- Home
- A-Z Publications
- Annual Review of Cell and Developmental Biology
- Previous Issues
- Volume 33, 2017
Annual Review of Cell and Developmental Biology - Volume 33, 2017
Volume 33, 2017
-
-
Assessing the Contributions of Motor Enzymes and Microtubule Dynamics to Mitotic Chromosome Motions
Vol. 33 (2017), pp. 1–22More LessDuring my graduate work with Keith Porter, I became fascinated by the mitotic spindle, an interest that has motivated much of my scientific work ever since. I began spindle studies by using electron microscopes, instruments that have made significant contributions to our understanding of spindle organization. Such instruments have helped to elucidate the distributions of spindle microtubules, the interactions among them, their molecular polarity, and their associations with both kinetochores and spindle poles. Our lab has also investigated some processes of spindle physiology: microtubule dynamics, the actions of microtubule-associated proteins (including motor enzymes), the character of forces generated by specific spindle components, and factors that control mitotic progression. Here, I give a personal perspective on some of this intellectual history and on what recent discoveries imply about the mechanisms of chromosome motion.
-
-
-
Centriole Biogenesis: From Identifying the Characters to Understanding the Plot
Vol. 33 (2017), pp. 23–49More LessThe centriole is a beautiful microtubule-based organelle that is critical for the proper execution of many fundamental cellular processes, including polarity, motility, and division. Centriole biogenesis, the making of this miniature architectural wonder, has emerged as an exemplary model to dissect the mechanisms governing the assembly of a eukaryotic organelle. Centriole biogenesis relies on a set of core proteins whose contributions to the assembly process have begun to be elucidated. Here, we review current knowledge regarding the mechanisms by which these core characters function in an orderly fashion to assemble the centriole. In particular, we discuss how having the correct proteins at the right place and at the right time is critical to first scaffold, then initiate, and finally execute the centriole assembly process, thus underscoring fundamental principles governing organelle biogenesis.
-
-
-
Microtubule-Organizing Centers
Vol. 33 (2017), pp. 51–75More LessThe organization of microtubule networks is crucial for controlling chromosome segregation during cell division, for positioning and transport of different organelles, and for cell polarity and morphogenesis. The geometry of microtubule arrays strongly depends on the localization and activity of the sites where microtubules are nucleated and where their minus ends are anchored. Such sites are often clustered into structures known as microtubule-organizing centers, which include the centrosomes in animals and spindle pole bodies in fungi. In addition, other microtubules, as well as membrane compartments such as the cell nucleus, the Golgi apparatus, and the cell cortex, can nucleate, stabilize, and tether microtubule minus ends. These activities depend on microtubule-nucleating factors, such as γ-tubulin-containing complexes and their activators and receptors, and microtubule minus end–stabilizing proteins with their binding partners. Here, we provide an overview of the current knowledge on how such factors work together to control microtubule organization in different systems.
-
-
-
Cell Polarity in Yeast
Vol. 33 (2017), pp. 77–101More LessA conserved molecular machinery centered on the Cdc42 GTPase regulates cell polarity in diverse organisms. Here we review findings from budding and fission yeasts that reveal both a conserved core polarity circuit and several adaptations that each organism exploits to fulfill the needs of its lifestyle. The core circuit involves positive feedback by local activation of Cdc42 to generate a cluster of concentrated GTP-Cdc42 at the membrane. Species-specific pathways regulate the timing of polarization during the cell cycle, as well as the location and number of polarity sites.
-
-
-
Excitable Signal Transduction Networks in Directed Cell Migration
Vol. 33 (2017), pp. 103–125More LessAlthough directed migration of eukaryotic cells may have evolved to escape nutrient depletion, it has been adopted for an extensive range of physiological events during development and in the adult organism. The subversion of these movements results in disease, such as cancer. Mechanisms of propulsion and sensing are extremely diverse, but most eukaryotic cells move by extending actin-filled protrusions termed macropinosomes, pseudopodia, or lamellipodia or by extension of blebs. In addition to motility, directed migration involves polarity and directional sensing. The hundreds of gene products involved in these processes are organized into networks of parallel and interconnected pathways. Many of these components are activated or inhibited coordinately with stimulation and on each spontaneously extended protrusion. Moreover, these networks display hallmarks of excitability, including all-or-nothing responsiveness and wave propagation. Cellular protrusions result from signal transduction waves that propagate outwardly from an origin and drive cytoskeletal activity. The range of the propagating waves and hence the size of the protrusions can be altered by lowering or raising the threshold for network activation, with larger and wider protrusions favoring gliding or oscillatory behavior over amoeboid migration. Here, we evaluate the variety of models of excitable networks controlling directed migration and outline critical tests. We also discuss the utility of this emerging view in producing cell migration and in integrating the various extrinsic cues that direct migration.
