- Home
- A-Z Publications
- Annual Review of Cell and Developmental Biology
- Previous Issues
- Volume 38, 2022
Annual Review of Cell and Developmental Biology - Volume 38, 2022
Volume 38, 2022
-
-
How Microtubules Build the Spindle Branch by Branch
Vol. 38 (2022), pp. 1–23More LessThe microtubule (MT) cytoskeleton provides the architecture that governs intracellular organization and the regulated motion of macromolecules through the crowded cytoplasm. The key to establishing a functioning cytoskeletal architecture is regulating when and where new MTs are nucleated. Within the spindle, the vast majority of MTs are generated through a pathway known as branching MT nucleation, which exponentially amplifies MT number in a polar manner. Whereas other MT nucleation pathways generally require a complex organelle such as the centrosome or Golgi apparatus to localize nucleation factors, the branching site is based solely on a simple, preformed MT, making it an ideal system to study MT nucleation. In this review, we address recent developments in characterizing branching factors, the branching reaction, and its regulation, as well as branching MT nucleation in systems beyond the spindle and within human disease.
-
-
-
The Plant Anaphase-Promoting Complex/Cyclosome
Vol. 38 (2022), pp. 25–48More LessThe anaphase-promoting complex/cyclosome (APC/C) represents a large multisubunit E3-ubiquitin ligase complex that controls the unidirectional progression through the cell cycle by the ubiquitination of specific target proteins, marking them for proteasomal destruction. Although the APC/C's role is largely conserved among eukaryotes, its subunit composition and target spectrum appear to be species specific. In this review, we focus on the plant APC/C complex, whose activity correlates with different developmental processes, including polyploidization and gametogenesis. After an introduction into proteolytic control by ubiquitination, we discuss the composition of the plant APC/C and the essential nature of its core subunits for plant development. Subsequently, we describe the APC/C activator subunits and interactors, most being plant specific. Finally, we provide a comprehensive list of confirmed and suspected plant APC/C target proteins. Identification of growth-related targets might offer opportunities to increase crop yield and resilience of plants to climate change by manipulating APC/C activity.
-
-
-
Motor Cooperation During Mitosis and Ciliogenesis
Vol. 38 (2022), pp. 49–74More LessCilia and mitotic spindles are microtubule (MT)-based, macromolecular machines that consecutively assemble and disassemble during interphase and M phase of the cell cycle, respectively, and play fundamental roles in how eukaryotic cells swim through a fluid, sense their environment, and divide to reproduce themselves. The formation and function of these structures depend on several types of cytoskeletal motors, notably MT-based kinesins and dyneins, supplemented by actin-based myosins, which may function independently or collaboratively during specific steps in the pathway of mitosis or ciliogenesis. System-specific differences in these pathways occur because, instead of conforming to a simple one motor–one function rule, ciliary and mitotic motors can be deployed differently by different cell types. This reflects the well-known influence of natural selection on basic molecular processes, creating diversity at subcellular scales. Here we review our current understanding of motor function and cooperation during the assembly–disassembly, maintenance, and functions of cilia and mitotic spindles.
-
-
-
Recent Advances in Ciliate Biology
Vol. 38 (2022), pp. 75–102More LessCiliates are a diverse group of unicellular eukaryotes that vary widely in size, shape, body plan, and ecological niche. Here, we review recent research advances achieved with ciliate models. Studies on patterning and regeneration have been revived in the giant ciliate Stentor, facilitated by modern omics methods. Cryo-electron microscopy and tomography have revolutionized the structural study of complex macromolecules such as telomerase, ribozymes, and axonemes. DNA elimination, gene scrambling, and mating type determination have been deciphered, revealing interesting adaptations of processes that have parallels in other kingdoms of life. Studies of common eukaryotic processes, such as intracellular trafficking, meiosis, and histone modification, reveal conservation as well as unique adaptations in these organisms that are evolutionarily distant from other models. Continual improvement of genetic and molecular tools makes ciliates accessible models for all levels of education and research. Such advances open new avenues of research and highlight the importance of ciliate research.
-
-
-
Structural Biology of Cilia and Intraflagellar Transport
Nikolai Klena, and Gaia PiginoVol. 38 (2022), pp. 103–123More LessCilia are ubiquitous microtubule-based eukaryotic organelles that project from the cell to generate motility or function in cellular signaling. Motile cilia or flagella contain axonemal dynein motors and other complexes to achieve beating. Primary cilia are immotile and act as signaling hubs, with receptors shuttling between the cytoplasm and ciliary compartment. In both cilia types, an intraflagellar transport (IFT) system powered by unique kinesin and dynein motors functions to deliver the molecules required to build cilia and maintain their functions. Cryo-electron tomography has helped to reveal the organization of protein complex arrangement along the axoneme and the structure of anterograde IFT trains as well as the structure of primary cilia. Only recently, single-particle analysis (SPA) cryo-electron microscopy has provided molecular details of the protein organization of ciliary components, helping us to understand how they bind to microtubule doublets and how mechanical force propagated by dynein conformational changes is converted into ciliary beating. Here we highlight recent structural advances that are leading to greater knowledge of ciliary function.
