- Home
- A-Z Publications
- Annual Review of Cell and Developmental Biology
- Previous Issues
- Volume 32, 2016
Annual Review of Cell and Developmental Biology - Volume 32, 2016
Volume 32, 2016
- Preface
-
-
-
The Heidelberg Screen for Pattern Mutants of Drosophila: A Personal Account
Vol. 32 (2016), pp. 1–46More LessIn large-scale mutagenesis screens performed in 1979–1980 at the EMBL in Heidelberg, we isolated mutations affecting the pattern or structure of the larval cuticle in Drosophila. The 600 mutants we characterized could be assigned to 120 genes and represent the majority of such genes in the genome. These mutants subsequently provided a rich resource for understanding many fundamental developmental processes, such as the transcriptional hierarchies controlling segmentation, the establishment of cell states by signaling pathways, and the differentiation of epithelial cells. Most of the Heidelberg genes are now molecularly known, and many of them are conserved in other animals, including humans. Although the screens were initially driven entirely by curiosity, the mutants now serve as models for many human diseases. In this review, we describe the rationale of the screening procedures and provide a classification of the genes on the basis of their initial phenotypes and the subsequent molecular analyses.
-
-
-
Tissue and Organ Initiation in the Plant Embryo: A First Time for Everything
Vol. 32 (2016), pp. 47–75More LessLand plants can grow to tremendous body sizes, yet even the most complex architectures are the result of iterations of the same developmental processes: organ initiation, growth, and pattern formation. A central question in plant biology is how these processes are regulated and coordinated to allow for the formation of ordered, 3D structures. All these elementary processes first occur in early embryogenesis, during which, from a fertilized egg cell, precursors for all major tissues and stem cells are initiated, followed by tissue growth and patterning. Here we discuss recent progress in our understanding of this phase of plant life. We consider the cellular basis for multicellular development in 3D and focus on the genetic regulatory mechanisms that direct specific steps during early embryogenesis.
-
-
-
Transcriptional Control of Developmental Cell Behaviors
Vol. 32 (2016), pp. 77–101More LessTissue-specific transcription regulators emerged as key developmental control genes, which operate in the context of complex gene regulatory networks (GRNs) to coordinate progressive cell fate specification and tissue morphogenesis. We discuss how GRNs control the individual cell behaviors underlying complex morphogenetic events. Cell behaviors classically range from mesenchymal cell motility to cell shape changes in epithelial sheets. These behaviors emerge from the tissue-specific, multiscale integration of the local activities of universal and pleiotropic effectors, which underlie modular subcellular processes including cytoskeletal dynamics, cell-cell and cell-matrix adhesion, signaling, polarity, and vesicle trafficking. Extrinsic cues and intrinsic cell competence determine the subcellular spatiotemporal patterns of effector activities. GRNs influence most subcellular activities by controlling only a fraction of the effector-coding genes, which we argue is enriched in effectors involved in reading and processing the extrinsic cues to contextualize intrinsic subcellular processes and canalize developmental cell behaviors. The properties of the transcription-cell behavior interface have profound implications for evolution and disease.
-
-
-
Genotypes, Networks, Phenotypes: Moving Toward Plant Systems Genetics
Vol. 32 (2016), pp. 103–126More LessOne of the central goals in biology is to understand how and how much of the phenotype of an organism is encoded in its genome. Although many genes that are crucial for organismal processes have been identified, much less is known about the genetic bases underlying quantitative phenotypic differences in natural populations. We discuss the fundamental gap between the large body of knowledge generated over the past decades by experimental genetics in the laboratory and what is needed to understand the genotype-to-phenotype problem on a broader scale. We argue that systems genetics, a combination of systems biology and the study of natural variation using quantitative genetics, will help to address this problem. We present major advances in these two mostly disconnected areas that have increased our understanding of the developmental processes of flowering time control and root growth. We conclude by illustrating and discussing the efforts that have been made toward systems genetics specifically in plants.
-
-
-
Neurogenesis and Gliogenesis in Nervous System Plasticity and Repair
Vol. 32 (2016), pp. 127–141More LessThe brain constantly changes to store memories and adapt to new conditions. One type of plasticity that has gained increasing interest during the last years is the generation of new cells. The generation of both new neurons and glial cells contributes to neural plasticity and to some neural repair. There are substantial differences between mammalian species with regard to the extent of and mechanisms behind cell exchange in neural plasticity. Both neurogenesis and gliogenesis have several specific features in humans, which may contribute to the unique plasticity of the human brain.
