1932

Abstract

Mitochondria are traditionally known as the powerhouse of the cell, but their functions extend far beyond energy production. They are vital in cellular and organismal pathways that direct metabolism, stress responses, immunity, and cellular fate. To accomplish these tasks, mitochondria have established networks of both intra- and extracellular communication. Intracellularly, these communication routes comprise direct contacts between mitochondria and other subcellular components as well as indirect vesicle transport of ions, metabolites, and other intracellular messengers. Extracellularly, mitochondria can induce stress responses or other cellular changes that secrete mitochondrial cytokine (mitokine) factors that can travel between tissues as well as respond to immune challenges from extracellular sources. Here we provide a current perspective on the major routes of communication for mitochondrial signaling, including their mechanisms and physiological impact. We also review the major diseases and age-related disorders associated with defects in these signaling pathways. An understanding of how mitochondrial signaling controls cellular homeostasis will bring greater insight into how dysfunctional mitochondria affect health in disease and aging.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cellbio-120420-015303
2022-10-06
2024-06-18
Loading full text...

Full text loading...

/deliver/fulltext/cellbio/38/1/annurev-cellbio-120420-015303.html?itemId=/content/journals/10.1146/annurev-cellbio-120420-015303&mimeType=html&fmt=ahah

Literature Cited

  1. Adam J, Hatipoglu E, O'Flaherty L, Ternette N, Sahgal N et al. 2011. Renal cyst formation in Fh1-deficient mice is independent of the Hif/Phd pathway: roles for fumarate in KEAP1 succination and Nrf2 signaling. Cancer Cell 20:524–37 https://doi.org/10.1016/j.ccr.2011.09.006
    [Crossref] [Google Scholar]
  2. Agrimi G, Di Noia M, Fiermonte G, De Leonardis F, Todisco S et al. 2004. Identification of the mitochondrial ATP-Mg/Pi transporter: bacterial expression, reconstitution, functional characterization, and tissue distribution. J. Biol. Chem. 279:30722–30 https://doi.org/10.1074/jbc.M400445200
    [Crossref] [Google Scholar]
  3. Aldridge JE, Horibe T, Hoogenraad NJ. 2007. Discovery of genes activated by the mitochondrial Unfolded Protein Response (mtUPR) and cognate promoter elements. PLOS ONE 2:e874. https://doi.org/10.1371/journal.pone.0000874
    [Crossref] [Google Scholar]
  4. Anand R, Wai T, Baker MJ, Kladt N, Schauss AC et al. 2014. The i-AAA protease YME1L and OMA1 cleave OPA1 to balance mitochondrial fusion and fission. J. Cell Biol. 204:919–29 https://doi.org/10.1083/jcb.201308006
    [Crossref] [Google Scholar]
  5. Antonsson B, Montessuit S, Sanchez B, Martinou JC. 2001. Bax is present as a high molecular weight oligomer/complex in the mitochondrial membrane of apoptotic cells. J. Biol. Chem. 276:11615–23 https://doi.org/10.1074/jbc.M010810200
    [Crossref] [Google Scholar]
  6. Ariza AC, Deen PMT, Robben JH. 2012. The succinate receptor as a novel therapeutic target for oxidative and metabolic stress-related conditions. Front. Endocrinol. 3:22 https://doi.org/10.3389/fendo.2012.00022
    [Crossref] [Google Scholar]
  7. Arruda AP, Pers BM, Parlakgül G, Güney E, Inouye K, Hotamisligil GS. 2014. Chronic enrichment of hepatic endoplasmic reticulum-mitochondria contact leads to mitochondrial dysfunction in obesity. Nat. Med. 20:1427–35 https://doi.org/10.1038/nm.3735
    [Crossref] [Google Scholar]
  8. Balaban RS, Nemoto S, Finkel T. 2005. Mitochondria, oxidants, and aging. Cell 120:483–95 https://doi.org/10.1016/j.cell.2005.02.001
    [Crossref] [Google Scholar]
  9. Bao XR, Ong S-E, Goldberger O, Peng J, Sharma R et al. 2016. Mitochondrial dysfunction remodels one-carbon metabolism in human cells. eLife 5:e10575 https://doi.org/10.7554/eLife.10575
    [Crossref] [Google Scholar]
  10. Benador IY, Veliova M, Mahdaviani K, Petcherski A, Wikstrom JD et al. 2018. Mitochondria bound to lipid droplets have unique bioenergetics, composition, and dynamics that support lipid droplet expansion. Cell Metab 27:869–85e6 https://doi.org/10.1016/j.cmet.2018.03.003
    [Crossref] [Google Scholar]
  11. Benedetti C, Haynes CM, Yang Y, Harding HP, Ron D 2006. Ubiquitin-like protein 5 positively regulates chaperone gene expression in the mitochondrial unfolded protein response. Genetics 174:229–39 https://doi.org/10.1534/genetics.106.061580
    [Crossref] [Google Scholar]
  12. Berendzen KM, Durieux J, Shao L-W, Tian Y, Kim H et al. 2016. Neuroendocrine coordination of mitochondrial stress signaling and proteostasis. Cell 166:1553–63.e10 https://doi.org/10.1016/j.cell.2016.08.042
    [Crossref] [Google Scholar]
  13. Bergeron R, Ren JM, Cadman KS, Moore IK, Perret P et al. 2001. Chronic activation of AMP kinase results in NRF-1 activation and mitochondrial biogenesis. Am. J. Physiol. Endocrinol. Metab. 281:1340–46 https://doi.org/10.1152/ajpendo.2001.281.6.E1340
    [Crossref] [Google Scholar]
  14. Berry BJ, Baldzizhar A, Nieves TO, Wojtovich AP. 2020. Neuronal AMPK coordinates mitochondrial energy sensing and hypoxia resistance in C. elegans. FASEB J 34:16333–47 https://doi.org/10.1096/fj.202001150RR
    [Crossref] [Google Scholar]
  15. Bigarella CL, Liang R, Ghaffari S. 2014. Stem cells and the impact of ROS signaling. Dev 141:4206–18 https://doi.org/10.1242/dev.107086
    [Crossref] [Google Scholar]
  16. Bock FJ, Tait SWG. 2020. Mitochondria as multifaceted regulators of cell death. Nat. Rev. Mol. Cell Biol. 21:85–100 https://doi.org/10.1038/s41580-019-0173-8
    [Crossref] [Google Scholar]
  17. Bohovych I, Khalimonchuk O. 2016. Sending out an SOS: mitochondria as a signaling hub. Front. Cell Dev. Biol. 4:109 https://doi.org/10.3389/fcell.2016.00109
    [Crossref] [Google Scholar]
  18. Booth DM, Enyedi B, Geiszt M, Várnai P, Hajnóczky G. 2016. Redox nanodomains are induced by and control calcium signaling at the ER-mitochondrial interface. Mol. Cell 63:240–48 https://doi.org/10.1016/j.molcel.2016.05.040
    [Crossref] [Google Scholar]
  19. Boutant M, Kulkarni SS, Joffraud M, Ratajczak J, Valera-Alberni M et al. 2017. Mfn2 is critical for brown adipose tissue thermogenic function. EMBO J 36:1543–58 https://doi.org/10.15252/embj.201694914
    [Crossref] [Google Scholar]
  20. Boynton TO, Shimkets LJ. 2015. Myxococcus CsgA, Drosophila sniffer, and human HSD10 are cardiolipin phospholipases. Genes Dev 29:1903–14 https://doi.org/10.1101/gad.268482.115
    [Crossref] [Google Scholar]
  21. Bruns AM, Horvath CM. 2015. LGP2 synergy with MDA5 in RLR-mediated RNA recognition and antiviral signaling. Cytokine 74:198–206 https://doi.org/10.1016/j.cyto.2015.02.010
    [Crossref] [Google Scholar]
  22. Buskiewicz IA, Montgomery T, Yasewicz EC, Huber SA, Murphy MP et al. 2016. Reactive oxygen species induce virus-independent MAVS oligomerization in systemic lupus erythematosus. Sci. Signal. 9:ra115 https://doi.org/10.1126/scisignal.aaf1933
    [Crossref] [Google Scholar]
  23. Calculli G, Lee HJ, Shen K, Pham U, Herholz M et al. 2021. Systemic regulation of mitochondria by germline proteostasis prevents protein aggregation in the soma of C. . elegans. Sci. Adv. 7:eabg3012 https://doi.org/10.1126/sciadv.abg3012
    [Crossref] [Google Scholar]
  24. Calvo SE, Mootha VK. 2010. The mitochondrial proteome and human disease. Annu. Rev. Genom. Hum. Genet. 11:25–44 https://doi.org/10.1146/annurev-genom-082509-141720
    [Crossref] [Google Scholar]
  25. Cantó C, Auwerx J. 2009. PGC-1α, SIRT1 and AMPK, an energy sensing network that controls energy expenditure. Curr. Opin. Lipidol. 20:98–105 https://doi.org/10.1097/MOL.0b013e328328d0a4
    [Crossref] [Google Scholar]