-
-
-
Lipid Transport Across Bacterial Membranes
Vol. 38 (2022), pp. 125–153More LessThe movement of lipids within and between membranes in bacteria is essential for building and maintaining the bacterial cell envelope. Moving lipids to their final destination is often energetically unfavorable and does not readily occur spontaneously. Bacteria have evolved several protein-mediated transport systems that bind specific lipid substrates and catalyze the transport of lipids across membranes and from one membrane to another. Specific protein flippases act in translocating lipids across the plasma membrane, overcoming the obstacle of moving relatively large and chemically diverse lipids between leaflets of the bilayer. Active transporters found in double-membraned bacteria have evolved sophisticated mechanisms to traffic lipids between the two membranes, including assembling to form large, multiprotein complexes that resemble bridges, shuttles, and tunnels, shielding lipids from the hydrophilic environment of the periplasm during transport. In this review, we explore our current understanding of the mechanisms thought to drive bacterial lipid transport.
-
-
-
Hitchhiking Across Kingdoms: Cotransport of Cargos in Fungal, Animal, and Plant Cells
Vol. 38 (2022), pp. 155–178More LessEukaryotic cells across the tree of life organize their subcellular components via intracellular transport mechanisms. In canonical transport, myosin, kinesin, and dynein motor proteins interact with cargos via adaptor proteins and move along filamentous actin or microtubule tracks. In contrast to this canonical mode, hitchhiking is a newly discovered mode of intracellular transport in which a cargo attaches itself to an already-motile cargo rather than directly associating with a motor protein itself. Many cargos including messenger RNAs, protein complexes, and organelles hitchhike on membrane-bound cargos. Hitchhiking-like behaviors have been shown to impact cellular processes including local protein translation, long-distance signaling, and organelle network reorganization. Here, we review instances of cargo hitchhiking in fungal, animal, and plant cells and discuss the potential cellular and evolutionary importance of hitchhiking in these different contexts.
-
-
-
Mitochondria as Cellular and Organismal Signaling Hubs
Vol. 38 (2022), pp. 179–218More LessMitochondria are traditionally known as the powerhouse of the cell, but their functions extend far beyond energy production. They are vital in cellular and organismal pathways that direct metabolism, stress responses, immunity, and cellular fate. To accomplish these tasks, mitochondria have established networks of both intra- and extracellular communication. Intracellularly, these communication routes comprise direct contacts between mitochondria and other subcellular components as well as indirect vesicle transport of ions, metabolites, and other intracellular messengers. Extracellularly, mitochondria can induce stress responses or other cellular changes that secrete mitochondrial cytokine (mitokine) factors that can travel between tissues as well as respond to immune challenges from extracellular sources. Here we provide a current perspective on the major routes of communication for mitochondrial signaling, including their mechanisms and physiological impact. We also review the major diseases and age-related disorders associated with defects in these signaling pathways. An understanding of how mitochondrial signaling controls cellular homeostasis will bring greater insight into how dysfunctional mitochondria affect health in disease and aging.
-
-
-
Senescence: An Identity Crisis Originating from Deep Within the Nucleus
Ioana Olan, and Masashi NaritaVol. 38 (2022), pp. 219–239More LessCellular senescence is implicated in a wide range of physiological and pathological conditions throughout an organism's entire lifetime. In particular, it has become evident that senescence plays a causative role in aging and age-associated disorders. This is not due simply to the loss of function of senescent cells. Instead, the substantial alterations of the cellular activities of senescent cells, especially the array of secretory factors, impact the surrounding tissues or even entire organisms. Such non-cell-autonomous functionality is largely coordinated by tissue-specific genes, constituting a cell fate–determining state. Senescence can be viewed as a gain-of-function phenotype or a process of cell identity shift. Cellular functionality or lineage-specific gene expression is tightly linked to the cell type–specific epigenetic landscape, reinforcing the heterogeneity of senescence across cell types. Here, we aim to define the senescence cellular functionality and epigenetic features that may contribute to the gain-of-function phenotype.
-
-
-
Physiological Functions of Intracellular Protein Degradation
Vol. 38 (2022), pp. 241–262More LessWhile cellular proteins were initially thought to be stable, research over the last decades has firmly established that intracellular protein degradation is an active and highly regulated process: Lysosomal, proteasomal, and mitochondrial degradation systems were identified and found to be involved in a staggering number of biological functions. Here, we provide a global overview of the diverse roles of cellular protein degradation using seven categories: homeostasis, regulation, quality control, stoichiometry control, proteome remodeling, immune surveillance, and baseline turnover. Using selected examples, we outline how proteins are degraded and why this is functionally relevant.