-
-
-
Phosphoinositides in Control of Membrane Dynamics
Vol. 32 (2016), pp. 143–171More LessMost functions of eukaryotic cells are controlled by cellular membranes, which are not static entities but undergo frequent budding, fission, fusion, and sculpting reactions collectively referred to as membrane dynamics. Consequently, regulation of membrane dynamics is crucial for cellular functions. A key mechanism in such regulation is the reversible recruitment of cytosolic proteins or protein complexes to specific membranes at specific time points. To a large extent this recruitment is orchestrated by phosphorylated derivatives of the membrane lipid phosphatidylinositol, known as phosphoinositides. The seven phosphoinositides found in nature localize to distinct membrane domains and recruit distinct effectors, thereby contributing strongly to the maintenance of membrane identity. Many of the phosphoinositide effectors are proteins that control membrane dynamics, and in this review we discuss the functions of phosphoinositides in membrane dynamics during exocytosis, endocytosis, autophagy, cell division, cell migration, and epithelial cell polarity, with emphasis on protein effectors that are recruited by specific phosphoinositides during these processes.
-
-
-
Cytoplasmic Streaming in the Drosophila Oocyte
Vol. 32 (2016), pp. 173–195More LessObjects are commonly moved within the cell by either passive diffusion or active directed transport. A third possibility is advection, in which objects within the cytoplasm are moved with the flow of the cytoplasm. Bulk movement of the cytoplasm, or streaming, as required for advection, is more common in large cells than in small cells. For example, streaming is observed in elongated plant cells and the oocytes of several species. In the Drosophila oocyte, two stages of streaming are observed: relatively slow streaming during mid-oogenesis and streaming that is approximately ten times faster during late oogenesis. These flows are implicated in two processes: polarity establishment and mixing. In this review, I discuss the underlying mechanism of streaming, how slow and fast streaming are differentiated, and what we know about the physiological roles of the two types of streaming.
-
-
-
Cargo Capture and Bulk Flow in the Early Secretory Pathway
Vol. 32 (2016), pp. 197–222More LessTransport of newly synthesized proteins from the endoplasmic reticulum (ER) to the Golgi complex is highly selective. As a general rule, such transport is limited to soluble and membrane-associated secretory proteins that have reached properly folded and assembled conformations. To secure the efficiency, fidelity, and control of this crucial transport step, cells use a combination of mechanisms. The mechanisms are based on selective retention of proteins in the ER to prevent uptake into transport vesicles, on selective capture of proteins in COPII carrier vesicles, on inclusion of proteins in these vesicles by default as part of fluid and membrane bulk flow, and on selective retrieval of proteins from post-ER compartments by retrograde vesicle transport.
-
-
-
The Lysosome as a Regulatory Hub
Vol. 32 (2016), pp. 223–253More LessThe lysosome has long been viewed as the recycling center of the cell. However, recent discoveries have challenged this simple view and have established a central role of the lysosome in nutrient-dependent signal transduction. The degradative role of the lysosome and its newly discovered signaling functions are not in conflict but rather cooperate extensively to mediate fundamental cellular activities such as nutrient sensing, metabolic adaptation, and quality control of proteins and organelles. Moreover, lysosome-based signaling and degradation are subject to reciprocal regulation. Transcriptional programs of increasing complexity control the biogenesis, composition, and abundance of lysosomes and fine-tune their activity to match the evolving needs of the cell. Alterations in these essential activities are, not surprisingly, central to the pathophysiology of an ever-expanding spectrum of conditions, including storage disorders, neurodegenerative diseases, and cancer. Thus, unraveling the functions of this fascinating organelle will contribute to our understanding of the fundamental logic of metabolic organization and will point to novel therapeutic avenues in several human diseases.
-
-
-
TFEB and TFE3: Linking Lysosomes to Cellular Adaptation to Stress*
Vol. 32 (2016), pp. 255–278More LessIn recent years, our vision of lysosomes has drastically changed. Formerly considered to be mere degradative compartments, they are now recognized as key players in many cellular processes. The ability of lysosomes to respond to different stimuli revealed a complex and coordinated regulation of lysosomal gene expression. This review discusses the participation of the transcription factors TFEB and TFE3 in the regulation of lysosomal function and biogenesis, as well as the role of the lysosomal pathway in cellular adaptation to a variety of stress conditions, including nutrient deprivation, mitochondrial dysfunction, protein misfolding, and pathogen infection. We also describe how cancer cells make use of TFEB and TFE3 to promote their own survival and highlight the potential of these transcription factors as therapeutic targets for the treatment of neurological and lysosomal diseases.
-
-
-
Endoplasmic Reticulum–Plasma Membrane Associations: Structures and Functions
Vol. 32 (2016), pp. 279–301More LessInside eukaryotic cells, membrane contact sites (MCSs), regions where two membrane-bound organelles are apposed at less than 30 nm, generate regions of important lipid and calcium exchange. This review principally focuses on the structure and the function of MCSs between the endoplasmic reticulum (ER) and the plasma membrane (PM). Here we describe how tethering structures form and maintain these junctions and, in some instances, participate in their function. We then discuss recent insights into the mechanisms by which specific classes of proteins mediate nonvesicular lipid exchange between the ER and PM and how such phenomena, already known to be crucial for maintaining organelle identity, are also emerging as regulators of cell growth and development.
