1932

Abstract

In large-scale mutagenesis screens performed in 1979–1980 at the EMBL in Heidelberg, we isolated mutations affecting the pattern or structure of the larval cuticle in . The 600 mutants we characterized could be assigned to 120 genes and represent the majority of such genes in the genome. These mutants subsequently provided a rich resource for understanding many fundamental developmental processes, such as the transcriptional hierarchies controlling segmentation, the establishment of cell states by signaling pathways, and the differentiation of epithelial cells. Most of the Heidelberg genes are now molecularly known, and many of them are conserved in other animals, including humans. Although the screens were initially driven entirely by curiosity, the mutants now serve as models for many human diseases. In this review, we describe the rationale of the screening procedures and provide a classification of the genes on the basis of their initial phenotypes and the subsequent molecular analyses.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cellbio-113015-023138
2016-10-06
2024-10-07
Loading full text...

Full text loading...

/deliver/fulltext/cellbio/32/1/annurev-cellbio-113015-023138.html?itemId=/content/journals/10.1146/annurev-cellbio-113015-023138&mimeType=html&fmt=ahah

Literature Cited

  1. Anderson KV, Jürgens G, Nüsslein-Volhard C. 1985. Establishment of dorsal-ventral polarity in the Drosophila embryo: genetic studies on the role of the Toll gene product. Cell 42:779–89 [Google Scholar]
  2. Anderson KV, Nüsslein-Volhard C. 1984. Information for the dorso-ventral pattern of the Drosophila embryo is stored as maternal mRNA. Nature 311:223–27 [Google Scholar]
  3. Arora K, Dai H, Kazuko SG, Jamal J, O'Connor MB. et al. 1995. The Drosophila schnurri gene acts in the Dpp/TGF beta signaling pathway and encodes a transcription factor homologous to the human MBP family. Cell 81:781–90 [Google Scholar]
  4. Arora K, Nüsslein-Volhard C. 1992. Altered mitotic domains reveal fate map changes in Drosophila embryos mutant for zygotic dorsoventral patterning genes. Development 114:1003–24 [Google Scholar]
  5. Bachmann A, Schneider M, Theilenberg E, Grawe F, Knust E. 2001. Drosophila Stardust is a partner of Crumbs in the control of epithelial cell polarity. Nature 414:638–43 [Google Scholar]
  6. Baker NE. 1987. Molecular cloning of sequences from wingless, a segment polarity gene in Drosophila: Tthe spatial distribution of a transcript in embryos. EMBO J 6:1765–73 [Google Scholar]
  7. Baumgartner S, Bopp D, Burri M, Noll M. 1987. Structure of two genes at the gooseberry locus related to the. paired gene and the ir spatial expression during Drosophila embryogenesis. Genes Dev 1:1247–67 [Google Scholar]
  8. Beadle GW, Ephrussi B. 1937. Development of eye colors in Drosophila: diffusible substances and their interrelations. Genetics 22:76–86 [Google Scholar]
  9. Beadle GW, Tatum EL. 1941. Genetic control of biochemical reactions in Neurospora. PNAS 27:499–506 [Google Scholar]
  10. Bejsovec A, Chao AT. 2012. crinkled reveals a new role for Wingless signaling in Drosophila denticle formation. Development 139:4690–98 [Google Scholar]
  11. Bender W, Akam M, Karch F, Beachy PA, Peifer M. et al. 1983. Molecular genetics of the bithorax complex in Drosophila melanogaster. Science 221:23–29 [Google Scholar]
  12. Bier E, Jan LY, Jan YM. 1990. rhomboid, a gene required for dorsoventral axis establishment and peripheral nervous system development in Drosophila melanogaster. Genes Dev. 4:190–203 [Google Scholar]
  13. Boulay J-L, Dennefeld A, Alberga C. 1987. The Drosophila development gene snail encodes a protein with nucleic acid binding fingers. Nature 330:395–98 [Google Scholar]