  26. Cantó C, Houtkooper RH, Pirinen E, Youn DY, Oosterveer MH et al. 2012. The NAD+ precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity. Cell Metab 15:838–47 https://doi.org/10.1016/j.cmet.2012.04.022
    [Crossref] [Google Scholar]
  27. Cardamone MD, Tanasa B, Cederquist CT, Huang J, Mahdaviani K et al. 2018. Mitochondrial retrograde signaling in mammals is mediated by the transcriptional cofactor GPS2 via direct mitochondria-to-nucleus translocation. Mol. Cell 69:757–72.e7 https://doi.org/10.1016/j.molcel.2018.01.037
    [Crossref] [Google Scholar]
  28. Castanier C, Garcin D, Vazquez A, Arnoult D. 2010. Mitochondrial dynamics regulate the RIG-I-like receptor antiviral pathway. EMBO Rep 11:133–38 https://doi.org/10.1038/embor.2009.258
    [Crossref] [Google Scholar]
  29. Cerutti R, Pirinen E, Lamperti C, Marchet S, Sauve AA et al. 2014. NAD+-dependent activation of Sirt1 corrects the phenotype in a mouse model of mitochondrial disease. Cell Metab 19:1042–1049 https://doi.org/10.1016/j.cmet.2014.04.001
    [Crossref] [Google Scholar]
  30. Chao H, Liu Y, Fu X, Xu X, Bao Z et al. 2018. Lowered iPLA2γ activity causes increased mitochondrial lipid peroxidation and mitochondrial dysfunction in a rotenone-induced model of Parkinson's disease. Exp. Neurol. 300:74–86 https://doi.org/10.1016/j.expneurol.2017.10.031
    [Crossref] [Google Scholar]
  31. Chen K, Wang Y, Deng X, Guo L, Wu C. 2021. Extracellular matrix stiffness regulates mitochondrial dynamics through PINCH-1- and kindlin-2-mediated signalling. Curr. Res. Cell Biol. 2:100008 https://doi.org/10.1016/j.crcbio.2021.100008
    [Crossref] [Google Scholar]
  32. Chen L-T, Lin C-T, Lin L-Y, Hsu J-M, Wu Y-C, Pan C-L. 2021. Neuronal mitochondrial dynamics coordinate systemic mitochondrial morphology and stress response to confer pathogen resistance in C. elegans. Dev. Cell 56:1770–85.e12 https://doi.org/10.1016/j.devcel.2021.04.021
    [Crossref] [Google Scholar]
  33. Chen Y-G, Yue H-T, Zhang Z-Z, Yuan F-H, Bi H-T et al. 2016. Identification and characterization of a mitochondrial unfolded protein response transcription factor ATFS-1 in Litopenaeus vannamei. Fish Shellfish Immunol 54:144–52 https://doi.org/10.1016/j.fsi.2015.10.019
    [Crossref] [Google Scholar]
  34. Chinnaiyan AM. 1999. The apoptosome: heart and soul of the cell death machine. Neoplasia 1:5–15 https://doi.org/10.1038/sj.neo.7900003
    [Crossref] [Google Scholar]
  35. Chipuk JE, McStay GP, Bharti A, Kuwana T, Clarke CJ et al. 2012. Sphingolipid metabolism cooperates with BAK and BAX to promote the mitochondrial pathway of apoptosis. Cell 148:988–1000 https://doi.org/10.1016/j.cell.2012.01.038
    [Crossref] [Google Scholar]
  36. Chu CT, Ji J, Dagda RK, Jiang JF, Tyurina YY et al. 2013. Cardiolipin externalization to the outer mitochondrial membrane acts as an elimination signal for mitophagy in neuronal cells. Nat. Cell Biol. 15:1197–1205 https://doi.org/10.1038/ncb2837
    [Crossref] [Google Scholar]
  37. Chung HK, Ryu D, Kim KS, Chang JY, Kim YK et al. 2017. Growth differentiation factor 15 is a myomitokine governing systemic energy homeostasis. J. Cell Biol. 216:149–65 https://doi.org/10.1083/jcb.201607110
    [Crossref] [Google Scholar]
  38. Conte M, Ostan R, Fabbri C, Santoro A, Guidarelli G et al. 2019. Human aging and longevity are characterized by high levels of mitokines. J. Gerontol. Ser. A 74:600–7 https://doi.org/10.1093/gerona/gly153
    [Crossref] [Google Scholar]
  39. Couvillion MT, Soto IC, Shipkovenska G, Churchman LS. 2016. Synchronized mitochondrial and cytosolic translation programs. Nature 533:499–503 https://doi.org/10.1038/nature18015
    [Crossref] [Google Scholar]
  40. Daniele T, Hurbain I, Vago R, Casari G, Raposo G et al. 2014. Mitochondria and melanosomes establish physical contacts modulated by Mfn2 and involved in organelle biogenesis. Curr. Biol. 24:393–403 https://doi.org/10.1016/j.cub.2014.01.007
    [Crossref] [Google Scholar]
  41. Davila A, Liu L, Chellappa K, Redpath P, Nakamaru-Ogiso et al. 2018. Nicotinamide adenine dinucleotide is transported into mammalian mitochondria. eLife 7:e33246 https://doi.org/10.7554/eLife.33246
    [Crossref] [Google Scholar]
  42. Deng P, Naresh NU, Du Y, Lamech LT, Yu J et al. 2019. Mitochondrial UPR repression during Pseudomonas aeruginosa infection requires the bZIP protein ZIP-3. PNAS 116:6146–51 https://doi.org/10.1073/pnas.1817259116
    [Crossref] [Google Scholar]
  43. Dimos BA, Mahmud SA, Fuess LE, Mydlarz LD, Pellegrino MW. 2019. Uncovering a mitochondrial unfolded protein response in corals and its role in adapting to a changing world. Proc. R. Soc. B 286:20190470 https://doi.org/10.1098/rspb.2019.0470
    [Crossref] [Google Scholar]
  44. Dong Z, Shanmughapriya S, Tomar D, Siddiqui N, Lynch S et al. 2017. Mitochondrial Ca2+ uniporter is a mitochondrial luminal redox sensor that augments MCU channel activity. Mol. Cell 65:1014–28.e7 https://doi.org/10.1016/j.molcel.2017.01.032
    [Crossref] [Google Scholar]
  45. Douglas PM, Baird NA, Simic MS, Uhlein S, McCormick MA et al. 2015. Heterotypic signals from neural HSF-1 separate thermotolerance from longevity. Cell Rep 12:1196–1204 https://doi.org/10.1016/j.celrep.2015.07.026
    [Crossref] [Google Scholar]
  46. Dudek J. 2017. Role of cardiolipin in mitochondrial signaling pathways. Front. Cell Dev. Biol. 5:90 https://doi.org/10.3389/fcell.2017.00090
    [Crossref] [Google Scholar]
  47. Durieux J, Wolff S, Dillin A. 2011. The cell-non-autonomous nature of electron transport chain-mediated longevity. Cell 144:79–91 https://doi.org/10.1016/j.cell.2010.12.016
    [Crossref] [Google Scholar]
  48. Easlon E, Tsang F, Skinner C, Wang C, Lin SJ. 2008. The malate-aspartate NADH shuttle components are novel metabolic longevity regulators required for calorie restriction-mediated life span extension in yeast. Genes Dev 22:931–44 https://doi.org/10.1101/gad.1648308
    [Crossref] [Google Scholar]
  49. Egan DF, Shackelford DB, Mihaylova MM, Gelino S, Kohnz RA et al. 2010. Energy sensing mitophagy. Science 331:456–61
    [Google Scholar]
  50. Elbaz Y, Schuldiner M. 2011. Staying in touch: the molecular era of organelle contact sites. Trends Biochem. Sci. 36:616–23 https://doi.org/10.1016/j.tibs.2011.08.004
    [Crossref] [Google Scholar]
  51. Elbaz-Alon Y, Rosenfeld-Gur E, Shinder V, Futerman AH, Geiger T, Schuldiner M. 2014. A dynamic interface between vacuoles and mitochondria in yeast. Dev. Cell 30:95–102 https://doi.org/10.1016/j.devcel.2014.06.007
    [Crossref] [Google Scholar]
  52. Elmore S. 2007. Apoptosis: a review of programmed cell death. Toxicol. Pathol. 35:495–516 https://doi.org/10.1080/01926230701320337
    [Crossref] [Google Scholar]
  53. Fan J, Li X, Issop L, Culty M, Papadopoulos V. 2016. ACBD2/ECI2-mediated peroxisome-mitochondria interactions in Leydig cell steroid biosynthesis. Mol. Endocrinol. 30:763–82 https://doi.org/10.1210/me.2016-1008
    [Crossref] [Google Scholar]
  54. Fang EF, Scheibye-Knudsen M, Brace LE, Kassahun H, Sengupta T et al. 2014. Defective mitophagy in XPA via PARP-1 hyperactivation and NAD+/SIRT1 reduction. Cell 157:882–96 https://doi.org/10.1016/j.cell.2014.03.026
    [Crossref] [Google Scholar]
  55. Farooqui JZ, Lee HW, Kim S, Paik WK. 1983. Studies on compartmentation of S-adenosyl-L-methionine in Saccharomyces cerevisiae and isolated rat hapatocytes. Biochem. Biophys. Acta 757:342–51 https://doi.org/10.1016/0304-4165(83)90060-0
    [Crossref] [Google Scholar]
  56. Fiorese CJ, Schulz AM, Lin YF, Rosin N, Pellegrino MW, Haynes CM. 2016. The transcription factor ATF5 mediates a mammalian mitochondrial UPR. Curr. Biol. 26:2037–43 https://doi.org/10.1016/j.cub.2016.06.002
    [Crossref] [Google Scholar]