-
-
-
Signaling and Polarized Communication Across the T Cell Immunological Synapse
Vol. 32 (2016), pp. 303–325More LessT cells express a somatically recombined antigen receptor (αβTCR) that is calibrated during development to respond to changes in peptides displayed by major histocompatibility complex proteins (pMHC) on the surface of antigen-presenting cells (APC). A key characteristic of pMHC for adaptive immunity is the ability to sample internal states of cells and tissues to sensitively detect changes associated with infection, cell derangement, or tissue injury. Physical T cell–APC contact sets up an axis for polarization of TCR, adhesion molecules, kinases, cytoskeletal elements, and organelles inherent in this mode of juxtacrine signaling. The discovery of further lateral organization of the TCR and adhesion molecules into radially symmetric compartments, the immunological synapse, revealed an intersecting plane of symmetry and potential for regulated symmetry breaking to control duration of T cell–APC interactions. In addition to organizing signaling machinery, the immunological synapse directs the polarized transport and secretion of cytokines and cytolytic agents across the synaptic cleft and is a site for the generation and exocytic release of bioactive microvesicles that can functionally affect recipient APC and other cells in the environment. This machinery is coopted by retroviruses, and human immune deficiency virus-1 may even use antigen-specific synapses for infection of healthy T cells. Here, we discuss recent advances in the molecular and cell biological mechanisms of immunological synapse assembly and signaling and its role in intercellular communication across the synaptic cleft.
-
-
-
TCR Signal Strength and T Cell Development
Vol. 32 (2016), pp. 327–348More LessThymocyte selection involves the positive and negative selection of the repertoire of T cell receptors (TCRs) such that the organism does not suffer autoimmunity, yet has the benefit of the ability to recognize any invading pathogen. The signal transduced through the TCR is translated into a number of different signaling cascades that result in transcription factor activity in the nucleus and changes to the cytoskeleton and motility. Negative selection involves inducing apoptosis in thymocytes that express strongly self-reactive TCRs, whereas positive selection must induce survival and differentiation programs in cells that are more weakly self-reactive. The TCR recognition event is analog by nature, but the outcome of signaling is not. A large number of molecules regulate the strength of the TCR-derived signal at various points in the cascades. This review discusses the various factors that can regulate the strength of the TCR signal during thymocyte development.
-
-
-
The Cytoophidium and Its Kind: Filamentation and Compartmentation of Metabolic Enzymes
Vol. 32 (2016), pp. 349–372More LessCompartmentation is essential for the localization of biological processes within a cell. In 2010, three groups independently reported that cytidine triphosphate synthase (CTPS), a metabolic enzyme for de novo synthesis of the nucleotide CTP, is compartmentalized in cytoophidia (Greek for “cellular snakes”) in bacteria, yeast, and fruit flies. Subsequent studies demonstrate that CTPS can also form filaments in human cells. Thus, the cytoophidium represents a new type of intracellular compartment that is strikingly conserved across prokaryotes and eukaryotes. Multiple lines of evidence have recently suggested that polymerization of metabolic enzymes such as CTPS and inosine monophosphate dehydrogenase into filamentous cytoophidia modulates enzymatic activity. With many more metabolic enzymes found to form the cytoophidium and its kind, compartmentation via filamentation may serve as a general mechanism for the regulation of metabolism.
-
-
-
How Bacteria Subvert Animal Cell Structure and Function
Vol. 32 (2016), pp. 373–397More LessBacterial pathogens encode a wide variety of effectors and toxins that hijack host cell structure and function. Of particular importance are virulence factors that target actin cytoskeleton dynamics critical for cell shape, stability, motility, phagocytosis, and division. In addition, many bacteria target organelles of the general secretory pathway (e.g., the endoplasmic reticulum and the Golgi complex) and recycling pathways (e.g., the endolysosomal system) to establish and maintain an intracellular replicative niche. Recent research on the biochemistry and structural biology of bacterial effector proteins and toxins has begun to shed light on the molecular underpinnings of these host-pathogen interactions. This exciting work is revealing how pathogens gain control of the complex and dynamic host cellular environments, which impacts our understanding of microbial infectious disease, immunology, and human cell biology.