  14. Boveri T. 1901. Die Polarität von Oocyte, Ei und Larve des Strongylocentrotus lividus. Zool. Jahrb. 1:630–53 [Google Scholar]
  15. Boveri T. 1902. Über mehrpolige Mitosen als Mittel zur Analyse des Zellkerns. Verhandlungen der physikalisch-medizinischen Gesellschaft zu Würzburg. N. F 35:67–90 [Google Scholar]
  16. Brenner S. 1974. The genetics of Caenorhabditis elegans. Genetics 77:71–94 [Google Scholar]
  17. Bull AL. 1966. Bicaudal, a genetic factor which affects the polarity of the embryo in Drosophila melanogaster. J. Exp. Zool. 161:221–42 [Google Scholar]
  18. Campos-Ortega J. 1993. Mechanism of early neurogenesis in Drosophila melanogaster. J. Neurobiol. 24:1305–27 [Google Scholar]
  19. Capovilla M, Eldon ED, Pirrotta V. 1992. The giant gene of Drosophila encodes a b-ZIP DNA-binding protein that regulates the expression of other segmentation gap genes. Development 114:99–112 [Google Scholar]
  20. Carroll SB, Grenier JK, Weatherbee SD. 2004. From DNA to Diversity Malden, MA: Blackwell Sci. [Google Scholar]
  21. Chan LN, Gehring W. 1971. Determination of blastoderm cells in Drosophila melanogaster. PNAS 68:2217–21 [Google Scholar]
  22. Costa M, Wilson ET, Wieschaus E. 1994. A putative cell signal encoded by the folded gastrulation gene coordinates cell shape changes during Drosophila gastrulation. Cell 76:1075–89 [Google Scholar]
  23. Dale L, Howes G, Price BMJ, Smith JC. 1992. Bone morphogenetic protein 4, a ventralizing factor in Xenopus development. Development 115:573–85 [Google Scholar]
  24. Davidson EH. 1986. Gene Activity in Early Development Orlando, FL: Academic Press, 3rd ed.. [Google Scholar]
  25. De Renzis S, Elemento O, Tavazoie S, Wieschaus E. 2007. Unmasking activation of the zygotic genome using chromosomal deletions in the Drosophila embryo. PLOS Biol 5:5e117 [Google Scholar]
  26. DiNardo S, Kuner JM, Theis J, O'Farrell PH. 1985. Development of embryonic pattern in D.melanogaster as revealed by accumulation of the nuclear engrailed protein. Cell 43:59–69 [Google Scholar]
  27. Doe CQ, Smouse D, Goodmann CS. 1988. Control of neuronal fate by the Drosophila segmentation gene even-skipped. Nature 333376–78 [Google Scholar]
  28. Duboule D, Dollé P. 1989. The structural and functional organization of the murine HOX gene family resembles that of Drosophila homeotic genes. EMBO J 8:1497–505 [Google Scholar]
  29. Edgar B, O'Farrell P. 1990. The three postblastoderm cell cycles of Drosophila embryogenesis are regulated in G2 by string. Cell 62:469–80 [Google Scholar]
  30. Fehon RG, Kooh PJ, Rebay I, Regan CL, Xu T. et al. 1990. Molecular interactions between the protein products of the neurogenic loci Notch and Delta, two EGF-homologous genes in Drosophila. Cell 61:523–34 [Google Scholar]
  31. Ferguson EL, Anderson KV. 1992. Decapentaplegic acts as a morphogen to organize dorsal-ventral pattern in the Drosophila embryo. Cell 71:451–61 [Google Scholar]
  32. Fjose A, McGinnis W, Gehring WJ. 1985. Isolation of a homoeo box-containing gene from the engrailed region of Drosophila and the spatial distribution of its transcripts. Nature 313:284–89 [Google Scholar]
  33. François V, Solloway M, O'Neill JW, Emery J, Bier E. 1994. Dorsalventral patterning of the Drosophila embryo depends on a putative negative growth factor encoded by the short gastrulation gene. Genes Dev 8:2602–16 [Google Scholar]
  34. Frank LH, Rushlow C. 1996. A group of genes required for maintenance of the amnioserosa tissue in Drosophila. Development 122:1343–52 [Google Scholar]
  35. Frasch M, Levine M. 1987. Complementary patterns of even-skipped and fushi tarazu expression involve their differential regulation by a common set of segmentation genes in Drosophila. . Genes Dev 1:981–95 [Google Scholar]
