and GABA. J. Neurophysiol. 109:1589–99 [Google Scholar]
  7. Bahat A, Caplan SR, Eisenbach M. 2012. Thermotaxis of human sperm cells in extraordinarily shallow temperature gradients over a wide range. PLOS ONE 7:e41915 [Google Scholar]
  8. Bahat A, Eisenbach M. 2010. Human sperm thermotaxis is mediated by phospholipase C and inositol trisphosphate receptor Ca2+ channel. Biol. Reprod. 82:606–16 [Google Scholar]
  9. Bahat A, Tur-Kaspa I, Gakamsky A, Giojalas LC, Breitbart H, Eisenbach M. 2003. Thermotaxis of mammalian sperm cells: a potential navigation mechanism in the female genital tract. Nat. Med. 9:149–50 [Google Scholar]
  10. Bailey MJ, Cassone VM. 2004. Opsin photoisomerases in the chick retina and pineal gland: characterization, localization, and circadian regulation. Invest. Ophthalmol. Vis. Sci. 45:769–75 [Google Scholar]
  11. Baldwin JM, Schertler GF, Unger VM. 1997. An alpha-carbon template for the transmembrane helices in the rhodopsin family of G-protein-coupled receptors. J. Mol. Biol. 272:144–64 [Google Scholar]
  12. Ban E, Kasai A, Sato M, Yokozeki A, Hisatomi O, Oshima N. 2005. The signaling pathway in photoresponses that may be mediated by visual pigments in erythrophores of Nile tilapia. Pigment Cell Res 18:360–69 [Google Scholar]
  13. Barlow HB. 1988. The thermal limit to seeing. Nature 334:296–97 [Google Scholar]
  14. Barlow RB, Birge RR, Kaplan E, Tallent JR. 1993. On the molecular origin of photoreceptor noise. Nature 366:64–66 [Google Scholar]
  15. Bellono NW, Najera JA, Oancea E. 2014. UV light activates a Gαq/11-coupled phototransduction pathway in human melanocytes. J. Gen. Physiol. 143:203–14 [Google Scholar]
  16. Benoit J. 1935a. Le rôle des yeux dans l'action stimulante de la lumière sur le développement testiculaire chez le canard. C.R. Soc. Biol. 118:669–71 [Google Scholar]
  17. Benoit J. 1935b. Stimulation par la lumière artificielle du développement testiculaire chez des canards aveuglés par section du nerf optique. C.R. Soc. Biol. 120:133–36 [Google Scholar]
  18. Berson DM, Dunn FA, Takao M. 2002. Phototransduction by retinal ganglion cells that set the circadian clock. Science 295:1070–73 [Google Scholar]
  19. Blackshaw S, Snyder SH. 1999. Encephalopsin: a novel mammalian extraretinal opsin discretely localized in the brain. J. Neurosci. 19:3681–90 [Google Scholar]
  20. Bloomquist BT, Shortridge RD, Schneuwly S, Perdew M, Montell C. et al. 1988. Isolation of a putative phospholipase C gene of Drosophila, norpA, and its role in phototransduction. Cell 54:723–33 [Google Scholar]
  21. Boll F. 1877a. On the anatomy and physiology of the retina. Vis. Res. 17:1249–65 [Google Scholar]
  22. Boll F. 1877b. Zur Anatomie und Physiologie der Retina. Arch. Anat. Physiol. 1877:4–36 [Google Scholar]
  23. Chaurasia SS, Rollag MD, Jiang G, Hayes WP, Haque R. et al. 2005. Molecular cloning, localization and circadian expression of chicken melanopsin (Opn4): differential regulation of expression in pineal and retinal cell types. J. Neurochem. 92:158–70 [Google Scholar]
  24. David A, Vilensky A, Nathan H. 1972. Temperature changes in the different parts of the rabbit's oviduct. Int. J. Gynaecol. Obstet. 10:52–56 [Google Scholar]
  25. Davies A, Schertler GF, Gowen BE, Saibil HR. 1996. Projection structure of an invertebrate rhodopsin. J. Struct. Biol. 117:36–44 [Google Scholar]
  26. Davies WI, Tamai TK, Zheng L, Fu JK, Rihel J. et al. 2015. An extended family of novel vertebrate photopigments is widely expressed and displays a diversity of function. Genome Res 25:1666–79 [Google Scholar]
  27. Díaz NM, Morera LP, Guido ME. 2016. Melanopsin and the non-visual photochemistry in the inner retina of vertebrates. Photochem. Photobiol. 92:29–44 [Google Scholar]