  57. Fluegge D, Moeller LM, Cichy A, Gorin M, Weth A et al. 2012. Mitochondrial Ca2+ mobilization is a key element in olfactory signaling. Nat. Neurosci. 15:754–62 https://doi.org/10.1038/nn.3074
    [Crossref] [Google Scholar]
  58. Frezza C. 2017. Mitochondrial metabolites: undercover signalling molecules. Interface Focus 7:20160100 https://doi.org/10.1098/rsfs.2016.0100
    [Crossref] [Google Scholar]
  59. Friedman JR, Lackner LL, West M, DiBenedetto JR, Nunnari J, Voeltz GK. 2011. ER tubules mark sites of mitochondrial division. Science 334:358–62 https://doi.org/10.1126/science.1207385
    [Crossref] [Google Scholar]
  60. Fu S, Yang L, Li P, Hofmann O, Dicker L et al. 2011. Aberrant lipid metabolism disrupts calcium homeostasis causing liver endoplasmic reticulum stress in obesity. Nature 473:528–31 https://doi.org/10.1038/nature09968
    [Crossref] [Google Scholar]
  61. Fullerton MD, Galic S, Marcinko K, Sikkema S, Pulinilkunnil T et al. 2013. Single phosphorylation sites in Acc1 and Acc2 regulate lipid homeostasis and the insulin-sensitizing effects of metformin. Nat. Med. 19:1649–54 https://doi.org/10.1038/nm.3372
    [Crossref] [Google Scholar]
  62. Galmes R, Houcine A, Vliet AR, Agostinis P, Jackson CL, Giordano F. 2016. ORP5/ORP8 localize to endoplasmic reticulum-mitochondria contacts and are involved in mitochondrial function. EMBO Rep 17:800–10 https://doi.org/10.15252/embr.201541108
    [Crossref] [Google Scholar]
  63. Gebert N, Joshi AS, Kutik S, Becker T, McKenzie M et al. 2009. Mitochondrial cardiolipin involved in outer-membrane protein biogenesis: implications for Barth syndrome. Curr. Biol. 19:2133–39 https://doi.org/10.1016/j.cub.2009.10.074
    [Crossref] [Google Scholar]
  64. Goldberg MS, Fleming SM, Palacino JJ, Cepeda C, Lam HA et al. 2003. Parkin-deficient mice exhibit nigrostriatal deficits but not loss of dopaminergic neurons. J. Biol. Chem. 278:43628–35 https://doi.org/10.1074/jbc.M308947200
    [Crossref] [Google Scholar]
  65. Gomes AP, Price NL, Ling AJY, Moslehi JJ, Montgomery MK et al. 2013. Declining NAD+ induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging. Cell 155:1624–38 https://doi.org/10.1016/j.cell.2013.11.037
    [Crossref] [Google Scholar]
  66. Gonzalvez F, Schug ZT, Houtkooper RH, MacKenzie ED, Brooks DG et al. 2008. Cardiolipin provides an essential activating platform for caspase-8 on mitochondria. J. Cell Biol. 183:681–96 https://doi.org/10.1083/jcb.200803129
    [Crossref] [Google Scholar]
  67. Groß CJ, Mishra R, Schneider KS, Médard G, Wettmarshausen J et al. 2016. K+ efflux-independent NLRP3 inflammasome activation by small molecules targeting mitochondria. Immunity 45:761–73 https://doi.org/10.1016/j.immuni.2016.08.010
    [Crossref] [Google Scholar]
  68. Guda P, Guda C, Subramaniam S. 2007. Reconstruction of pathways associated with amino acid metabolism in human mitochondria. Genom. Proteom. Bioinform. 5:166–76 https://doi.org/10.1016/S1672-0229(08)60004-2
    [Crossref] [Google Scholar]
  69. Hallows WC, Yu W, Smith BC, Devires MK, Ellinger JJ et al. 2011. Sirt3 promotes the urea cycle and fatty acid oxidation during dietary restriction. Mol. Cell 41:139–49 https://doi.org/10.1016/j.molcel.2011.01.002
    [Crossref] [Google Scholar]
  70. Han Y, Li M, Qiu F, Zhang M, Zhang Y-H. 2017. Cell-permeable organic fluorescent probes for live-cell long-term super-resolution imaging reveal lysosome-mitochondrion interactions. Nat. Commun. 8:1307 https://doi.org/10.1038/s41467-017-01503-6
    [Crossref] [Google Scholar]
  71. Haynes CM, Petrova K, Benedetti C, Yang Y, Ron D 2007. ClpP mediates activation of a mitochondrial unfolded protein response in C. elegans. Dev. Cell 13:467–80 https://doi.org/10.1016/j.devcel.2007.07.016
    [Crossref] [Google Scholar]
  72. Haynes CM, Yang Y, Blais SP, Neubert TA, Ron D 2010. The matrix peptide exporter HAF-1 signals a mitochondrial UPR by activating the transcription factor ZC376.7 in C. elegans. Mol. Cell 37:529–40 https://doi.org/10.1016/j.molcel.2010.01.015
    [Crossref] [Google Scholar]
  73. He W, Miao FJP, Lin DCH, Schwandner RT, Wang Z et al. 2004. Citric acid cycle intermediates as ligands for orphan G-protein-coupled receptors. Nature 429:188–93 https://doi.org/10.1038/nature02488
    [Crossref] [Google Scholar]
  74. Herrera-Cruz MS, Simmen T. 2017. Of yeast, mice and men: MAMs come in two flavors. Biol. Direct 12:3 https://doi.org/10.1186/s13062-017-0174-5
    [Crossref] [Google Scholar]
  75. Herzig S, Shaw RJ. 2018. AMPK: guardian of metabolism and mitochondrial homeostasis. Nat. Rev. Mol. Cell Biol. 19:121–35 https://doi.org/10.1038/nrm.2017.95
    [Crossref] [Google Scholar]
  76. Hill MM, Adrain C, Duriez PJ, Creagh EM, Martin SJ. 2004. Analysis of the composition, assembly kinetics and activity of native Apaf-1 apoptosomes. EMBO J 23:2134–45 https://doi.org/10.1038/sj.emboj.7600210
    [Crossref] [Google Scholar]
  77. Hirschey MD, Shimazu T, Goetzman E, Jing E, Schwer B et al. 2010. SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature 464:121–25 https://doi.org/10.1038/nature08778
    [Crossref] [Google Scholar]
  78. Hönscher C, Mari M, Auffarth K, Bohnert M, Griffith J et al. 2014. Cellular metabolism regulates contact sites between vacuoles and mitochondria. Dev. Cell 30:86–94 https://doi.org/10.1016/j.devcel.2014.06.006
    [Crossref] [Google Scholar]
  79. Hou F, Sun L, Zheng H, Skaug B, Jiang Q-X, Chen ZJ. 2011. MAVS forms functional prion-like aggregates to activate and propagate antiviral innate immune response. Cell 146:448–61 https://doi.org/10.1016/j.cell.2011.06.041
    [Crossref] [Google Scholar]
  80. Houtkooper RH, Mouchiroud L, Ryu D, Moullan N, Katsyuba E et al. 2013. Mitonuclear protein imbalance as a conserved longevity mechanism. Nature 497:451–57 https://doi.org/10.1038/nature12188
    [Crossref] [Google Scholar]
  81. Hsu P, Liu X, Zhang J, Wang H-G, Ye J-M, Shi Y. 2015. Cardiolipin remodeling by TAZ/tafazzin is selectively required for the initiation of mitophagy. Autophagy 11:643–52 https://doi.org/10.1080/15548627.2015.1023984
    [Crossref] [Google Scholar]
  82. Hughes AL, Gottschling DE. 2012. An early age increase in vacuolar pH limits mitochondrial function and lifespan in yeast. Nature 492:261–65 https://doi.org/10.1038/nature11654
    [Crossref] [Google Scholar]
  83. Hughes AL, Hughes CE, Henderson KA, Yazvenko N, Gottschling DE. 2016. Selective sorting and destruction of mitochondrial membrane proteins in aged yeast. . eLife 5:e13943 https://doi.org/10.7554/eLife.13943
    [Crossref] [Google Scholar]
  84. Hughes CE, Coody TK, Jeong MY, Berg JA, Winge DR, Hughes AL. 2020. Cysteine toxicity drives age-related mitochondrial decline by altering iron homeostasis. Cell 180:296–310.e18 https://doi.org/10.1016/j.cell.2019.12.035
    [Crossref] [Google Scholar]
  85. Hutagalung AH, Novick PJ. 2011. Role of Rab GTPases in membrane traffic and cell physiology. Physiol. Rev. 91:119–49 https://doi.org/10.1152/physrev.00059.2009
    [Crossref] [Google Scholar]
  86. Ignatenko O, Malinen S, Vihinen H, Nikkanen J, Kononov A et al. 2022. Mitochondrial dysfunction compromises ciliary homeostasis in astrocytes. bioRxiv 457472. http://doi.org/10.1101/2021.08.24.457472
    [Crossref]
  87. Islinger M, Voelkl A, Fahimi HD, Schrader M. 2018. The peroxisome: an update on mysteries 2.0. Histochem. Cell Biol 150:443–71 https://doi.org/10.1007/s00418-018-1722-5
    [Crossref] [Google Scholar]
  88. Ito K, Hirao A, Arai F, Matsuoka S, Takubo K et al. 2004. Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells. Nature 431:997–1002 https://doi.org/10.1038/nature02989
    [Crossref] [Google Scholar]
  89. Iyer SS, He Q, Janczy JR, Elliott EI, Zhong Z et al. 2013. Mitochondrial cardiolipin is required for Nlrp3 inflammasome activation. Immunity 39:311–23 https://doi.org/10.1016/j.immuni.2013.08.001