  36. Garber RL, Kuroiwa A, Gehring WJ. 1983. Genomic and cDNA clones of the homeotic locus Antennapedia in Drosophila. EMBO J. 2:2027–36 [Google Scholar]
  37. Gehring WJ, Nöthiger R. 1973. The imaginal discs of Drosophila. Insects II SJ Counce, CH Waddington 211–90 New York: Academic Press [Google Scholar]
  38. Gergen JP, Butler B. 1988. Isolation of the Drosophila segmentation gene runt and analysis of its expression during embryogenesis. Genes Dev 2:1179–93 [Google Scholar]
  39. Gierer A, Meinhardt H. 1972. A theory of biological pattern formation. Kybernetik 12:30–39 [Google Scholar]
  40. Gilbert LI. 2004. Halloween genes encode P450 enzymes that mediate steroid hormone biosynthesis in Drosophila melanogaster. Mol. Cell. Endocrinol. 215:1–10 [Google Scholar]
  41. Gloor H. 1950. Schädigungsmuster eines Letalfaktors (Kr) von Drosophila melanogaster. Arch. Julius Klaus Stift. 25:38–44 [Google Scholar]
  42. Graham A, Papalopulu N, Krumlauf R. 1989. The murine and Drosophila homeobox gene complexes have common features of organisation and expression. Cell 57:367–78 [Google Scholar]
  43. Grossniklaus U, Pearson RK, Gehring WJ. 1992. The Drosophila sloppy paired locus encodes two proteins involved in segmentation that show homology to mammalian transcription factors. Genes Dev 6:1030–51 [Google Scholar]
  44. Hadorn E. 1955. Letalfaktoren und ihre Bedeutung für Erbpathologie und Genphysiologie der Entwicklung Stuttgart, Ger: Thieme [Google Scholar]
  45. Hadorn E. 1963. Differenzierungsleistungen wiederholt fragmentierter Teilstücke männlicher Genitalscheiben von Drosophila melanogaster nach Kultur in vivo. Dev. Biol. 6:617–29 [Google Scholar]
  46. Hafen E, Kuroiwa A, Gehring WJ. 1984. Spatial distribution of transcripts from the segmentation gene fushi tarazu during Drosophila embryonic development. Cell 37:3833–41 [Google Scholar]
  47. Harden N. 2002. Signaling pathways directing the movement and fusion of epithelial sheets: lessons from Drosophila. Differentiation 70:181–203 [Google Scholar]
  48. Hartwell LH, Culotti J, Reid B. 1970. Genetic control of the cell-division cycle in yeast. I. Detection of mutants. PNAS 66:352–59 [Google Scholar]
  49. Hiromi Y, Gehring WJ. 1987. Regulation and function of the Drosophila segmentation gene fushi tarazu. Cell 50:963–74 [Google Scholar]
  50. Hochman B. 1971. Analysis of chromosome 4 in Drosophila melanogaster. II. Ethyl methanesulfonate induced lethals. Genetics 67:235–52 [Google Scholar]
  51. Holley S, Jülich D, Rauch G-J, Geisler R, Nüsslein-Volhard C. 2002. her1 and the notch pathway function within the oscillator mechanism that regulates zebrafish somitogenesis. Development 129:1175–83 [Google Scholar]
  52. Hooper JE, Scott MP. 1989. The Drosophila patched gene encodes a putative membrane protein required for segmental patterning. Cell 59:751–65 [Google Scholar]
  53. Howard KR, Ingham P. 1986. Regulatory interactions between the segmentation genes fushi tarazu.hairy, and engrailed in the Drosophila blastoderm. Cell 44:949–57 [Google Scholar]
  54. Howard KR, Struhl G. 1990. Decoding positional information: regulation of the pair rule gene hairy. Development 110:1223–31 [Google Scholar]
  55. Illmensee K, Mahowald AP. 1974. Transplantation of posterior polar plasm in Drosophila. Induction of germ cells at the anterior pole of the egg. PNAS 71:1016–20 [Google Scholar]
  56. Ingham PW, Baker NE, Martinez-Ariaz A. 1988. Regulation of segment polarity genes in the Drosophila blastoderm by fushi tarazu and even-skipped. . Nature 331:73–75 [Google Scholar]
  57. Ingham PW, Howard KR, Ish-Horowicz D. 1985. Transcription pattern of the Drosophila segmentation gene hairy. Nature 318:5439–45 [Google Scholar]