-
-
-
Biogenesis and Regulatory Roles of Circular RNAs
Vol. 38 (2022), pp. 263–289More LessCovalently closed, single-stranded circular RNAs can be produced from viral RNA genomes as well as from the processing of cellular housekeeping noncoding RNAs and precursor messenger RNAs. Recent transcriptomic studies have surprisingly uncovered that many protein-coding genes can be subjected to backsplicing, leading to widespread expression of a specific type of circular RNAs (circRNAs) in eukaryotic cells. Here, we discuss experimental strategies used to discover and characterize diverse circRNAs at both the genome and individual gene scales. We further highlight the current understanding of how circRNAs are generated and how the mature transcripts function. Some circRNAs act as noncoding RNAs to impact gene regulation by serving as decoys or competitors for microRNAs and proteins. Others form extensive networks of ribonucleoprotein complexes or encode functional peptides that are translated in response to certain cellular stresses. Overall, circRNAs have emerged as an important class of RNAmolecules in gene expression regulation that impact many physiological processes, including early development, immune responses, neurogenesis, and tumorigenesis.
-
-
-
Eukaryotic Cell Size Control and Its Relation to Biosynthesis and Senescence
Vol. 38 (2022), pp. 291–319More LessThe most fundamental feature of cellular form is size, which sets the scale of all cell biological processes. Growth, form, and function are all necessarily linked in cell biology, but we often do not understand the underlying molecular mechanisms nor their specific functions. Here, we review progress toward determining the molecular mechanisms that regulate cell size in yeast, animals, and plants, as well as progress toward understanding the function of cell size regulation. It has become increasingly clear that the mechanism of cell size regulation is deeply intertwined with basic mechanisms of biosynthesis, and how biosynthesis can be scaled (or not) in proportion to cell size. Finally, we highlight recent findings causally linking aberrant cell size regulation to cellular senescence and their implications for cancer therapies.
-
-
-
Mechanochemical Principles of Spatial and Temporal Patterns in Cells and Tissues
Vol. 38 (2022), pp. 321–347More LessPatterns are ubiquitous in living systems and underlie the dynamic organization of cells, tissues, and embryos. Mathematical frameworks have been devised to account for the self-organization of biological patterns, most famously the Turing framework. Patterns can be defined in space, for example, to form stripes; in time, such as during oscillations; or both, to form traveling waves. The formation of these patterns can have different origins: purely chemical, purely mechanical, or a combination of the two. Beyond the variety of molecular implementations of such patterns, we emphasize the unitary principles associated with them, across scales in space and time, within a general mechanochemical framework. We illustrate where such mechanisms of pattern formation arise in biological systems from cellular to tissue scales, with an emphasis on morphogenesis. Our goal is to convey a picture of pattern formation that draws attention to the principles rather than solely to specific molecular mechanisms.
-
-
-
Adhesion-Based Self-Organization in Tissue Patterning
Vol. 38 (2022), pp. 349–374More LessSince the proposal of the differential adhesion hypothesis, scientists have been fascinated by how cell adhesion mediates cellular self-organization to form spatial patterns during development. The search for molecular tool kits with homophilic binding specificity resulted in a diverse repertoire of adhesion molecules. Recent understanding of the dominant role of cortical tension over adhesion binding redirects the focus of differential adhesion studies to the signaling function of adhesion proteins to regulate actomyosin contractility. The broader framework of differential interfacial tension encompasses both adhesion and nonadhesion molecules, sharing the common function of modulating interfacial tension during cell sorting to generate diverse tissue patterns. Robust adhesion-based patterning requires close coordination between morphogen signaling, cell fate decisions, and changes in adhesion. Current advances in bridging theoretical and experimental approaches present exciting opportunities to understand molecular, cellular, and tissue dynamics during adhesion-based tissue patterning across multiple time and length scales.
-
-
-
Morphogenetic Roles of Hydrostatic Pressure in Animal Development
Vol. 38 (2022), pp. 375–394More LessDuring organismal development, organs and systems are built following a genetic blueprint that produces structures capable of performing specific physiological functions. Interestingly, we have learned that the physiological activities of developing tissues also contribute to their own morphogenesis. Specifically, physiological activities such as fluid secretion and cell contractility generate hydrostatic pressure that can act as a morphogenetic force. Here, we first review the role of hydrostatic pressure in tube formation during animal development and discuss mathematical models of lumen formation. We then illustrate specific roles of the notochord as a hydrostatic scaffold in anterior-posterior axis development in chordates. Finally, we cover some examples of how fluid flows influence morphogenetic processes in other developmental contexts. Understanding how fluid forces act during development will be key for uncovering the self-organizing principles that control morphogenesis.