  28. Do MT, Yau KW. 2010. Intrinsically photosensitive retinal ganglion cells. Physiol. Rev. 90:1547–81 [Google Scholar]
  29. Eakin RM. 1965. Evolution of photoreceptors. Cold Spring Harb. Symp. Quant. Biol. 30:363–70 [Google Scholar]
  30. Ecker JL, Dumitrescu ON, Wong KY, Alam NM, Chen SK. et al. 2010. Melanopsin-expressing retinal ganglion-cell photoreceptors: cellular diversity and role in pattern vision. Neuron 67:49–60 [Google Scholar]
  31. Eisenbach M, Giojalas LC. 2006. Sperm guidance in mammals—an unpaved road to the egg. Nat. Rev. Mol. Cell Biol. 7:276–85 [Google Scholar]
  32. Emery P, Stanewsky R, Hall JC, Rosbash M. 2000a. A unique circadian-rhythm photoreceptor. Nature 404:456–57 [Google Scholar]
  33. Emery P, Stanewsky R, Helfrich-Forster C, Emery-Le M, Hall JC, Rosbash M. 2000b. Drosophila CRY is a deep brain circadian photoreceptor. Neuron 26:493–504 [Google Scholar]
  34. Esquiva G, Avivi A, Hannibal J. 2016. Non-image forming light detection by melanopsin, rhodopsin, and long-middlewave (L/W) cone opsin in the subterranean blind mole rat, Spalax ehrenbergi: immunohistochemical characterization, distribution, and connectivity. Front. Neuroanat. 10:61 [Google Scholar]
  35. Fain GL, Matthews HR, Cornwall MC, Koutalos Y. 2001. Adaptation in vertebrate photoreceptors. Physiol. Rev. 81:117–51 [Google Scholar]
  36. Fernandes AM, Fero K, Arrenberg AB, Bergeron SA, Driever W, Burgess HA. 2012. Deep brain photoreceptors control light-seeking behavior in zebrafish larvae. Curr. Biol. 22:2042–47 [Google Scholar]
  37. Feuda R, Hamilton SC, McInerney JO, Pisani D. 2012. Metazoan opsin evolution reveals a simple route to animal vision. PNAS 109:18868–72 [Google Scholar]
  38. Feuda R, Rota-Stabelli O, Oakley TH, Pisani D. 2014. The comb jelly opsins and the origins of animal phototransduction. Genome Biol. Evol. 6:1964–71 [Google Scholar]
  39. Fischer RM, Fontinha BM, Kirchmaier S, Steger J, Bloch S. et al. 2013. Co-expression of VAL- and TMT-opsins uncovers ancient photosensory interneurons and motorneurons in the vertebrate brain. PLOS Biol 11:e1001585 [Google Scholar]
  40. Flyktman A, Mänttäri S, Nissilä J, Timonen M, Saarela S. 2015. Transcranial light affects plasma monoamine levels and expression of brain encephalopsin in the mouse. J. Exp. Biol. 218:1521–26 [Google Scholar]
  41. Foster RG, Provencio I, Hudson D, Fiske S, De Grip W, Menaker M. 1991. Circadian photoreception in the retinally degenerate mouse (rd/rd). J. Comp. Physiol. A 169:39–50 [Google Scholar]
  42. Fowler MA, Montell C. 2013. Drosophila TRP channels and animal behavior. Life Sci 92:394–403 [Google Scholar]
  43. Freedman MS, Lucas RJ, Soni B, von Schantz M, Munoz M. et al. 1999. Regulation of mammalian circadian behavior by non-rod, non-cone, ocular photoreceptors. Science 284:502–4 [Google Scholar]
  44. Friedmann D, Hoagland A, Berlin S, Isacoff EY. 2015. A spinal opsin controls early neural activity and drives a behavioral light response. Curr. Biol. 25:69–74 [Google Scholar]
  45. Fukuda N, Yomogida K, Okabe M, Touhara K. 2004. Functional characterization of a mouse testicular olfactory receptor and its role in chemosensing and in regulation of sperm motility. J. Cell Sci. 117:5835–45 [Google Scholar]
  46. Fung BK, Stryer L. 1980. Photolyzed rhodopsin catalyzes the exchange of GTP for bound GDP in retinal rod outer segments. PNAS 77:2500–4 [Google Scholar]
  47. Furchgott RF, Sleator WJ, McCaman MW, Elchlepp J. 1955. Relaxation of arterial strips by light and the influence of drugs on this photodynamic effect. J. Pharmacol. Exp. Ther. 113:22 [Google Scholar]