-
-
-
Metabolism and the Control of Cell Fate Decisions and Stem Cell Renewal
Kyoko Ito, and Keisuke ItoVol. 32 (2016), pp. 399–409More LessAlthough the stem cells of various tissues remain in the quiescent state to maintain their undifferentiated state, they also undergo cell divisions as required, and if necessary, even a single stem cell is able to provide for lifelong tissue homeostasis. Stem cell populations are precisely controlled by the balance between their symmetric and asymmetric divisions, with their division patterns determined by whether the daughter cells involved retain their self-renewal capacities. Recent studies have reported that metabolic pathways and the distribution of mitochondria are regulators of the division balance of stem cells and that metabolic defects can shift division balance toward symmetric commitment, which leads to stem cell exhaustion. It has also been observed that in asymmetric division, old mitochondria, which are central metabolic organelles, are segregated to the daughter cell fated to cell differentiation, whereas in symmetric division, young and old mitochondria are equally distributed between both daughter cells. Thus, metabolism and mitochondrial biology play important roles in stem cell fate decisions. As these decisions directly affect tissue homeostasis, understanding their regulatory mechanisms in the context of cellular metabolism is critical.
-
-
-
Cell Competition: Mechanisms and Physiological Roles
Vol. 32 (2016), pp. 411–439More LessCell-competitive interactions are widespread in nature and determine the outcome of a vast variety of biological processes. A particular class of competitive interactions takes place when alterations in intrinsic cellular properties are sensed nonautonomously by comparison between neighboring cells, resulting in the selective elimination of one cell population. This type of cell competition was first described four decades ago in developing epithelia of Drosophila. In the last 15 years, further molecular and cellular analyses have provided essential knowledge about the mechanisms, universality, and physiological relevance of cell competition. The two main phenomena triggering cell competition are alterations in cellular metabolic status and alterations in epithelial apico-basal polarity, while other reported pathways are less characterized. Cell competition plays essential roles in quality control, homeostasis, and repair of developing and adult tissues, and depending on the context, it may function as a tumor-suppressing or tumor-promoting mechanism.
-
-
-
Functions and Regulation of Programmed Cell Death in Plant Development
Vol. 32 (2016), pp. 441–468More LessProgrammed cell death (PCD) is a collective term for diverse processes causing an actively induced, tightly controlled cellular suicide. PCD has a multitude of functions in the development and health of multicellular organisms. In comparison to intensively studied forms of animal PCD such as apoptosis, our knowledge of the regulation of PCD in plants remains limited. Despite the importance of PCD in plant development and as a response to biotic and abiotic stresses, the complex molecular networks controlling different forms of plant PCD are only just beginning to emerge. With this review, we provide an update on the considerable progress that has been made over the last decade in our understanding of PCD as an inherent part of plant development. We highlight both functions of developmental PCD and central aspects of its molecular regulation.
-
-
-
Focal Adhesion–Independent Cell Migration
Vol. 32 (2016), pp. 469–490More LessCell migration is central to a multitude of physiological processes, including embryonic development, immune surveillance, and wound healing, and deregulated migration is key to cancer dissemination. Decades of investigations have uncovered many of the molecular and physical mechanisms underlying cell migration. Together with protrusion extension and cell body retraction, adhesion to the substrate via specific focal adhesion points has long been considered an essential step in cell migration. Although this is true for cells moving on two-dimensional substrates, recent studies have demonstrated that focal adhesions are not required for cells moving in three dimensions, in which confinement is sufficient to maintain a cell in contact with its substrate. Here, we review the investigations that have led to challenging the requirement of specific adhesions for migration, discuss the physical mechanisms proposed for cell body translocation during focal adhesion–independent migration, and highlight the remaining open questions for the future.
-
Previous Volumes
-
Volume 40 (2024)
-
Volume 39 (2023)
-
Volume 38 (2022)
-
Volume 37 (2021)
-
Volume 36 (2020)
-
Volume 35 (2019)
-
Volume 34 (2018)
-
Volume 33 (2017)
-
Volume 32 (2016)
-
Volume 31 (2015)
-
Volume 30 (2014)
-
Volume 29 (2013)
-
Volume 28 (2012)
-
Volume 27 (2011)
-
Volume 26 (2010)
-
Volume 25 (2009)
-
Volume 24 (2008)
-
Volume 23 (2007)
-
Volume 22 (2006)
-
Volume 21 (2005)
-
Volume 20 (2004)
-
Volume 19 (2003)
-
Volume 18 (2002)
-
Volume 17 (2001)
-
Volume 16 (2000)
-
Volume 15 (1999)
-
Volume 14 (1998)
-
Volume 13 (1997)
-
Volume 12 (1996)
-
Volume 11 (1995)
-
Volume 10 (1994)
-
Volume 9 (1993)
-
Volume 8 (1992)
-
Volume 7 (1991)
-
Volume 6 (1990)
-
Volume 5 (1989)
-
Volume 4 (1988)
-
Volume 3 (1987)
-
Volume 2 (1986)
-
Volume 1 (1985)
-
Volume 0 (1932)