-
-
-
Cell Removal: Efferocytosis
Vol. 33 (2017), pp. 127–144More LessIn metazoans, removal of cells in situ is involved in larval maturation, metamorphosis, and embryonic development. In adults, such cell removal plays a role in the homeostatic maintenance of cell numbers and tissue integrity as well as in the response to cell injury and damage. This removal involves uptake of the whole or fragmented target cells into phagocytes. Depending on the organism, these latter may be near-neighbor tissue cells and/or professional phagocytes such as, in vertebrates, members of the myeloid family of cells, especially macrophages. The uptake processes appear to involve specialized and highly conserved recognition ligands and receptors, intracellular signaling in the phagocytes, and mechanisms for ingestion. The recognition of cells destined for this form of removal is critical and, significantly, is distinguished for the most part from the recognition of foreign materials and organisms by the innate and adaptive immune systems. In keeping with the key role of cell removal in maintaining tissue homeostasis, constant cell removal is normally silent, i.e., does not initiate a local tissue reaction. This article discusses these complex and wide-ranging processes in general terms as well as the implications when these processes are disrupted in inflammation, immunity, and disease.
-
-
-
Sending and Receiving Hedgehog Signals
Vol. 33 (2017), pp. 145–168More LessCommunication between cells pervades the development and physiology of metazoans. In animals, this process is carried out by a relatively small number of signaling pathways, each consisting of a chain of biochemical events through which extracellular stimuli control the behavior of target cells. One such signaling system is the Hedgehog pathway, which is crucial in embryogenesis and is implicated in many birth defects and cancers. Although Hedgehog pathway components were identified by genetic analysis more than a decade ago, our understanding of the molecular mechanisms of signaling is far from complete. In this review, we focus on the biochemistry and cell biology of the Hedgehog pathway. We examine the unique biosynthesis of the Hedgehog ligand, its specialized release from cells into extracellular space, and the poorly understood mechanisms involved in ligand reception and pathway activation at the surface of target cells. We highlight several critical questions that remain open.
-
-
-
Cell Sheet Morphogenesis: Dorsal Closure in Drosophila melanogaster as a Model System
Vol. 33 (2017), pp. 169–202More LessDorsal closure is a key process during Drosophila morphogenesis that models cell sheet movements in chordates, including neural tube closure, palate formation, and wound healing. Closure occurs midway through embryogenesis and entails circumferential elongation of lateral epidermal cell sheets that close a dorsal hole filled with amnioserosa cells. Signaling pathways regulate the function of cellular structures and processes, including Actomyosin and microtubule cytoskeletons, cell-cell/cell-matrix adhesion complexes, and endocytosis/vesicle trafficking. These orchestrate complex shape changes and movements that entail interactions between five distinct cell types. Genetic and laser perturbation studies establish that closure is robust, resilient, and the consequence of redundancy that contributes to four distinct biophysical processes: contraction of the amnioserosa, contraction of supracellular Actomyosin cables, elongation (stretching?) of the lateral epidermis, and zipping together of two converging cell sheets. What triggers closure and what the emergent properties are that give rise to its extraordinary resilience and fidelity remain key, extant questions.
-
-
-
Lessons from Interspecies Mammalian Chimeras
Vol. 33 (2017), pp. 203–217More LessAs chimeras transform from beasts of Greek mythology into tools of contemporary bioscience, secrets of developmental biology and evolutionary divergence are being revealed. Recent advances in stem cell biology and interspecies chimerism have generated new models with extensive basic and translational applications, including generation of transplantable, patient-specific organs.
-
-
-
Temporal Patterning in the Drosophila CNS
Vol. 33 (2017), pp. 219–240More LessA small pool of neural progenitors generates the vast diversity of cell types in the CNS. Spatial patterning specifies progenitor identity, followed by temporal patterning within progenitor lineages to expand neural diversity. Recent work has shown that in Drosophila, all neural progenitors (neuroblasts) sequentially express temporal transcription factors (TTFs) that generate molecular and cellular diversity. Embryonic neuroblasts use a lineage-intrinsic cascade of five TTFs that switch nearly every neuroblast cell division; larval optic lobe neuroblasts also use a rapid cascade of five TTFs, but the factors are completely different. In contrast, larval central brain neuroblasts undergo a major molecular transition midway through larval life, and this transition is regulated by a lineage-extrinsic cue (ecdysone hormone signaling). Overall, every neuroblast lineage uses a TTF cascade to generate diversity, illustrating the widespread importance of temporal patterning.