  48. García-Fernández JM, Cernuda-Cernuda R, Davies WI, Rodgers J, Turton M. et al. 2015. The hypothalamic photoreceptors regulating seasonal reproduction in birds: a prime role for VA opsin. Front. Neuroendocrinol. 37:13–28 [Google Scholar]
  49. 3rd Godchaux W, Zimmerman WF. 1979. Membrane-dependent guanine nucleotide binding and GTPase activities of soluble protein from bovine rod cell outer segments. J. Biol. Chem. 254:7874–84 [Google Scholar]
  50. Gotow T, Nishi T. 2007. Involvement of a Go-type G-protein coupled to guanylate cyclase in the phototransduction cGMP cascade of molluscan simple photoreceptors. Brain Res 1144:42–51 [Google Scholar]
  51. Gu Y, Oberwinkler J, Postma M, Hardie RC. 2005. Mechanisms of light adaptation in Drosophila photoreceptors. Curr. Biol. 15:1228–34 [Google Scholar]
  52. Halford S, Pires SS, Turton M, Zheng L, González-Menéndez I. et al. 2009. VA opsin–based photoreceptors in the hypothalamus of birds. Curr. Biol. 19:1396–402 [Google Scholar]
  53. Haltaufderhyde K, Ozdeslik RN, Wicks NL, Najera JA, Oancea E. 2015. Opsin expression in human epidermal skin. Photochem. Photobiol. 91:117–23 [Google Scholar]
  54. Hang CY, Kitahashi T, Parhar IS. 2016a. Neuronal organization of deep brain opsin photoreceptors in adult teleosts. Front. Neuroanat. 10:48 [Google Scholar]
  55. Hang CY, Moriya S, Ogawa S, Parhar IS. 2016b. Deep brain photoreceptor (val-opsin) gene knockout using CRISPR/Cas affects chorion formation and embryonic hatching in the zebrafish. PLOS ONE 11:e0165535 [Google Scholar]
  56. Hankins MW, Peirson SN, Foster RG. 2008. Melanopsin: an exciting photopigment. Trends Neurosci 31:27–36 [Google Scholar]
  57. Hardie RC, Franze K. 2012. Photomechanical responses in Drosophila photoreceptors. Science 338:260–63 [Google Scholar]
  58. Hardie RC, Martin F, Cochrane GW, Juusola M, Georgiev P, Raghu P. 2002. Molecular basis of amplification in Drosophila phototransduction: roles for G protein, phospholipase C, and diacylglycerol kinase. Neuron 36:689–701 [Google Scholar]
  59. Hardie RC, Minke B. 1992. The trp gene is essential for a light-activated Ca2+ channel in Drosophila photoreceptors. Neuron 8:643–51 [Google Scholar]
  60. Hargrave PA, McDowell JH, Curtis DR, Wang JK, Juszczak E. et al. 1983. The structure of bovine rhodopsin. Biophys. Struct. Mech. 9:235–44 [Google Scholar]
  61. Hattar S, Liao HW, Takao M, Berson DM, Yau KW. 2002. Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science 295:1065–70 [Google Scholar]
  62. Heitzmann H. 1972. Rhodopsin is the predominant protein of rod outer segment membranes. Nat. N. Biol. 235:114 [Google Scholar]
  63. Helfrich-Förster C, Winter C, Hofbauer A, Hall JC, Stanewsky R. 2001. The circadian clock of fruit flies is blind after elimination of all known photoreceptors. Neuron 30:249–61 [Google Scholar]
  64. Hering L, Mayer G. 2014. Analysis of the opsin repertoire in the tardigrade Hypsibius dujardini provides insights into the evolution of opsin genes in panarthropoda. Genome Biol. Evol. 6:2380–91 [Google Scholar]
  65. Herzyk P, Hubbard RE. 1998. Combined biophysical and biochemical information confirms arrangement of transmembrane helices visible from the three-dimensional map of frog rhodopsin. J. Mol. Biol. 281:741–54 [Google Scholar]
  66. Hubbard J, Ruppert E, Gropp CM, Bourgin P. 2013. Non-circadian direct effects of light on sleep and alertness: lessons from transgenic mouse models. Sleep Med. Rev 17445–52 [Google Scholar]
  67. Hughes S, Jagannath A, Rodgers J, Hankins MW, Peirson SN, Foster RG. 2016. Signalling by melanopsin (OPN4) expressing photosensitive retinal ganglion cells. Eye 30:247–54 [Google Scholar]