    [Crossref] [Google Scholar]
  90. Jäger S, Handschin C, St-Pierre J, Spiegelman BM. 2007. AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1α. PNAS 104:12017–22 https://doi.org/10.1073/pnas.0705070104
    [Crossref] [Google Scholar]
  91. Jägerström S, Polesie S, Wickström Y, Johansson BR, Schröder HD et al. 2009. Lipid droplets interact with mitochondria using SNAP23. Cell Biol. Int. 33:934–40 https://doi.org/10.1016/j.cellbi.2009.06.011
    [Crossref] [Google Scholar]
  92. Jauhari A, Baranov SV, Suofu Y, Kim J, Singh T et al. 2020. Melatonin inhibits cytosolic mitochondrial DNA-induced neuroinflammatory signaling in accelerated aging and neurodegeneration. J. Clin. Invest. 130:3124–36 https://doi.org/10.1172/JCI135026
    [Crossref] [Google Scholar]
  93. Jensen-Cody SO, Flippo KH, Claflin KE, Yavuz Y, Sapouckey SA et al. 2020. FGF21 signals to glutamatergic neurons in the ventromedial hypothalamus to suppress carbohydrate intake. Cell Metab 32:273–86.e6 https://doi.org/10.1016/j.cmet.2020.06.008
    [Crossref] [Google Scholar]
  94. Jia Q, Sieburth D. 2021. Mitochondrial hydrogen peroxide positively regulates neuropeptide secretion during diet-induced activation of the oxidative stress response. Nat. Commun. 12:2304 https://doi.org/10.1038/s41467-021-22561-x
    [Crossref] [Google Scholar]
  95. Jiang H-C, Hsu J-M, Yen C-P, Chao C-C, Chen R-H, Pan C-L 2015. Neural activity and CaMKII protect mitochondria from fragmentation in aging Caenorhabditis elegans neurons. PNAS 112:8768–73 https://doi.org/10.1073/pnas.1501831112
    [Crossref] [Google Scholar]
  96. Jin SM, Lazarou M, Wang C, Kane LA, Narendra DP, Youle RJ. 2010. Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL. J. Cell Biol. 191:933–42 https://doi.org/10.1083/jcb.201008084
    [Crossref] [Google Scholar]
  97. Julien O, Wells JA. 2017. Caspases and their substrates. Cell Death Differ 24:1380–89 https://doi.org/10.1038/cdd.2017.44
    [Crossref] [Google Scholar]
  98. Kabashi E, Valdmanis PN, Dion P, Spiegelman D, McConkey BJ et al. 2008. TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis. Nat. Genet. 40:572–74 https://doi.org/10.1038/ng.132
    [Crossref] [Google Scholar]
  99. Kamata H, Honda SI, Maeda S, Chang L, Hirata H, Karin M. 2005. Reactive oxygen species promote TNFα-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell 120:649–61 https://doi.org/10.1016/j.cell.2004.12.041
    [Crossref] [Google Scholar]
  100. Kang GM, Min SH, Lee CH, Kim JY, Lim HS et al. 2021. Mitohormesis in hypothalamic POMC neurons mediates regular exercise-induced high-turnover metabolism. Cell Metab. 33:334–49.e6 https://doi.org/10.1016/j.cmet.2021.01.003
    [Crossref] [Google Scholar]
  101. Katsyuba E, Auwerx J. 2017. Modulating NAD+ metabolism, from bench to bedside. EMBO J 36:2670–83 https://doi.org/10.15252/embj.201797135
    [Crossref] [Google Scholar]
  102. Keinan N, Tyomkin D, Shoshan-Barmatz V. 2010. Oligomerization of the mitochondrial protein voltage-dependent anion channel is coupled to the induction of apoptosis. Mol. Cell. Biol. 30:5698–709 https://doi.org/10.1128/mcb.00165-10
    [Crossref] [Google Scholar]
  103. Keipert S, Ost M, Johann K, Imber F, Jastroch M et al. 2014. Skeletal muscle mitochondrial uncoupling drives endocrine cross-talk through the induction of FGF21 as a myokine. Am. J. Physiol. Endocrinol. Metab. 306:469–82 https://doi.org/10.1152/ajpendo.00330.2013
    [Crossref] [Google Scholar]
  104. Kepp O, Galluzzi L, Kroemer G. 2011. Mitochondrial control of the NLRP3 inflammasome. Nat. Immunol. 12:199–200 https://doi.org/10.1038/ni0311-199
    [Crossref] [Google Scholar]
  105. Kim HE, Grant AR, Simic MS, Kohnz RA, Nomura DK et al. 2016. Lipid biosynthesis coordinates a mitochondrial-to-cytosolic stress response. Cell 166:1539–52.e16 https://doi.org/10.1016/j.cell.2016.08.027
    [Crossref] [Google Scholar]
  106. Kim J, Gupta R, Blanco LP, Yang S, Shteinfer-Kuzmine A et al. 2019. VDAC oligomers form mitochondrial pores to release mtDNA fragments and promote lupus-like disease. Science 366:1531–36 https://doi.org/10.1126/science.aav4011
    [Crossref] [Google Scholar]
  107. Kim J, Kundu M, Viollet B, Guan KL. 2011. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol. 13:132–41 https://doi.org/10.1038/ncb2152
    [Crossref] [Google Scholar]
  108. Kim KH, Jeong YT, Oh H, Kim SH, Cho JM et al. 2013. Autophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokine. Nat. Med. 19:83–92 https://doi.org/10.1038/nm.3014
    [Crossref] [Google Scholar]
  109. Kim S, Sieburth D. 2020. FSHR-1/GPCR regulates the mitochondrial unfolded protein response in Caenorhabditis elegans. Genetics 214:409–418 https://doi.org/10.1534/genetics.119.302947
    [Crossref] [Google Scholar]
  110. Kitada T, Pisani A, Karouani M, Haburcak M, Martella G et al. 2009. Impaired dopamine release and synaptic plasticity in the striatum of Parkin–/– mice. J. Neurochem. 110:613–21 https://doi.org/10.1111/j.1471-4159.2009.06152.x
    [Crossref] [Google Scholar]
  111. Kornmann B, Currie E, Collins SR, Schuldiner M, Nunnari J et al. 2009. An ER-mitochondria tethering complex revealed by a synthetic biology screen. Science 325:477–81 https://doi.org/10.1126/science.1175088
    [Crossref] [Google Scholar]
  112. Koshiba T, Yasukawa K, Yanagi Y, Kawabata SI. 2011. Mitochondrial membrane potential is required for MAVS–mediated antiviral signaling. Sci. Signal. 4:ra7 https://doi.org/10.1126/scisignal.2001147
    [Crossref] [Google Scholar]
  113. Krzysiak TC, Thomas L, Choi YJ, Auclair S, Qian Y et al. 2018. An insulin-responsive sensor in the SIRT1 disordered region binds DBC1 and PACS-2 to control enzyme activity. Mol. Cell 72:985–98.e7 https://doi.org/10.1016/j.molcel.2018.10.007
    [Crossref] [Google Scholar]
  114. Kuwana T, Mackey MR, Perkins G, Ellisman MH, Latterich M et al. 2002. Bid, Bax, and lipids cooperate to form supramolecular openings in the outer mitochondrial membrane. Cell 111:331–42 https://doi.org/10.1016/S0092-8674(02)01036-X
    [Crossref] [Google Scholar]
  115. Lai Y-C, Li C-C, Sung T-C, Chang C-W, Lan Y-J, Chiang Y-W. 2019. The role of cardiolipin in promoting the membrane pore-forming activity of BAX oligomers. Biochim. Biophys. Acta Biomembr. 1861:268–80 https://doi.org/10.1016/j.bbamem.2018.06.014
    [Crossref] [Google Scholar]
  116. Lan J, Rollins JA, Zang X, Wu D, Zou L et al. 2019. Translational regulation of non-autonomous mitochondrial stress response promotes longevity. Cell Rep 28:1050–62.e6 https://doi.org/10.1016/j.celrep.2019.06.078
    [Crossref] [Google Scholar]
  117. Laurens C, Bourlier V, Mairal A, Louche K, Badin PM et al. 2016. Perilipin 5 fine-tunes lipid oxidation to metabolic demand and protects against lipotoxicity in skeletal muscle. Sci. Rep. 6:38310 https://doi.org/10.1038/srep38310
    [Crossref] [Google Scholar]
  118. Lazarou M, Sliter DA, Kane LA, Sarraf SA, Wang C et al. 2015. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 524:309–14 https://doi.org/10.1038/nature14893
    [Crossref] [Google Scholar]
  119. Lemasters JJ. 2005. Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging. Rejuvenation Res. 8:3–5 https://doi.org/10.1089/rej.2005.8.3
    [Crossref] [Google Scholar]
  120. Lewis SC, Uchiyama LF, Nunnari J. 2016. ER-mitochondria contacts couple mtDNA synthesis with mitochondrial division in human cells. Science 353:aaf5549 https://doi.org/10.1126/science.aaf5549
    [Crossref] [Google Scholar]
  121. Li H, Zhu H, Xu CJ, Yuan J. 1998. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94:491–501 https://doi.org/10.1016/S0092-8674(00)81590-1
    [Crossref] [Google Scholar]