-
-
-
Tissue Homeostasis and Non-Homeostasis: From Cell Life Cycles to Organ States
Vol. 38 (2022), pp. 395–418More LessAlthough tissue homeostasis—the steady state—implies stability, our organs are in a state of continual, large-scale cellular flux. This flux underpins an organ's ability to homeostatically renew, to non-homeostatically resize upon altered functional demand, and to return to homeostasis after resizing or injury—in other words, to be dynamic. Here, I examine the basic unit of organ-scale cell dynamics: the cellular life cycle of birth, differentiation, and death. Focusing on epithelial organs, I discuss how spatial patterns and temporal kinetics of life cycle stages depend upon lineage organization and tissue architecture. I review how signaling between stages coordinates life cycle dynamics to enforce homeostasis, and I highlight how particular stages are transiently unbalanced to drive organ resizing or repair. Finally, I offer that considering organs as a collective of not cells but rather cell life cycles provides a powerful vantage for deciphering homeostatic and non-homeostatic tissue states.
-
-
-
Neurobiology, Stem Cell Biology, and Immunology: An Emerging Triad for Understanding Tissue Homeostasis and Repair
Vol. 38 (2022), pp. 419–446More LessThe peripheral nervous system (PNS) endows animals with the remarkable ability to sense and respond to a dynamic world. Emerging evidence shows the PNS also participates in tissue homeostasis and repair by integrating local changes with organismal and environmental changes. Here, we provide an in-depth summary of findings delineating the diverse roles of peripheral nerves in modulating stem cell behaviors and immune responses under steady-state conditions and in response to injury and duress, with a specific focus on the skin and the hematopoietic system. These examples showcase how elucidating neuro–stem cell and neuro–immune cell interactions provides a conceptual framework that connects tissue biology and local immunity with systemic bodily changes to meet varying demands. They also demonstrate how changes in these interactions can manifest in stress, aging, cancer, and inflammation, as well as how these findings can be harnessed to guide the development of new therapeutics.
-
-
-
Organoid Imaging: Seeing Development and Function
Vol. 38 (2022), pp. 447–466More LessOrganoids are miniaturized and simplified versions of an organ produced in vitro from stem or progenitor cells. They are used as a model system consisting of multiple cell types forming an architecture relevant to the organ and carrying out the function of the organ. They are a useful tool to study development, homeostasis, regeneration, and disease. The imaging of organoids has become a pivotal method to visualize and understand their self-organization, symmetry breaking, growth, differentiation, and function. In this review, we discuss imaging methods, how to analyze these images, and challenges in organoid research.
-
-
-
Surprises from Intravital Imaging of the Innate Immune Response
Vol. 38 (2022), pp. 467–489More LessSuccessful immune responses depend on the spatiotemporal coordination of immune cell migration, interactions, and effector functions in lymphoid and parenchymal tissues. Real-time intravital microscopy has revolutionized our understanding of the dynamic behavior of many immune cell types in the living tissues of several species. Observing immune cells in their native environment has revealed many unanticipated facets of their biology, which were not expected from experiments outside a living organism. Here we highlight both classic and more recent examples of surprising discoveries that critically relied on the use of live in vivo imaging. In particular, we focus on five major cell types of the innate immune response (macrophages, microglia, neutrophils, dendritic cells, and mast cells), and how studying their dynamics in mouse tissues has helped us advance our current knowledge of immune cell–mediated tissue homeostasis, host defense, and inflammation.
-
Previous Volumes
-
Volume 40 (2024)
-
Volume 39 (2023)
-
Volume 38 (2022)
-
Volume 37 (2021)
-
Volume 36 (2020)
-
Volume 35 (2019)
-
Volume 34 (2018)
-
Volume 33 (2017)
-
Volume 32 (2016)
-
Volume 31 (2015)
-
Volume 30 (2014)
-
Volume 29 (2013)
-
Volume 28 (2012)
-
Volume 27 (2011)
-
Volume 26 (2010)
-
Volume 25 (2009)
-
Volume 24 (2008)
-
Volume 23 (2007)
-
Volume 22 (2006)
-
Volume 21 (2005)
-
Volume 20 (2004)
-
Volume 19 (2003)
-
Volume 18 (2002)
-
Volume 17 (2001)
-
Volume 16 (2000)
-
Volume 15 (1999)
-
Volume 14 (1998)
-
Volume 13 (1997)
-
Volume 12 (1996)
-
Volume 11 (1995)
-
Volume 10 (1994)
-
Volume 9 (1993)
-
Volume 8 (1992)
-
Volume 7 (1991)
-
Volume 6 (1990)
-
Volume 5 (1989)
-
Volume 4 (1988)
-
Volume 3 (1987)
-
Volume 2 (1986)
-
Volume 1 (1985)
-
Volume 0 (1932)