  68. Ishikawa Y, Kamikouchi A. 2016. Auditory system of fruit flies. Hear. Res. 338:1–8 [Google Scholar]
  69. Jiang M, Pandey S, Fong HK. 1993. An opsin homologue in the retina and pigment epithelium. Investig. Ophthalmol. Vis. Sci. 34:3669–78 [Google Scholar]
  70. Johnson J, Wu V, Donovan M, Majumdar S, Rentería RC. et al. 2010. Melanopsin-dependent light avoidance in neonatal mice. PNAS 107:17374–78 [Google Scholar]
  71. Julius D. 2013. TRP channels and pain. Annu. Rev. Cell Dev. Biol. 29:355–84 [Google Scholar]
  72. Kang K, Panzano VC, Chang EC, Ni L, Dainis AM. et al. 2012. Modulation of TRPA1 thermal sensitivity enables sensory discrimination in Drosophila. Nature 481:76–80 [Google Scholar]
  73. Kim HJ, Son ED, Jung JY, Choi H, Lee TR, Shin DW. 2013. Violet light down-regulates the expression of specific differentiation markers through Rhodopsin in normal human epidermal keratinocytes. PLOS ONE 8:e73678 [Google Scholar]
  74. Kingston AC, Cronin TW. 2016. Diverse distributions of extraocular opsins in crustaceans, cephalopods, and fish. Integr. Comp. Biol. 56:820–33 [Google Scholar]
  75. Kingston AC, Kuzirian AM, Hanlon RT, Cronin TW. 2015. Visual phototransduction components in cephalopod chromatophores suggest dermal photoreception. J. Exp. Biol. 218:1596–602 [Google Scholar]
  76. Klarsfeld A, Malpel S, Michard-Vanhée C, Picot M, Chélot E, Rouyer F. 2004. Novel features of cryptochrome-mediated photoreception in the brain circadian clock of Drosophila. J. Neurosci. 24:1468–77 [Google Scholar]
  77. Klein M, Afonso B, Vonner AJ, Hernandez-Nunez L, Berck M. et al. 2015. Sensory determinants of behavioral dynamics in Drosophila thermotaxis. PNAS 112:E220–29 [Google Scholar]
  78. Kojima D, Mori S, Torii M, Wada A, Morishita R, Fukada Y. 2011. UV-sensitive photoreceptor protein OPN5 in humans and mice. PLOS ONE 6:e26388 [Google Scholar]
  79. Kojima D, Terakita A, Ishikawa T, Tsukahara Y, Maeda A, Shichida Y. 1997. A novel Go-mediated phototransduction cascade in scallop visual cells. J. Biol. Chem. 272:22979–82 [Google Scholar]
  80. Kojima D, Torii M, Fukada Y, Dowling JE. 2008. Differential expression of duplicated VAL-opsin genes in the developing zebrafish. J. Neurochem. 104:1364–71 [Google Scholar]
  81. Koyanagi M, Kawano E, Kinugawa Y, Oishi T, Shichida Y. et al. 2004. Bistable UV pigment in the lamprey pineal. PNAS 101:6687–91 [Google Scholar]
  82. Koyanagi M, Takada E, Nagata T, Tsukamoto H, Terakita A. 2013. Homologs of vertebrate Opn3 potentially serve as a light sensor in nonphotoreceptive tissue. PNAS 110:4998–5003 [Google Scholar]
  83. Krebs A, Villa C, Edwards PC, Schertler GF. 1998. Characterisation of an improved two-dimensional p22121 crystal from bovine rhodopsin. J. Mol. Biol. 282:991–1003 [Google Scholar]
  84. Kühne W. 1878. On the stable colours of the retina. J. Physiol. 1:109–212.5 [Google Scholar]
  85. Kwon Y, Shim HS, Wang X, Montell C. 2008. Control of thermotactic behavior via coupling of a TRP channel to a phospholipase C signaling cascade. Nat. Neurosci. 11:871–73 [Google Scholar]
  86. Lucas RJ. 2013. Mammalian inner retinal photoreception. Curr. Biol. 23:R125–33 [Google Scholar]
  87. Lucas RJ, Freedman MS, Munoz M, Garcia-Fernandez JM, Foster RG. 1999. Regulation of the mammalian pineal by non-rod, non-cone, ocular photoreceptors. Science 284:505–7 [Google Scholar]
  88. Lucas RJ, Hattar S, Takao M, Berson DM, Foster RG, Yau KW. 2003. Diminished pupillary light reflex at high irradiances in melanopsin-knockout mice. Science 299:245–47 [Google Scholar]
  89. Luo J, Shen WL, Montell C. 2017. TRPA1 mediates sensation of the rate of temperature change in Drosophila larvae. Nat. Neurosci. 20:34–41 [Google Scholar]