-
-
-
Unconventional Roles of Opsins
Vol. 33 (2017), pp. 241–264More LessRhodopsin is the classical light sensor. Although rhodopsin has long been known to be important for image formation in the eye, the requirements for opsins in non–image formation and in extraocular light sensation were revealed much later. Most recent is the demonstration that an opsin in the fruit fly, Drosophila melanogaster, is expressed in pacemaker neurons in the brain and functions in light entrainment of circadian rhythms. However, the biggest surprise is that opsins have light-independent roles, countering more than a century of dogma that they function exclusively as light sensors. Through studies in Drosophila, light-independent roles of opsins have emerged in temperature sensation and hearing. Although these findings have been uncovered in the fruit fly, there are hints that opsins have light-independent roles in a wide array of animals, including mammals. Thus, despite the decades of focus on opsins as light detectors, they represent an important new class of polymodal sensory receptor.
-
-
-
The Three-Dimensional Organization of Mammalian Genomes
Vol. 33 (2017), pp. 265–289More LessAnimal development depends on not only the linear genome sequence that embeds millions of cis-regulatory elements, but also the three-dimensional (3D) chromatin architecture that orchestrates the interplay between cis-regulatory elements and their target genes. Compared to our knowledge of the cis-regulatory sequences, the understanding of the 3D genome organization in human and other eukaryotes is still limited. Recent advances in technologies to map the 3D genome architecture have greatly accelerated the pace of discovery. Here, we review emerging concepts of chromatin organization in mammalian cells, discuss the dynamics of chromatin conformation during development, and highlight important roles for chromatin organization in cancer and other human diseases.
-
-
-
The Inherent Asymmetry of DNA Replication
Vol. 33 (2017), pp. 291–318More LessSemiconservative DNA replication has provided an elegant solution to the fundamental problem of how life is able to proliferate in a way that allows cells, organisms, and populations to survive and replicate many times over. Somewhat lost, however, in our admiration for this mechanism is an appreciation for the asymmetries that occur in the process of DNA replication. As we discuss in this review, these asymmetries arise as a consequence of the structure of the DNA molecule and the enzymatic mechanism of DNA synthesis. Increasing evidence suggests that asymmetries in DNA replication are able to play a central role in the processes of adaptation and evolution by shaping the mutagenic landscape of cells. Additionally, in eukaryotes, recent work has demonstrated that the inherent asymmetries in DNA replication may play an important role in the process of chromatin replication. As chromatin plays an essential role in defining cell identity, asymmetries generated during the process of DNA replication may play critical roles in cell fate decisions related to patterning and development.
-
-
-
Rethinking m6A Readers, Writers, and Erasers
Vol. 33 (2017), pp. 319–342More LessIn recent years, m6A has emerged as an abundant and dynamically regulated modification throughout the transcriptome. Recent technological advances have enabled the transcriptome-wide identification of m6A residues, which in turn has provided important insights into the biology and regulation of this pervasive regulatory mark. Also central to our current understanding of m6A are the discovery and characterization of m6A readers, writers, and erasers. Over the last few years, studies into the function of these proteins have led to important discoveries about the regulation and function of m6A. However, during this time our understanding of these proteins has also evolved considerably, sometimes leading to the reversal of early concepts regarding the reading, writing and erasing of m6A. In this review, we summarize recent advances in m6A research, and we highlight how these new findings have reshaped our understanding of how m6A is regulated in the transcriptome.
-
-
-
Ribosomal Stalling During Translation: Providing Substrates for Ribosome-Associated Protein Quality Control
Vol. 33 (2017), pp. 343–368More LessCells of all organisms survey problems during translation elongation, which may happen as a consequence of mRNA aberrations, inefficient decoding, or other sources. In eukaryotes, ribosome-associated quality control (RQC) senses elongation-stalled ribosomes and promotes dissociation of ribosomal subunits. This so-called ribosomal rescue releases the mRNA for degradation and allows 40S subunits to be recycled for new rounds of translation. However, the nascent polypeptide chains remain linked to tRNA and associated with the rescued 60S subunits. As a final critical step in this pathway, the Ltn1/Listerin E3 ligase subunit of the RQC complex (RQCc) ubiquitylates the nascent chain, which promotes clearance of the 60S subunit while simultaneously marking the nascent chain for elimination. Here we review the ribosomal stalling and rescue steps upstream of the RQCc, where one witnesses intersection with cellular machineries implicated in translation elongation, translation termination, ribosomal subunit recycling, and mRNA quality control. We emphasize both recent progress and future directions in this area, as well as examples linking ribosomal rescue with the production of Ltn1-RQCc substrates.