  122. Lin YF, Schulz AM, Pellegrino MW, Lu Y, Shaham S, Haynes CM. 2016. Maintenance and propagation of a deleterious mitochondrial genome by the mitochondrial unfolded protein response. Nature 533:416–19 https://doi.org/10.1038/nature17989
    [Crossref] [Google Scholar]
  123. Liu X-Y, Chen W, Wei B, Shan Y-F, Wang C 2011. IFN-induced TPR protein IFIT3 potentiates antiviral signaling by bridging MAVS and TBK1. J. Immunol. 187:2559–68 https://doi.org/10.4049/jimmunol.1100963
    [Crossref] [Google Scholar]
  124. Liu X-Y, Wei B, Shi H-X, Shan Y-F, Wang C 2010. Tom70 mediates activation of interferon regulatory factor 3 on mitochondria. Cell Res 20:994–1011 https://doi.org/10.1038/cr.2010.103
    [Crossref] [Google Scholar]
  125. Liu Y, Samuel BS, Breen PC, Ruvkun G. 2014. Caenorhabditis elegans pathways that surveil and defend mitochondria. Nature 508:406–10 https://doi.org/10.1038/nature13204
    [Crossref] [Google Scholar]
  126. Lombard DB, Alt FW, Cheng H-L, Bunkenborg J, Streeper RS et al. 2007. Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation. Mol. Cell. Biol. 27:8807–14 https://doi.org/10.1128/mcb.01636-07
    [Crossref] [Google Scholar]
  127. Luo X, Budihardjo I, Zou H, Slaughter C, Wang X. 1998. Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94:481–90 https://doi.org/10.1016/S0092-8674(00)81589-5
    [Crossref] [Google Scholar]
  128. MacVicar T, Ohba Y, Nolte H, Mayer FC, Tatsuta T et al. 2019. Lipid signalling drives proteolytic rewiring of mitochondria by YME1L. Nature 575:361–65 https://doi.org/10.1038/s41586-019-1738-6
    [Crossref] [Google Scholar]
  129. Mahmud SA, Qureshi MA, Sapkota M, Pellegrino MW. 2020. A pathogen branched-chain amino acid catabolic pathway subverts host survival by impairing energy metabolism and the mitochondrial UPR. PLOS Pathog 16:e1008918 https://doi.org/10.1371/journal.ppat.1008918
    [Crossref] [Google Scholar]
  130. Martínez-Reyes I, Chandel NS 2020. Mitochondrial TCA cycle metabolites control physiology and disease. Nat. Commun. 11:102 https://doi.org/10.1038/s41467-019-13668-3
    [Crossref] [Google Scholar]
  131. Matheoud D, Cannon T, Voisin A, Penttinen AM, Ramet L et al. 2019. Intestinal infection triggers Parkinson's disease-like symptoms in Pink1−/− mice. Nature 571:565–69 https://doi.org/10.1038/s41586-019-1405-y
    [Crossref] [Google Scholar]
  132. Matheoud D, Sugiura A, Bellemare-Pelletier A, Laplante A, Rondeau C et al. 2016. Parkinson's disease-related proteins PINK1 and Parkin repress mitochondrial antigen presentation. Cell 166:314–27 https://doi.org/10.1016/j.cell.2016.05.039
    [Crossref] [Google Scholar]
  133. McArthur K, Whitehead LW, Heddleston JM, Li L, Padman BS et al. 2018. BAK/BAX macropores facilitate mitochondrial herniation and mtDNA efflux during apoptosis. Science 359:eaao6047 https://doi.org/10.1126/science.aao6047
    [Crossref] [Google Scholar]
  134. Melentijevic I, Toth ML, Arnold ML, Guasp RJ, Harinath G et al. 2017. C. elegans neurons jettison protein aggregates and mitochondria under neurotoxic stress. Nature 542:367–71 https://doi.org/10.1038/nature21362
    [Crossref] [Google Scholar]
  135. Melo JA, Ruvkun G. 2012. Inactivation of conserved C. elegans genes engages pathogen- and xenobiotic-associated defenses. Cell 149:452–66 https://doi.org/10.1016/j.cell.2012.02.050
    [Crossref] [Google Scholar]
  136. Merkwirth C, Jovaisaite V, Durieux J, Matilainen O, Jordan SD et al. 2016. Two conserved histone demethylases regulate mitochondrial stress-induced longevity. Cell 165:1209–23 https://doi.org/10.1016/j.cell.2016.04.012
    [Crossref] [Google Scholar]
  137. Moehlman AT, Youle RJ. 2020. Mitochondrial quality control and restraining innate immunity. Annu. Rev. Cell Dev. Biol. 36:265–89 https://doi.org/10.1146/annurev-cellbio-021820-101354
    [Crossref] [Google Scholar]
  138. Mouchiroud L, Houtkooper RH, Moullan N, Katsyuba E, Ryu D et al. 2013. The NAD+/sirtuin pathway modulates longevity through activation of mitochondrial UPR and FOXO signaling. Cell 154:430–41 https://doi.org/10.1016/j.cell.2013.06.016
    [Crossref] [Google Scholar]
  139. Murley A, Lackner LL, Osman C, West M, Voeltz GK et al. 2013. ER-associated mitochondrial division links the distribution of mitochondria and mitochondrial DNA in yeast. eLife 2:e00422 https://doi.org/10.7554/eLife.00422
    [Crossref] [Google Scholar]
  140. Nakahira K, Haspel JA, Rathinam VAK, Lee SJ, Dolinay T et al. 2011. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat. Immunol. 12:222–30 https://doi.org/10.1038/ni.1980
    [Crossref] [Google Scholar]
  141. Narendra D, Tanaka A, Suen DF, Youle RJ. 2008. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J. Cell Biol. 183:795–803 https://doi.org/10.1083/jcb.200809125
    [Crossref] [Google Scholar]
  142. Nargund AM, Fiorese CJ, Pellegrino MW, Deng P, Haynes CM. 2015. Mitochondrial and nuclear accumulation of the transcription factor ATFS-1 promotes OXPHOS recovery during the UPRmt. Mol. Cell 58:123–33 https://doi.org/10.1016/j.molcel.2015.02.008
    [Crossref] [Google Scholar]
  143. Nargund AM, Pellegrino MW, Fiorese CJ, Baker BM, Haynes CM. 2012. Mitochondrial import efficiency of ATFS-1 regulates mitochondrial UPR activation. Science 337:587–90 https://doi.org/10.1126/science.1223560
    [Crossref] [Google Scholar]
  144. Nechushtan A, Smith CL, Lamensdorf I, Yoon SH, Youle RJ. 2001. Bax and Bak coalesce into novel mitochondria-associated clusters during apoptosis. J. Cell Biol. 153:1265–76 https://doi.org/10.1083/jcb.153.6.1265
    [Crossref] [Google Scholar]
  145. Neuspiel M, Schauss AC, Braschi E, Zunino R, Rippstein P et al. 2008. Cargo-selected transport from the mitochondria to peroxisomes is mediated by vesicular carriers. Curr. Biol. 18:102–8 https://doi.org/10.1016/j.cub.2007.12.038
    [Crossref] [Google Scholar]
  146. Norambuena A, Wallrabe H, Cao R, Wang DB, Silva A et al. 2018. A novel lysosome-to-mitochondria signaling pathway disrupted by amyloid-β oligomers. EMBO J 37:e100241 https://doi.org/10.15252/embj.2018100241
    [Crossref] [Google Scholar]
  147. Oka T, Hikoso S, Yamaguchi O, Taneike M, Takeda T et al. 2012. Mitochondrial DNA that escapes from autophagy causes inflammation and heart failure. Nature 485:251–55 https://doi.org/10.1038/nature10992
    [Crossref] [Google Scholar]
  148. Oliveras-Salvá M, Van Rompuy A-S, Heeman B, Van Den Haute C, Baekelandt V. 2011. Loss-of-function rodent models for parkin and PINK1. J. Parkinson's Dis. 1:229–51 https://doi.org/10.3233/JPD-2011-11041
    [Crossref] [Google Scholar]
  149. Ooi A, Wong J-C, Petillo D, Roossien D, Perrier-Trudova V et al. 2011. An antioxidant response phenotype shared between hereditary and sporadic type 2 papillary renal cell carcinoma. Cancer Cell 20:511–23 https://doi.org/10.1016/j.ccr.2011.08.024
    [Crossref] [Google Scholar]
  150. Ost M, Coleman V, Voigt A, van Schothorst EM, Keipert S et al. 2016. Muscle mitochondrial stress adaptation operates independently of endogenous FGF21 action. Mol. Metab. 5:79–90 https://doi.org/10.1016/j.molmet.2015.11.002
    [Crossref] [Google Scholar]
  151. Otera H, Wang C, Cleland MM, Setoguchi K, Yokota S et al. 2010. Mff is an essential factor for mitochondrial recruitment of Drp1 during mitochondrial fission in mammalian cells. J. Cell Biol. 191:1141–58 https://doi.org/10.1083/jcb.201007152
    [Crossref] [Google Scholar]
  152. Owusu-Ansah E, Banerjee U. 2009. Reactive oxygen species prime Drosophila haematopoietic progenitors for differentiation. Nature 461:537–41 https://doi.org/10.1038/nature08313
    [Crossref] [Google Scholar]
  153. Owusu-Ansah E, Song W, Perrimon N 2013. Muscle mitohormesis promotes longevity via systemic repression of insulin signaling. Cell 155:699–712
    [Google Scholar]
  154. Papa L, Germain D. 2014. SirT3 regulates the mitochondrial unfolded protein response. Mol. Cell. Biol. 34:699–710 https://doi.org/10.1128/mcb.01337-13