  90. Lupi D, Oster H, Thompson S, Foster RG. 2008. The acute light-induction of sleep is mediated by OPN4-based photoreception. Nat. Neurosci. 11:1068–73 [Google Scholar]
  91. Mäthger LM, Roberts SB, Hanlon RT. 2010. Evidence for distributed light sensing in the skin of cuttlefish. Sepia officinalis. Biol. Lett. 6:600–3 [Google Scholar]
  92. Matynia A. 2013. Blurring the boundaries of vision: novel functions of intrinsically photosensitive retinal ganglion cells. J. Exp. Neurosci. 7:43–50 [Google Scholar]
  93. Mealey-Ferrara ML, Montalvo AG, Hall JC. 2003. Effects of combining a cryptochrome mutation with other visual-system variants on entrainment of locomotor and adult-emergence rhythms in Drosophila. J. Neurogenet. 17:171–221 [Google Scholar]
  94. Miki K, Clapham DE. 2013. Rheotaxis guides mammalian sperm. Curr. Biol. 23:443–52 [Google Scholar]
  95. Milosavljevic N, Cehajic-Kapetanovic J, Procyk CA, Lucas RJ. 2016. Chemogenetic activation of melanopsin retinal ganglion cells induces signatures of arousal and/or anxiety in mice. Curr. Biol. 26:2358–63 [Google Scholar]
  96. Mohawk JA, Green CB, Takahashi JS. 2012. Central and peripheral circadian clocks in mammals. Annu. Rev. Neurosci. 35:445–62 [Google Scholar]
  97. Montell C. 2012. Drosophila visual transduction. Trends Neurosci 35:356–63 [Google Scholar]
  98. Montell C, Rubin GM. 1989. Molecular characterization of the Drosophila trp locus: a putative integral membrane protein required for phototransduction. Neuron 2:1313–23 [Google Scholar]
  99. Nathans J, Hogness DS. 1983. Isolation, sequence analysis, and intron-exon arrangement of the gene encoding bovine rhodopsin. Cell 34:807–14 [Google Scholar]
  100. Nelson RJ, Zucker I. 1981. Absence of extraocular photoreception in diurnal and nocturnal rodents exposed to direct sunlight. Comp. Biochem. Physiol. A Comp. Physiol. 69:145–48 [Google Scholar]
  101. Ni JD, Baik LS, Holmes TC, Montell C. 2017. A rhodopsin in the brain functions in circadian photoentrainment in Drosophila. Nature 545:340–44 [Google Scholar]
  102. Nissilä J, Manttari S, Särkioja T, Tuominen H, Takala T. et al. 2012. Encephalopsin (OPN3) protein abundance in the adult mouse brain. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 198:833–39 [Google Scholar]
  103. Nitabach MN, Taghert PH. 2008. Organization of the Drosophila circadian control circuit. Curr. Biol. 18:R84–93 [Google Scholar]
  104. Okano T, Yoshizawa T, Fukada Y. 1994. Pinopsin is a chicken pineal photoreceptive molecule. Nature 372:94–97 [Google Scholar]
  105. Oliver J, Herbute S, Bayle JD. 1977. Testicular response to photostimulation by radioluminous implants in the deafferented hypothalamus of quail. J. Physiol. 73:685–91 [Google Scholar]
  106. Ovchinnikov IuA, Abdulaev NG, Feigina M, Artamonov ID, Bogachuk AS. 1983. Visual rhodopsin. III. Complete amino acid sequence and topography in a membrane. Bioorg. Khim. 9:1331–40 [Google Scholar]
  107. Ozaki K, Nagatani H, Ozaki M, Tokunaga F. 1993. Maturation of major Drosophila rhodopsin, ninaE, requires chromophore 3-hydroxyretinal. Neuron 10:1113–19 [Google Scholar]
  108. Ozturk N, Selby CP, Annayev Y, Zhong D, Sancar A. 2011. Reaction mechanism of Drosophila cryptochrome. PNAS 108:516–21 [Google Scholar]
  109. Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H. et al. 2000. Crystal structure of rhodopsin: a G protein–coupled receptor. Science 289:739–45 [Google Scholar]
  110. Panda S, Sato TK, Castrucci AM, Rollag MD, DeGrip WJ. et al. 2002. Melanopsin (Opn4) requirement for normal light-induced circadian phase shifting. Science 298:2213–16 [Google Scholar]