  58. Ingham PW, McMahon AP. 2001. Hedgehog signaling in animal development: paradigms and principles. Genes Dev 15:3059–87 [Google Scholar]
  59. Jäckle H, Tautz D, Schuh R, Seifert E, Lehmann R. 1986. Cross-regulatory interactions among the gap genes of Drosophila. Nature 324:668–70 [Google Scholar]
  60. Jacob F, Monod J. 1961. Genetic regulatory mechanisms in the synthesis of proteins. J. Mol. Biol. 3:318–56 [Google Scholar]
  61. Jazwinska A, Kirov N, Wieschaus E, Roth S, Rushlow C. 1999. The Drosophila gene brinker reveals a novel mechanism of Dpp target gene regulation. Cell 96:563–73 [Google Scholar]
  62. Judd BH, Shen MW, Kaufman TC. 1972. The anatomy and function of a segment of the X chromosome of Drosophila melanogaster. Genetics 71:139–56 [Google Scholar]
  63. Jürgens G. 1985. A group of genes controlling the spatial expression of the bithorax complex in Drosophila. Nature 316:153–55 [Google Scholar]
  64. Jürgens G, Kluding H, Nüsslein-Volhard C, Wieschaus E. 1984. Mutations affecting the pattern of the larval cuticle in Drosophila melanogaster. II. Zygotic loci on the third chromosome. Roux's Arch. Dev. Biol. 193:283–95 [Google Scholar]
  65. Kaufmann T, Lewis RA, Wakimoto B. 1980. Genetic analysis of the Antennapedia gene complex in Drosophila. Genetics 91:115–33 [Google Scholar]
  66. Kiehart DP, Franke JD, Chee MK, Montague RA, Chen TL. et al. 2004. Drosophila crinkled, mutations of which disrupt morphogenesis and cause lethality, encodes fly myosin VIIA. Genetics 168:31337–52 [Google Scholar]
  67. Knipple DC, Seifert E, Rosenberg UB, Preiss A, Jäckle H. 1985. Spatial and temporal patterns of Krüppel gene expression in early Drosophila embryos. Nature 317:603240–44 [Google Scholar]
  68. Kornberg T, Siden L, O'Farrell P, Simon M. 1985. The engrailed locus of Drosophila: In situ localisation of transcripts reveals compartment specific expression. Cell 40:45–53 [Google Scholar]
  69. Kühn A. 1965. Vorlesungen über Entwicklungsphysiologie Berlin/Heidelberg/New York: Springer, 2nd ed.. [Google Scholar]
  70. Kuner JM, Nakanishi M, Ali Z, Drees B, Gustavson E. et al. 1985. Molecular cloning of engrailed: a gene involved in the development of pattern in Drosophila melanogaster. Cell 42:309–16 [Google Scholar]
  71. Laughon A, Scott MP. 1984. Sequences of a Drosophila segmentation gene: protein structure homology with DNA binding proteins. Nature 310:25–31 [Google Scholar]
  72. Lawrence PA. 1992. The Making of a Fly: The Genetics of Animal Design Oxford, UK: Blackwell Sci. [Google Scholar]
  73. Lawrence PA, Crick F, Munro M. 1972. A gradient of positional information in an insect, Rhodnius. J. Cell Sci. 11:815–85 [Google Scholar]
  74. Lawrence PA, Johnston P, Struhl G. 1983. Different requirements for homeotic genes in the soma and germ line of Drosophila. Cell 35:127–34 [Google Scholar]
  75. Lefevre G, Watkins W. 1986. The question of the total gene number in Drosophila melanogaster. Genetics 113:4869–95 [Google Scholar]
  76. Lehmann R, Jimenez F, Dietrich U, Campos-Ortega JA. 1983. On the phenotype and development of mutants of early neurogenesis in Drosophila melanogaster. Roux's Arch. Dev. Biol. 192:262–74 [Google Scholar]
  77. Lehmann R, Nüsslein-Volhard C. 1987. hunchback, a gene required for segmentation of an anterior and posterior region of the Drosophila embryo. Dev. Biol 119:402–17 [Google Scholar]
  78. Lehner CF. 1992. The pebble gene is required for cytokinesis in Drosophila. J. Cell Sci. 103:1021–30 [Google Scholar]
  79. Leptin M. 1991. twist and snail as positive and negative regulators during Drosophila mesoderm development. Genes Dev 5:1568–76 [Google Scholar]
  80. Leptin M. 1999. Gastrulation in Drosophila: the logic and the cellular mechanisms. EMBO J 18:3187–92 [Google Scholar]