    [Crossref] [Google Scholar]
  155. Paradies G, Paradies V, Ruggiero FM, Petrosillo G. 2019. Role of cardiolipin in mitochondrial function and dynamics in health and disease: molecular and pharmacological aspects. Cells 8:728 https://doi.org/10.3390/cells8070728
    [Crossref] [Google Scholar]
  156. Paradies G, Petrosillo G, Pistolese M, Ruggiero FM. 2002. Reactive oxygen species affect mitochondrial electron transport complex I activity through oxidative cardiolipin damage. Gene 286:135–41 https://doi.org/10.1016/S0378-1119(01)00814-9
    [Crossref] [Google Scholar]
  157. Peisley A, Wu B, Xu H, Chen ZJ, Hur S. 2014. Structural basis for ubiquitin-mediated antiviral signal activation by RIG-I. Nature 508:110–14 https://doi.org/10.1038/nature13140
    [Crossref] [Google Scholar]
  158. Pellegrino MW, Nargund AM, Kirienko NV, Gillis R, Fiorese CJ, Haynes CM. 2014. Mitochondrial UPR-regulated innate immunity provides resistance to pathogen infection. Nature 516:414–17 https://doi.org/10.1038/nature13818
    [Crossref] [Google Scholar]
  159. Pereira RO, Tadinada SM, Zasadny FM, Oliveira KJ, Pires KMP et al. 2017. OPA 1 deficiency promotes secretion of FGF 21 from muscle that prevents obesity and insulin resistance. EMBO J 36:2126–45 https://doi.org/10.15252/embj.201696179
    [Crossref] [Google Scholar]
  160. Perez FA, Palmiter RD. 2005. Parkin-deficient mice are not a robust model of parkinsonism. PNAS 102:2174–79 https://doi.org/10.1073/pnas.0409598102
    [Crossref] [Google Scholar]
  161. Pickles S, Vigié P, Youle RJ. 2018. Mitophagy and quality control mechanisms in mitochondrial maintenance. Curr. Biol. 28:R170–85 https://doi.org/10.1016/j.cub.2018.01.004
    [Crossref] [Google Scholar]
  162. Pimenta De Castro I, Costa AC, Lam D, Tufi R, Fedele V et al. 2012. Genetic analysis of mitochondrial protein misfolding in Drosophila melanogaster. Cell Death Differ 19:1308–16 https://doi.org/10.1038/cdd.2012.5
    [Crossref] [Google Scholar]
  163. Qiu X, Brown K, Hirschey MD, Verdin E, Chen D 2010. Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation. Cell Metab 12:662–67 https://doi.org/10.1016/j.cmet.2010.11.015
    [Crossref] [Google Scholar]
  164. Quirós PM, Prado MA, Zamboni N, D'Amico D, Williams RW et al. 2017. Multi-omics analysis identifies ATF4 as a key regulator of the mitochondrial stress response in mammals. J. Cell Biol. 216:2027–45 https://doi.org/10.1083/jcb.201702058
    [Crossref] [Google Scholar]
  165. Rauthan M, Ranji P, Pradenas NA, Pitot C, Pilon M. 2013. The mitochondrial unfolded protein response activator ATFS-1 protects cells from inhibition of the mevalonate pathway. PNAS 110:5981–86 https://doi.org/10.1073/pnas.1218778110
    [Crossref] [Google Scholar]
  166. Restelli LM, Oettinghaus B, Halliday M, Agca C, Licci M et al. 2018. Neuronal mitochondrial dysfunction activates the integrated stress response to induce fibroblast growth factor 21. Cell Rep 24:1407–14 https://doi.org/10.1016/j.celrep.2018.07.023
    [Crossref] [Google Scholar]
  167. Rizzuto R, De Stefani D, Raffaello A, Mammucari C. 2012. Mitochondria as sensors and regulators of calcium signalling. Nat. Rev. Mol. Cell Biol. 13:566–78 https://doi.org/10.1038/nrm3412
    [Crossref] [Google Scholar]
  168. Rodríguez-Nuevo A, Díaz-Ramos A, Noguera E, Díaz-Sáez F, Duran X et al. 2018. Mitochondrial DNA and TLR9 drive muscle inflammation upon Opa1 deficiency. EMBO J 37:e96553 https://doi.org/10.15252/embj.201796553
    [Crossref] [Google Scholar]
  169. Rojansky R, Cha M-Y, Chan DC. 2016. Elimination of paternal mitochondria in mouse embryos occurs through autophagic degradation dependent on PARKIN and MUL1. eLife 5:e17896 https://doi.org/10.7554/eLife.17896
    [Crossref] [Google Scholar]
  170. Runkel ED, Liu S, Baumeister R, Schulze E. 2013. Surveillance-activated defenses block the ROS-induced mitochondrial unfolded protein response. PLOS Genet 9:e1003346 https://doi.org/10.1371/journal.pgen.1003346
    [Crossref] [Google Scholar]
  171. Ryan DG, Yang M, Prag HA, Blanco GR, Nikitopoulou E et al. 2021. Disruption of the TCA cycle reveals an ATF4-dependent integration of redox and amino acid metabolism. eLife 10:e72593 https://doi.org/10.7554/eLife.72593
    [Crossref] [Google Scholar]
  172. Saelens X, Festjens N, Vande Walle L, Van Gurp M, Van Loo G, Vandenabeele P. 2004. Toxic proteins released from mitochondria in cell death. Oncogene 23:2861–74 https://doi.org/10.1038/sj.onc.1207523
    [Crossref] [Google Scholar]
  173. Saffran HA, Pare JM, Corcoran JA, Weller SK, Smiley JR. 2007. Herpes simplex virus eliminates host mitochondrial DNA. EMBO Rep 8:188–93 https://doi.org/10.1038/sj.embor.7400878
    [Crossref] [Google Scholar]
  174. Salminen A, Kaarniranta K, Kauppinen A. 2017. Integrated stress response stimulates FGF21 expression: systemic enhancer of longevity. Cell Signal. 40:10–21 https://doi.org/10.1016/j.cellsig.2017.08.009
    [Crossref] [Google Scholar]
  175. Santamaría E, Avila MA, Latasa MU, Rubio A, Martín-Duce A et al. 2003. Functional proteomics of nonalcoholic steatohepatitis: mitochondrial proteins as targets of S-adenosylmethionine. PNAS 100:3065–70 https://doi.org/10.1073/pnas.0536625100
    [Crossref] [Google Scholar]
  176. Sato M, Sato K. 2011. Degradation of paternal mitochondria by fertilization-triggered autophagy in C. elegans embryos. Science 334:1141–44 https://doi.org/10.1126/science.1210333
    [Crossref] [Google Scholar]
  177. Scaffidi C, Fulda S, Srinivasan A, Friesen C, Li F et al. 1998. Two CD95 (APO-1/Fas) signaling pathways. EMBO J 17:1675–87 https://doi.org/10.1093/emboj/17.6.1675
    [Crossref] [Google Scholar]
  178. Schober FA, Moore D, Atanassov I, Moedas MF, Clemente P et al. 2021. The one-carbon pool controls mitochondrial energy metabolism via complex I and iron-sulfur clusters. Sci. Adv. 7:eabf0717 https://doi.org/10.1126/sciadv.abf0717
    [Crossref] [Google Scholar]
  179. Schrader M, Costello J, Godinho LF, Islinger M. 2015. Peroxisome-mitochondria interplay and disease. J. Inherit. Metab. Dis. 38:681–702 https://doi.org/10.1007/s10545-015-9819-7
    [Crossref] [Google Scholar]
  180. Schuiki I, Daum G. 2009. Phosphatidylserine decarboxylases, key enzymes of lipid metabolism. IUBMB Life 61:151–62 https://doi.org/10.1002/iub.159
    [Crossref] [Google Scholar]
  181. Schuler MH, English AM, Xiao T, Campbell TJ, Shaw JM, Hughes AL. 2021. Mitochondrial-derived compartments facilitate cellular adaptation to amino acid stress. Mol. Cell 81:3786–802.e13 https://doi.org/10.1016/j.molcel.2021.08.021
    [Crossref] [Google Scholar]
  182. Schweers RL, Zhang J, Randall MS, Loyd MR, Li W et al. 2007. NIX is required for programmed mitochondrial clearance during reticulocyte maturation. PNAS 104:19500–5 https://doi.org/10.1073/pnas.0708818104
    [Crossref] [Google Scholar]
  183. Sciacovelli M, Gonçalves E, Johnson TI, Zecchini VR, Da Costa ASH et al. 2016. Fumarate is an epigenetic modifier that elicits epithelial-to-mesenchymal transition. Nature 537:544–47 https://doi.org/10.1038/nature19353
    [Crossref] [Google Scholar]
  184. Sentelle RD, Senkal CE, Jiang W, Ponnusamy S, Gencer S et al. 2012. Ceramide targets autophagosomes to mitochondria and induces lethal mitophagy. Nat. Chem. Biol. 8:831–38 https://doi.org/10.1038/nchembio.1059
    [Crossref] [Google Scholar]
  185. Seth RB, Sun L, Ea CK, Chen ZJ. 2005. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-κB and IRF3. Cell 122:669–82 https://doi.org/10.1016/j.cell.2005.08.012
    [Crossref] [Google Scholar]
  186. Shai N, Yifrach E, Van Roermund CWT, Cohen N, Bibi C et al. 2018. Systematic mapping of contact sites reveals tethers and a function for the peroxisome-mitochondria contact. Nat. Commun. 9:1761 https://doi.org/10.1038/s41467-018-03957-8