  111. Papermaster DS, Dreyer WJ. 1974. Rhodopsin content in the outer segment membranes of bovine and frog retinal rods. Biochemistry 13:2438–44 [Google Scholar]
  112. Paschos GK, FitzGerald GA. 2010. Circadian clocks and vascular function. Circ. Res. 106:833–41 [Google Scholar]
  113. Paulsen R, Schwemer J. 1983. Biogenesis of blowfly photoreceptor membranes is regulated by 11-cis-retinal. Eur. J. Biochem. 137:609–14 [Google Scholar]
  114. Peirson SN, Halford S, Foster RG. 2009. The evolution of irradiance detection: melanopsin and the non-visual opsins. Philos. Trans. R. Soc. B Biol. Sci. 364:2849–65 [Google Scholar]
  115. Pérez-Cerezales S, Boryshpolets S, Afanzar O, Brandis A, Nevo R. et al. 2015. Involvement of opsins in mammalian sperm thermotaxis. Sci. Rep. 5:16146 [Google Scholar]
  116. Peschel N, Helfrich-Förster C. 2011. Setting the clock—by nature: circadian rhythm in the fruitfly Drosophila melanogaster. FEBS Lett. 585:1435–42 [Google Scholar]
  117. Pilorz V, Tam SK, Hughes S, Pothecary CA, Jagannath A. et al. 2016. Melanopsin regulates both sleep-promoting and arousal-promoting responses to light. PLOS Biol 14:e1002482 [Google Scholar]
  118. Poff KL, Skokut M. 1977. Thermotaxis by pseudoplasmodia of Dictyostelium discoideum. PNAS 74:2007–10 [Google Scholar]
  119. Porter ML, Blasic JR, Bok MJ, Cameron EG, Pringle T. et al. 2012. Shedding new light on opsin evolution. Proc. Biol. Sci. 279:3–14 [Google Scholar]
  120. Provencio I, Cooper HM, Foster RG. 1998a. Retinal projections in mice with inherited retinal degeneration: implications for circadian photoentrainment. J. Comp. Neurol. 395:417–39 [Google Scholar]
  121. Provencio I, Jiang G, De Grip WJ, Hayes WP, Rollag MD. 1998b. Melanopsin: an opsin in melanophores, brain, and eye. PNAS 95:340–45 [Google Scholar]
  122. Provencio I, Wong S, Lederman AB, Argamaso SM, Foster RG. 1994. Visual and circadian responses to light in aged retinally degenerate mice. Vis. Res. 34:1799–806 [Google Scholar]
  123. Radu RA, Hu J, Peng J, Bok D, Mata NL, Travis GH. 2008. Retinal pigment epithelium–retinal G protein receptor–opsin mediates light-dependent translocation of all-trans-retinyl esters for synthesis of visual chromophore in retinal pigment epithelial cells. J. Biol. Chem. 283:19730–38 [Google Scholar]
  124. Ramirez MD, Oakley TH. 2015. Eye-independent, light-activated chromatophore expansion (LACE) and expression of phototransduction genes in the skin of Octopus bimaculoides. J. Exp. Biol. 218:1513–20 [Google Scholar]
  125. Ramirez MD, Pairett AN, Pankey MS, Serb JM, Speiser DI. et al. 2016. The last common ancestor of most bilaterian animals possessed at least nine opsins. Genome Biol. Evol. 8:3640–52 [Google Scholar]
  126. Rao S, Chun C, Fan J, Kofron JM, Yang MB. et al. 2013. A direct and melanopsin-dependent fetal light response regulates mouse eye development. Nature 494:243–46 [Google Scholar]
  127. Reifler AN, Chervenak AP, Dolikian ME, Benenati BA, Li BY. et al. 2015. All spiking, sustained ON displaced amacrine cells receive gap-junction input from melanopsin ganglion cells. Curr. Biol. 25:2763–73 [Google Scholar]
  128. Renn SC, Park JH, Rosbash M, Hall JC, Taghert PH. 1999. A pdf neuropeptide gene mutation and ablation of PDF neurons each cause severe abnormalities of behavioral circadian rhythms in Drosophila. Cell 99:791–802 [Google Scholar]
  129. Rieger D, Stanewsky R, Helfrich-Forster C. 2003. Cryptochrome, compound eyes, Hofbauer-Buchner eyelets, and ocelli play different roles in the entrainment and masking pathway of the locomotor activity rhythm in the fruit fly Drosophila melanogaster. J. Biol. Rhythms 18:377–91 [Google Scholar]