-
-
-
Structural and Mechanistic Insights into Protein Translocation
Vol. 33 (2017), pp. 369–390More LessMany proteins are translocated across the endoplasmic reticulum (ER) membrane in eukaryotes or the plasma membrane in prokaryotes. These proteins use hydrophobic signal sequences or transmembrane (TM) segments to trigger their translocation through the protein-conducting Sec61/SecY channel. Substrates are first directed to the channel by cytosolic targeting factors, which use hydrophobic pockets to bind diverse signal and TM sequences. Subsequently, these hydrophobic sequences insert into the channel, docking into a groove on the outside of the lateral gate of the channel, where they also interact with lipids. Structural data and biochemical experiments have elucidated how channel partners, the ribosome in cotranslational translocation, and the eukaryotic ER chaperone BiP or the prokaryotic cytosolic SecA ATPase in posttranslational translocation move polypeptides unidirectionally across the membrane. Structures of auxiliary components of the bacterial translocon, YidC and SecD/F, provide additional insight. Taken together, these recent advances result in mechanistic models of protein translocation.
-
-
-
In Search of Lost Small Peptides
Vol. 33 (2017), pp. 391–416More LessA large body of evidence indicates that genome annotation pipelines have biased our view of coding sequences because they generally undersample small proteins and peptides. The recent development of genome-wide translation profiling reveals the prevalence of small/short open reading frames (smORFs or sORFs), which are scattered over all classes of transcripts, including both mRNAs and presumptive long noncoding RNAs. Proteomic approaches further confirm an unexpected variety of smORF-encoded peptides (SEPs), representing an overlooked reservoir of bioactive molecules. Indeed, functional studies in a broad range of species from yeast to humans demonstrate that SEPs can harbor key activities for the control of development, differentiation, and physiology. Here we summarize recent advances in the discovery and functional characterization of smORF/SEPs and discuss why these small players can no longer be ignored with regard to genome function.
-
-
-
Mechanisms of Tail-Anchored Membrane Protein Targeting and Insertion
Vol. 33 (2017), pp. 417–438More LessProper localization of membrane proteins is essential for the function of biological membranes and for the establishment of organelle identity within a cell. Molecular machineries that mediate membrane protein biogenesis need to not only achieve a high degree of efficiency and accuracy, but also prevent off-pathway aggregation events that can be detrimental to cells. The posttranslational targeting of tail-anchored proteins (TAs) provides tractable model systems to probe these fundamental issues. Recent advances in understanding TA-targeting pathways reveal sophisticated molecular machineries that drive and regulate these processes. These findings also suggest how an interconnected network of targeting factors, cochaperones, and quality control machineries together ensures robust membrane protein biogenesis.
-
-
-
Coping with Protein Quality Control Failure
Vol. 33 (2017), pp. 439–465More LessCells and organisms have evolved numerous mechanisms to cope with and to adapt to unexpected challenges and harsh conditions. Proteins are essential to perform the vast majority of cellular and organismal functions. To maintain a healthy proteome, cells rely on a network of factors and pathways collectively known as protein quality control (PQC) systems, which not only ensure that newly synthesized proteins reach a functional conformation but also are essential for surveillance, prevention, and rescue of protein defects. The main players of PQC systems are chaperones and protein degradation systems: the ubiquitin-proteasome system and autophagy. Here we provide an integrated overview of the diverse PQC systems in eukaryotic cells in health and diseases, with an emphasis on the key regulatory aspects and their cross talks. We also highlight how PQC regulation may be exploited for potential therapeutic benefit.
-
Previous Volumes
-
Volume 40 (2024)
-
Volume 39 (2023)
-
Volume 38 (2022)
-
Volume 37 (2021)
-
Volume 36 (2020)
-
Volume 35 (2019)
-
Volume 34 (2018)
-
Volume 33 (2017)
-
Volume 32 (2016)
-
Volume 31 (2015)
-
Volume 30 (2014)
-
Volume 29 (2013)
-
Volume 28 (2012)
-
Volume 27 (2011)
-
Volume 26 (2010)
-
Volume 25 (2009)
-
Volume 24 (2008)
-
Volume 23 (2007)
-
Volume 22 (2006)
-
Volume 21 (2005)
-
Volume 20 (2004)
-
Volume 19 (2003)
-
Volume 18 (2002)
-
Volume 17 (2001)
-
Volume 16 (2000)
-
Volume 15 (1999)
-
Volume 14 (1998)
-
Volume 13 (1997)
-
Volume 12 (1996)
-
Volume 11 (1995)
-
Volume 10 (1994)
-
Volume 9 (1993)
-
Volume 8 (1992)
-
Volume 7 (1991)
-
Volume 6 (1990)
-
Volume 5 (1989)
-
Volume 4 (1988)
-
Volume 3 (1987)
-
Volume 2 (1986)
-
Volume 1 (1985)
-
Volume 0 (1932)