    [Crossref] [Google Scholar]
  187. Shao L-W, Niu R, Liu Y. 2016. Neuropeptide signals cell non-autonomous mitochondrial unfolded protein response. Cell Res 26:1182–96 https://doi.org/10.1038/cr.2016.118
    [Crossref] [Google Scholar]
  188. Shao L-W, Peng Q, Dong M, Gao K, Li Y et al. 2020. Histone deacetylase HDA-1 modulates mitochondrial stress response and longevity. Nat. Commun. 11:4639 https://doi.org/10.1038/s41467-020-18501-w
    [Crossref] [Google Scholar]
  189. Shi L, Tu BP 2015. Acetyl-CoA and the regulation of metabolism: mechanisms and consequences. Curr. Opin. Cell Biol. 33:125–31 https://doi.org/10.1016/j.ceb.2015.02.003
    [Crossref] [Google Scholar]
  190. Shimada K, Crother TR, Karlin J, Dagvadorj J, Chiba N et al. 2012. Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. . Immunity 36:401–14 https://doi.org/10.1016/j.immuni.2012.01.009
    [Crossref] [Google Scholar]
  191. Shpilka T, Du YG, Yang Q, Melber A, Uma Naresh N et al. 2021. UPRmt scales mitochondrial network expansion with protein synthesis via mitochondrial import in Caenorhabditis elegans. Nat. Commun. 12:479 https://doi.org/10.1038/s41467-020-20784-y
    [Crossref] [Google Scholar]
  192. Sliter DA, Martinez J, Hao L, Chen X, Sun N et al. 2018. Parkin and PINK1 mitigate STING-induced inflammation. Nature 561:258–62 https://doi.org/10.1038/s41586-018-0448-9
    [Crossref] [Google Scholar]
  193. Song C, Cui Y, Liu B, Xie J, Ge X et al. 2018. HSP60 and HSP90 β from blunt snout bream, Megalobrama amblycephala: molecular cloning, characterization, and comparative response to intermittent thermal stress and Aeromonas hydrophila infection. Fish Shellfish Immunol 74:119–32 https://doi.org/10.1016/j.fsi.2017.12.046
    [Crossref] [Google Scholar]
  194. Song W, Owusu-Ansah E, Hu Y, Cheng D, Ni X et al. 2017. Activin signaling mediates muscle-to-adipose communication in a mitochondria dysfunction-associated obesity model. PNAS 114:8596–601 https://doi.org/10.1073/pnas.1708037114
    [Crossref] [Google Scholar]
  195. Soo SK, Van Raamsdonk JM. 2021. High confidence ATFS-1 target genes for quantifying activation of the mitochondrial unfolded protein response. microPubl. Biol. 2021:484 https://doi.org/10.17912/micropub.biology.000484
    [Crossref] [Google Scholar]
  196. Sorrentino V, Romani M, Mouchiroud L, Beck JS, Zhang H et al. 2017. Enhancing mitochondrial proteostasis reduces amyloid-β proteotoxicity. Nature 552:187–93 https://doi.org/10.1038/nature25143
    [Crossref] [Google Scholar]
  197. Soubannier V, McLelland GL, Zunino R, Braschi E, Rippstein P et al. 2012. A vesicular transport pathway shuttles cargo from mitochondria to lysosomes. Curr. Biol. 22:135–41 https://doi.org/10.1016/j.cub.2011.11.057
    [Crossref] [Google Scholar]
  198. Sreedharan J, Blair IP, Tripathi VB, Hu X, Vance C et al. 2008. TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 319:1668–72 https://doi.org/10.1126/science.1154584
    [Crossref] [Google Scholar]
  199. Sugiura A, McLelland G, Fon EA, McBride HM. 2014. A new pathway for mitochondrial quality control: mitochondrial-derived vesicles. EMBO J 33:2142–56 https://doi.org/10.15252/embj.201488104
    [Crossref] [Google Scholar]
  200. Sun H-F, Yang X-L, Zhao Y, Tian Q, Chen M-T et al. 2019. Loss of TMEM126A promotes extracellular matrix remodeling, epithelial-to-mesenchymal transition, and breast cancer metastasis by regulating mitochondrial retrograde signaling. Cancer Lett 440–441:189–201 https://doi.org/10.1016/j.canlet.2018.10.018
    [Crossref] [Google Scholar]
  201. Tait SWG, Green DR. 2010. Mitochondria and cell death: outer membrane permeabilization and beyond. Nat. Rev. Mol. Cell Biol. 11:621–32 https://doi.org/10.1038/nrm2952
    [Crossref] [Google Scholar]
  202. Tamura Y, Onguka O, Itoh K, Endo T, Iijima M et al. 2012. Phosphatidylethanolamine biosynthesis in mitochondria: phosphatidylserine (PS) trafficking is independent of a PS decarboxylase and intermembrane space proteins Ups1p and Ups2p. J. Biol. Chem. 287:43961–71 https://doi.org/10.1074/jbc.M112.390997
    [Crossref] [Google Scholar]
  203. Tatsuta T, Langer T. 2017. Intramitochondrial phospholipid trafficking. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1862:81–89 https://doi.org/10.1016/j.bbalip.2016.08.006
    [Crossref] [Google Scholar]
  204. Taylor RC, Dillin A. 2013. XXBP-1 is a cell-nonautonomous regulator of stress resistance and longevity. Cell 153:1435 https://doi.org/10.1016/j.cell.2013.05.042
    [Crossref] [Google Scholar]
  205. Tennant DA, Frezza C, MacKenzie ED, Nguyen QD, Zheng L et al. 2009. Reactivating HIF prolyl hydroxylases under hypoxia results in metabolic catastrophe and cell death. Oncogene 28:4009–21 https://doi.org/10.1038/onc.2009.250
    [Crossref] [Google Scholar]
  206. Tezze C, Romanello V, Desbats MA, Fadini GP, Albiero M et al. 2017. Age-associated loss of OPA1 in muscle impacts muscle mass, metabolic homeostasis, systemic inflammation, and epithelial senescence. Cell Metab 25:1374–89.e6. https://doi.org/10.1016/j.cmet.2017.04.021
    [Crossref] [Google Scholar]
  207. Tharp KM, Higuchi-Sanabria R, Timblin GA, Ford B, Garzon-Coral C et al. 2021. Adhesion-mediated mechanosignaling forces mitohormesis. Cell Metab 33:1322–41.e13 https://doi.org/10.1016/j.cmet.2021.04.017
    [Crossref] [Google Scholar]
  208. Thivolet C, Vial G, Cassel R, Rieusset J, Madec AM. 2017. Reduction of endoplasmic reticulum-mitochondria interactions in beta cells from patients with type 2 diabetes. PLOS ONE 12:e0182027 https://doi.org/10.1371/journal.pone.0182027
    [Crossref] [Google Scholar]
  209. Timper K, del Río-Martín A, Cremer AL, Bremser S, Alber J et al. 2020. GLP-1 receptor signaling in astrocytes regulates fatty acid oxidation, mitochondrial integrity, and function. Cell Metab 31:1189–205.e13 https://doi.org/10.1016/j.cmet.2020.05.001
    [Crossref] [Google Scholar]
  210. Toyama EQ, Herzig S, Courchet J, Lewis TL Jr., Losón OC et al. 2016. AMP-activated protein kinase mediates mitochondrial fission in response to energy stress. Science 351:275–82 https://doi.org/10.1126/science.aab4138
    [Crossref] [Google Scholar]
  211. Tsai VW, Zhang HP, Manandhar R, Lee-Ng KKM, Lebhar H et al. 2018. Treatment with the TGF-b superfamily cytokine MIC-1/GDF15 reduces the adiposity and corrects the metabolic dysfunction of mice with diet-induced obesity. Int. J. Obes. 42:561–71 https://doi.org/10.1038/ijo.2017.258
    [Crossref] [Google Scholar]
  212. Tubbs E, Theurey P, Vial G, Bendridi N, Bravard A et al. 2014. Mitochondria-associated endoplasmic reticulum membrane (MAM) integrity is required for insulin signaling and is implicated in hepatic insulin resistance. Diabetes 63:3279–94 https://doi.org/10.2337/db13-1751
    [Crossref] [Google Scholar]
  213. Tyurina YY, Poloyac SM, Tyurin VA, Kapralov AA, Jiang J et al. 2014. A mitochondrial pathway for biosynthesis of lipid mediators. Nat. Chem. 6:542–52 https://doi.org/10.1038/nchem.1924
    [Crossref] [Google Scholar]
  214. Ušaj MM, Brložnik M, Kaferle P, Žitnik M, Wolinski H et al. 2015. Genome-wide localization study of yeast Pex11 identifies peroxisome-mitochondria interactions through the ERMES complex. J. Mol. Biol. 427:2072–87
    [Google Scholar]
  215. Valm AM, Cohen S, Legant WR, Melunis J, Hershberg U et al. 2017. Applying systems-level spectral imaging and analysis to reveal the organelle interactome. Nature 546:162–67 https://doi.org/10.1038/nature22369
    [Crossref] [Google Scholar]
  216. van Waveren C, Sun Y, Cheung HS, Moraes CT. 2006. Oxidative phosphorylation dysfunction modulates expression of extracellular matrix – remodeling genes and invasion. Carcinogenesis 27:409–18 https://doi.org/10.1093/carcin/bgi242