  130. Routtenberg A, Strop M, Jerdan J. 1978. Response of the infant rat to light prior to eyelid opening: mediation by the superior colliculus. Dev. Psychobiol. 11:469–78 [Google Scholar]
  131. Saint-Charles A, Michard-Vanhée C, Alejevski F, Chélot E, Boivin A, Rouyer F. 2016. Four of the six Drosophila rhodopsin-expressing photoreceptors can mediate circadian entrainment in low light. J. Comp. Neurol. 524:2828–44 [Google Scholar]
  132. Schertler GF, Hargrave PA. 1995. Projection structure of frog rhodopsin in two crystal forms. PNAS 92:11578–82 [Google Scholar]
  133. Schmidt TM, Chen SK, Hattar S. 2011. Intrinsically photosensitive retinal ganglion cells: many subtypes, diverse functions. Trends Neurosci 34:572–80 [Google Scholar]
  134. Semo M, Gias C, Ahmado A, Sugano E, Allen AE. et al. 2010. Dissecting a role for melanopsin in behavioural light aversion reveals a response independent of conventional photoreception. PLOS ONE 5:e15009 [Google Scholar]
  135. Senthilan PR, Piepenbrock D, Ovezmyradov G, Nadrowski B, Bechstedt S. et al. 2012. Drosophila auditory organ genes and genetic hearing defects. Cell 150:1042–54 [Google Scholar]
  136. Shen WL, Kwon Y, Adegbola AA, Luo J, Chess A, Montell C. 2011. Function of rhodopsin in temperature discrimination in Drosophila. Science 331:1333–36 [Google Scholar]
  137. Shieh T, Han M, Sakmar TP, Smith SO. 1997. The steric trigger in rhodopsin activation. J. Mol. Biol. 269:373–84 [Google Scholar]
  138. Sikka G, Hussmann GP, Pandey D, Cao S, Hori D. et al. 2014. Melanopsin mediates light-dependent relaxation in blood vessels. PNAS 111:17977–82 [Google Scholar]
  139. Sokabe T, Chen HS, Luo J, Montell C. 2016. A switch in thermal preference in Drosophila larvae depends on multiple rhodopsins. Cell Rep 17:336–44 [Google Scholar]
  140. Song Z, Postma M, Billings SA, Coca D, Hardie RC, Juusola M. 2012. Stochastic, adaptive sampling of information by microvilli in fly photoreceptors. Curr. Biol. 22:1371–80 [Google Scholar]
  141. Spehr M, Gisselmann G, Poplawski A, Riffell JA, Wetzel CH. et al. 2003. Identification of a testicular odorant receptor mediating human sperm chemotaxis. Science 299:2054–58 [Google Scholar]
  142. Stanewsky R, Kaneko M, Emery P, Beretta B, Wager-Smith K. et al. 1998. The cryb mutation identifies cryptochrome as a circadian photoreceptor in Drosophila. Cell 95:681–92 [Google Scholar]
  143. Stryer L. 1986. Cyclic GMP cascade of vision. Annu. Rev. Neurosci. 9:87–119 [Google Scholar]
  144. Sun L, Perakyla J, Kovalainen A, Ogawa KH, Karhunen PJ, Hartikainen KM. 2016. Human brain reacts to transcranial extraocular light. PLOS ONE 11:e0149525 [Google Scholar]
  145. Surbhi VK. 2015. Avian photoreceptors and their role in the regulation of daily and seasonal physiology. Gen. Comp. Endocrinol. 220:13–22 [Google Scholar]
  146. Szular J, Sehadova H, Gentile C, Szabo G, Chou WH. et al. 2012. Rhodopsin 5– and Rhodopsin 6–mediated clock synchronization in Drosophila melanogaster is independent of retinal phospholipase C-β signaling. J. Biol. Rhythms 27:25–36 [Google Scholar]
  147. Tarttelin EE, Bellingham J, Hankins MW, Foster RG, Lucas RJ. 2003. Neuropsin (Opn5): a novel opsin identified in mammalian neural tissue. FEBS Lett 554:410–16 [Google Scholar]
  148. Toh PP, Yap AM, Sriram G, Bigliardi-Qi M, Bigliardi P. 2016. Expression of peropsin in human skin is related to phototransduction of violet light in keratinocytes. Exp. Dermatol. 25:1002–5 [Google Scholar]
  149. Travis GH, Golczak M, Moise AR, Palczewski K. 2007. Diseases caused by defects in the visual cycle: retinoids as potential therapeutic agents. Annu. Rev. Pharmacol. Toxicol. 47:469–512 [Google Scholar]