  81. Leptin M, Grunewald B. 1990. Cell shape changes in Drosophila. Development 110:73–84 [Google Scholar]
  82. Lewis EB. 1978. A gene complex controlling segmentation in Drosophila. Nature 276:565–70 [Google Scholar]
  83. Lewis EB, Bacher F. 1968. Method of feeding ethyl methane sulfonate (EMS) to Drosophila males. Drosophila Inf. Serv. 43:193 [Google Scholar]
  84. Lindsley DL, Grell EL. 1968. Genetic Variations of Drosophila melanogaster Washington, DC: Carnegie Inst. Wash. [Google Scholar]
  85. Lindsley DL, Sandler L, Baker BS, Carpenter AT, Denell RE. et al. 1972. Segmental aneuploidy and the genetic gross structure of the Drosophila genome. Genetics 71:157–84 [Google Scholar]
  86. Lohs-Schardin M, Cremer C, Nüsslein-Volhard C. 1979. A fate map for the larval epidermis of Drosophila melanogaster: localized cuticle defects following irradiation of the blastoderm with an ultraviolet laser microbeam. Dev. Biol. 73:2239–55 [Google Scholar]
  87. Mason ED, Konrad KD, Webb CD, Marsh JL. 1994. Dorsal midline fate in Drosophila embryos requires twisted gastrulation, a gene encoding a secreted protein related to human connective tissue growth factor. Genes Dev 8:1489–1501 [Google Scholar]
  88. Mayer U, Nüsslein-Volhard C. 1988. A group of genes required for pattern formation in the ventral ectoderm of the Drosophila embryo. Genes Dev 2:1496–511 [Google Scholar]
  89. McDonald P, Ingham P, Struhl G. 1986. Isolation, structure and expression of even-skipped: a second pair rule gene of Drosophila containing a homeobox. Cell 47:721–34 [Google Scholar]
  90. McGinnis W, Levine MS, Hafen E, Kuroiwa A, Gehring WJ. 1984. A conserved DNA sequence in homoeotic genes of the DrosophilaAntennapedia and bithorax complexes. Nature 308:428–33 [Google Scholar]
  91. Mendel G. 1866. Versuche über Pflanzenhybriden. Verhandlungen des naturforschenden Vereins IV (Brünn) Suppl:3–47 [Google Scholar]
  92. Merrill PT, Sweeton D, Wieschaus E. 1988. Requirements for autosomal gene activity during precellular stages of Drosophila melanogaster. Development 104:495–509 [Google Scholar]
  93. Mohler J, Wieschaus E. 1986. Dominant maternal-effect mutations of Drosophila melanogaster causing the production of double-abdomen embryos. Genetics 112:803–22 [Google Scholar]
  94. Morgan TH. 1933. The relation of genetics to physiology and medicine Nobel Lect. http://www.nobelprize.org/nobel_prizes/medicine/laureates/1933/morgan-lecture.html [Google Scholar]
  95. Moussian B, Schwarz H, Bartoszewski S, Nüsslein-Volhard C. 2005. Involvement of chitin in exoskeleton morphogenesis in Drosophila melanogaster. J. Morphol. 264:117–30 [Google Scholar]
  96. Moussian B, Tang E, Tonning A, Helms S, Schwarz H. et al. 2006. Drosophila Knickkopf and Retroactive are needed for epithelial tube growth and cuticle differentiation through their specific requirement for chitin filament organization. Development 133:163–71 [Google Scholar]
  97. Nakano Y, Guerrero I, Hidalgo A, Taylor A, Whittle JR, Ingham PW. 1989. A protein with several possible membrane-spanning domains encoded by the Drosophila segment polarity gene patched. Nature 341:508–13 [Google Scholar]
  98. Nauber U, Pankratz MJ, Kienlin A, Seifert E, Klemm U, Jäckle H. 1988. Abdominal segmentation of the Drosophila embryo requires a hormone receptor-like protein encoded by the gap gene knirps. Nature 336:489–92 [Google Scholar]
  99. Norum M, Tang E, Chavoshi T, Schwarz H, Linke D. et al. 2010. Trafficking through COPII stabilises cell polarity and drives secretion during Drosophila epidermal differentiation. PLOS ONE 5:5e10802 [Google Scholar]
  100. Nurse P. 1975. Genetic control of cell size at cell division in yeast. Nature 256:547–51 [Google Scholar]