    [Crossref] [Google Scholar]
  217. Vance JE. 1990. Phospholipid synthesis in a membrane fraction associated with mitochondria. J. Biol. Chem. 265:7248–56 https://doi.org/10.1016/s0021-9258(19)39106-9
    [Crossref] [Google Scholar]
  218. Verdin E. 2015. NAD+ in aging, metabolism, and neurodegeneration. Science 350:1208–13 https://doi.org/10.1126/science.aac4854
    [Crossref] [Google Scholar]
  219. Visavadiya NP, Keasey MP, Razskazovskiy V, Banerjee K, Jia C et al. 2016. Integrin-FAK signaling rapidly and potently promotes mitochondrial function through STAT3. Cell Commun. Signal. 14:32 https://doi.org/10.1186/s12964-016-0157-7
    [Crossref] [Google Scholar]
  220. Viswanathan M, Guarente L. 2011. Regulation of Caenorhabditis elegans lifespan by sir-2.1 transgenes. Nature 477:E1–2 https://doi.org/10.1038/nature10440
    [Crossref] [Google Scholar]
  221. Voelker DR. 1989. Reconstitution of phosphatidylserine import into rat liver mitochondria. J. Biol. Chem. 264:8019–25 https://doi.org/10.1016/s0021-9258(18)83144-1
    [Crossref] [Google Scholar]
  222. Wagner GR, Pride PM, Babbey CM, Payne RM. 2012. Friedreich's ataxia reveals a mechanism for coordinate regulation of oxidative metabolism via feedback inhibition of the SIRT3 deacetylase. Hum. Mol. Genet. 21:2688–97 https://doi.org/10.1093/hmg/dds095
    [Crossref] [Google Scholar]
  223. Wang H, Lim PJ, Karbowski M, Monteiro MJ. 2009. Effects of overexpression of Huntingtin proteins on mitochondrial integrity. Hum. Mol. Genet. 18:737–52 https://doi.org/10.1093/hmg/ddn404
    [Crossref] [Google Scholar]
  224. Wang H, Sreenivasan U, Gong DW, O'Connell KA, Dabkowski ER et al. 2013. Cardiomyocyte-specific perilipin 5 overexpression leads to myocardial steatosis and modest cardiac dysfunction. J. Lipid Res. 54:953–65 https://doi.org/10.1194/jlr.M032466
    [Crossref] [Google Scholar]
  225. Wang X, Chrysovergis K, Kosak J, Kissling G, Streicker M et al. 2014. hNAG-1 increases lifespan by regulating energy metabolism and insulin/IGF/mTOR signaling. Aging 6:690–704 https://doi.org/10.18632/aging.100687
    [Crossref] [Google Scholar]
  226. Wei W, Ruvkun G. 2020. Lysosomal activity regulates Caenorhabditis elegans mitochondrial dynamics through vitamin B12 metabolism. PNAS 117:19970–81 https://doi.org/10.1073/PNAS.2008021117
    [Crossref] [Google Scholar]
  227. West AP, Brodsky IE, Rahner C, Woo DK, Erdjument-Bromage H et al. 2011. TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. Nature 472:476–80 https://doi.org/10.1038/nature09973
    [Crossref] [Google Scholar]
  228. West AP, Khoury-Hanold W, Staron M, Tal MC, Pineda CM et al. 2015. Mitochondrial DNA stress primes the antiviral innate immune response. Nature 520:553–57 https://doi.org/10.1038/nature14156
    [Crossref] [Google Scholar]
  229. West AP, Shadel GS. 2017. Mitochondrial DNA in innate immune responses and inflammatory pathology. Nat. Rev. Immunol. 17:363–75 https://doi.org/10.1038/nri.2017.21
    [Crossref] [Google Scholar]
  230. Wiens KE, Ernst JD. 2016. The mechanism for Type I interferon induction by Mycobacterium tuberculosis is bacterial strain-dependent. PLOS Pathog 12:e1005809 https://doi.org/10.1371/journal.ppat.1005809
    [Crossref] [Google Scholar]
  231. Winder WW, Holmes BF, Rubink DS, Jensen EB, Chen M, Holloszy JO 2000. Activation of AMP-activated protein kinase increases mitochondrial enzymes in skeletal muscle. J. Appl. Physiol. 88:2219–26 https://doi.org/10.1152/jappl.2000.88.6.2219
    [Crossref] [Google Scholar]
  232. Wong GHW, Elwell JH, Oberley LW, Goeddel DV. 1989. Manganous superoxide dismutase is essential for cellular resistance to cytotoxicity of tumor necrosis factor. Cell 58:923–31 https://doi.org/10.1016/0092-8674(89)90944-6
    [Crossref] [Google Scholar]
  233. Wong YC, Peng W, Krainc D. 2019. Lysosomal regulation of inter-mitochondrial contact fate and motility in Charcot-Marie-Tooth type 2. Dev. Cell 50:339–54.e4 https://doi.org/10.1016/j.devcel.2019.05.033
    [Crossref] [Google Scholar]
  234. Wong YC, Ysselstein D, Krainc D 2018. Mitochondria-lysosome contacts regulate mitochondrial fission via RAB7 GTP hydrolysis. Nature 554:382–86 https://doi.org/10.1038/nature25486
    [Crossref] [Google Scholar]
  235. Wu S, Lu Q, Wang Q, Ding Y, Ma Z et al. 2017. Binding of FUN14 domain containing 1 with inositol 1,4,5-trisphosphate receptor in mitochondria-associated endoplasmic reticulum membranes maintains mitochondrial dynamics and function in hearts in vivo. Circulation 136:2248–66 https://doi.org/10.1161/CIRCULATIONAHA.117.030235
    [Crossref] [Google Scholar]
  236. Wu W, Lin C, Wu K, Jiang L, Wang X et al. 2016. FUNDC 1 regulates mitochondrial dynamics at the ER-mitochondrial contact site under hypoxic conditions. EMBO J 35:1368–84 https://doi.org/10.15252/embj.201593102
    [Crossref] [Google Scholar]
  237. Wu Z, Senchuk MM, Dues DJ, Johnson BK, Cooper JF et al. 2018. Mitochondrial unfolded protein response transcription factor ATFS-1 promotes longevity in a long-lived mitochondrial mutant through activation of stress response pathways. BMC Biol 16:147 https://doi.org/10.1186/s12915-018-0615-3
    [Crossref] [Google Scholar]
  238. Yamano K, Youle RJ. 2013. PINK1 is degraded through the N-end rule pathway. Autophagy 9:1758–69 https://doi.org/10.4161/auto.24633
    [Crossref] [Google Scholar]
  239. Yano H, Baranov SV, Baranova OV, Kim J, Pan Y et al. 2014. Inhibition of mitochondrial protein import by mutant huntingtin. Nat. Neurosci. 17:822–31 https://doi.org/10.1038/nn.3721
    [Crossref] [Google Scholar]
  240. Yoneda T, Benedetti C, Urano F, Clark SG, Harding HP, Ron D 2004. Compartment-specific perturbation of protein handling activates genes encoding mitochondrial chaperones. J. Cell Sci. 117:4055–66 https://doi.org/10.1242/jcs.01275
    [Crossref] [Google Scholar]
  241. Yu CH, Davidson S, Harapas CR, Hilton JB, Mlodzianoski MJ et al. 2020. TDP-43 triggers mitochondrial DNA release via mPTP to activate cGAS/STING in ALS. Cell 183:636–49.e18 https://doi.org/10.1016/j.cell.2020.09.020
    [Crossref] [Google Scholar]
  242. Yu J, Zhang S, Cui L, Wang W, Na H et al. 2015. Lipid droplet remodeling and interaction with mitochondria in mouse brown adipose tissue during cold treatment. Biochim. Biophys. Acta Mol. Cell Res. 1853:918–28 https://doi.org/10.1016/j.bbamcr.2015.01.020
    [Crossref] [Google Scholar]
  243. Zhang Q, Wang Z, Zhang W, Wen Q, Li X et al. 2021. The memory of neuronal mitochondrial stress is inherited transgenerationally via elevated mitochondrial DNA levels. Nat. Cell Biol. 23:870–80 https://doi.org/10.1038/s41556-021-00724-8
    [Crossref] [Google Scholar]
  244. Zhang Q, Wu X, Chen P, Liu L, Xin N et al. 2018. The mitochondrial unfolded protein response is mediated cell-non-autonomously by retromer-dependent Wnt signaling. Cell 174:870–83.e17 https://doi.org/10.1016/j.cell.2018.06.029
    [Crossref] [Google Scholar]
  245. Zhao Q, Wang J, Levichkin IV, Stasinopoulos S, Ryan MT, Hoogenraad NJ. 2002. A mitochondrial specific stress response in mammalian cells. EMBO J 21:4411–19 https://doi.org/10.1093/emboj/cdf445
    [Crossref] [Google Scholar]
  246. Zhao T, Hao Y, Kaplan JM. 2018. Axonal mitochondria modulate neuropeptide secretion through the hypoxic stress response in Caenorhabditis elegans. Genetics 210:275–85 https://doi.org/10.1534/genetics.118.301014
    [Crossref] [Google Scholar]
  247. Zong H, Ren JM, Young LH, Pypaert M, Mu J et al. 2002. AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation. PNAS 99:15983–87 https://doi.org/10.1073/pnas.252625599
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-cellbio-120420-015303
Loading
/content/journals/10.1146/annurev-cellbio-120420-015303
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error