  150. Tsai JW, Hannibal J, Hagiwara G, Colas D, Ruppert E. et al. 2009. Melanopsin as a sleep modulator: circadian gating of the direct effects of light on sleep and altered sleep homeostasis in Opn4−/− mice. PLOS Biol 7:e1000125 [Google Scholar]
  151. Tsutsumi M, Ikeyama K, Denda S, Nakanishi J, Fuziwara S. et al. 2009. Expressions of rod and cone photoreceptor–like proteins in human epidermis. Exp. Dermatol. 18:567–70 [Google Scholar]
  152. Unger VM, Hargrave PA, Baldwin JM, Schertler GF. 1997. Arrangement of rhodopsin transmembrane α-helices. Nature 389:203–6 [Google Scholar]
  153. van Veen T, Hartwig HG, Mueller K. 1976. Light-dependent motor activity and photonegative behavior in the eel (Anguillaanguilla L.): evidence for extraretinal and extrapineal photoreception. J. Comp. Physiol. 111:209–19 [Google Scholar]
  154. Vandewalle G, Maquet P, Dijk DJ. 2009. Light as a modulator of cognitive brain function. Trends Cogn. Sci. 13:429–38 [Google Scholar]
  155. Viggiani E, Ciesla M, Russo OL. 1970. The shielding power of the rat skull to visible light. Experientia 26:850–51 [Google Scholar]
  156. Viswanath V, Story GM, Peier AM, Petrus MJ, Lee VM. et al. 2003. Opposite thermosensor in fruitfly and mouse. Nature 423:822–23 [Google Scholar]
  157. von Frisch K. 1911. Beiträge zur Physiologie der Pigmentzellen in der Fischhaut. Pflüg. Arch. 138:319–87 [Google Scholar]
  158. Wade PD, Taylor J, Siekevitz P. 1988. Mammalian cerebral cortical tissue responds to low-intensity visible light. PNAS 85:9322–26 [Google Scholar]
  159. Wald G. 1936. Pigments of the retina. I. The bull frog. J. Gen. Physiol. 19:781–95 [Google Scholar]
  160. Wald G. 1938. On rhodopsin in solution. J. Gen. Physiol. 21:795–832 [Google Scholar]
  161. Wald G. 1968. Molecular basis of visual excitation. Science 162:230–39 [Google Scholar]
  162. White JH, Chiano M, Wigglesworth M, Geske R, Riley J. et al. 2008. Identification of a novel asthma susceptibility gene on chromosome 1qter and its functional evaluation. Hum. Mol. Genet. 17:1890–903 [Google Scholar]
  163. Wicks NL, Chan JW, Najera JA, Ciriello JM, Oancea E. 2011. UVA phototransduction drives early melanin synthesis in human melanocytes. Curr. Biol. 21:1906–11 [Google Scholar]
  164. Wright CB, Redmond TM, Nickerson JM. 2015. A history of the classical visual cycle. Prog. Mol. Biol. Transl. Sci. 134:433–48 [Google Scholar]
  165. Xue T, Do MT, Riccio A, Jiang Z, Hsieh J. et al. 2011. Melanopsin signalling in mammalian iris and retina. Nature 479:67–73 [Google Scholar]
  166. Yau KW, Hardie RC. 2009. Phototransduction motifs and variations. Cell 139:246–64 [Google Scholar]
  167. Yau KW, Matthews G, Baylor DA. 1979. Thermal activation of the visual transduction mechanism in retinal rods. Nature 279:806–7 [Google Scholar]
  168. Yokoyama K, Oksche A, Darden TR, Farner DS. 1978. The sites of encephalic photoreception in phosoperiodic induction of the growth of the testes in the white-crowned sparrow. Zonotrichia leucophrys gambelii. Cell Tissue Res. 189:441–67 [Google Scholar]
  169. Zhang DQ, Wong KY, Sollars PJ, Berson DM, Pickard GE, McMahon DG. 2008. Intraretinal signaling by ganglion cell photoreceptors to dopaminergic amacrine neurons. PNAS 105:14181–86 [Google Scholar]
  170. Zhong L, Bellemer A, Yan H, Honjo K, Robertson J. et al. 2012. Thermosensory and non-thermosensory isoforms of Drosophila melanogaster TRPA1 reveal heat sensor domains of a thermoTRP channel. Cell Rep 1:43–55 [Google Scholar]
  171. Zwas F, Alpern M. 1976. The density of human rhodopsin in the rods. Vis. Res. 16:121–27 [Google Scholar]
/content/journals/10.1146/annurev-cellbio-100616-060432
Loading
/content/journals/10.1146/annurev-cellbio-100616-060432
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error