  101. Nusse R, Varmus H. 1992. Wnt-genes. Cell 69:11073–87 [Google Scholar]
  102. Nüsslein-Volhard C. 1977. Genetic analysis of pattern formation in the embryo of Drosophila melanogaster. Characterization of the maternal effect mutant bicaudal. Roux's Arch. Dev. Biol. 183:3249–68 [Google Scholar]
  103. Nüsslein-Volhard C. 1979. Maternal effect mutations that affect the spatial coordinates of the embryo of Drosophila melanogaster. Determinants of Spatial Organisation I Konigsberg, S Subtelney 185–211 New York: Academic Press [Google Scholar]
  104. Nüsslein-Volhard C. 1991. Determination of the embryonic axes in Drosophila. DevSuppl 1:1–10 [Google Scholar]
  105. Nüsslein-Volhard C. 2012. The zebrafish issue of Development.. Development 139:4099–103 [Google Scholar]
  106. Nüsslein-Volhard C, Frohnhöfer HG, Lehmann R. 1987. Determination of anteroposterior polarity in Drosophila. Science 238:1675–81 [Google Scholar]
  107. Nüsslein-Volhard C, Kluding H, Jürgens G. 1985. Genes affecting the segmental subdivision of the Drosophila embryo. Cold Spring Harb. Symp. Quant. Biol. 50:145–54 [Google Scholar]
  108. Nüsslein-Volhard C, Lohs-Schardin M, Sander K, Cremer C. 1980. A dorso-ventral shift of embryonic primordia in a new maternal-effect mutant of Drosophila. Nature 283:474–76 [Google Scholar]
  109. Nüsslein-Volhard C, Wieschaus E. 1980. Mutations affecting segment number and polarity in Drosophila. Nature 287:795–801 [Google Scholar]
  110. Nüsslein-Volhard C, Wieschaus E, Kluding H. 1984. Mutations affecting the pattern of the larval cuticle in Drosophila melanogaster. I. Zygotic loci on the second chromosome. Roux's Arch. Dev. Biol. 193:267–82 [Google Scholar]
  111. O'Connor MB, Umulis D, Othmer HG, Blair SS. 2006. Shaping BMP morphogen gradients in the Drosophila embryo and pupal wing. Development 133:183–93 [Google Scholar]
  112. Pankratz MJ, Jäckle H. 1993. Blastoderm segmentation. The Development of Drosophila melanogaster M Bate, A Martinez Arias 467–516 Cold Spring Harbor, NY: Cold Spring Harb. Lab. Press [Google Scholar]
  113. Peifer M, Wieschaus E. 1990. The segment polarity gene armadillo encodes a functionally modular protein that is the Drosophila homolog of human plakoglobin. Cell 63:1167–78 [Google Scholar]
  114. Perrimon N, Engstrom L, Mahowald AP. 1989. Zygotic lethals with specific maternal effect phenotypes in Drosophila melanogaster. I. Loci on the X chromosome. Genetics 121:2333–52 [Google Scholar]
  115. Poole SJ, Kauvar LM, Drees B, Kornberg T. 1985. The engrailed locus of Drosophila: structural analysis of an embryonic transcript. Cell 40:37–43 [Google Scholar]
  116. Poulson DF. 1937. Chromosomal deficiencies and the embryonic development of Drosophila melanogaster. PNAS 23:3133–37 [Google Scholar]
  117. Poulson DF. 1940. The effects of certain X-chromosome deficiencies on the embryonic development of Drosophila melanogaster. J. Exp. Zool. 83:271–325 [Google Scholar]
  118. Poulson DF. 1950. Histogenesis, organogenesis and differentiation in the embryo of Drosophilamelanogaster Meigen. Biology of Drosophila M Demerc 168–272 New York: Hafner [Google Scholar]
  119. Preiss A, Rosenberg UB, Kienlin A, Seifert E, Jaeckle H. 1985. Molecular genetics of Krüppel, a gene required for segmentation of the Drosophila embryo. Nature 313:27–32 [Google Scholar]
  120. Price JV, Clifford RJ, Schüpbach T. 1989. The maternal ventralizing locus torpedo is allelic to faint little ball, an embryonic lethal, and encodes the Drosophila EGF receptor homolog. Cell 56:1085–92 [Google Scholar]
  121. Raftery LA, Twombly V, Wharton KA, Gelbart WM. 1995. Genetic screens to identify elements of the decapentaplegic signaling pathway in Drosophila. Genetics 139:1241–54 [Google Scholar]
  122. Ramain P, Heitzler P, Haenlin M, Simpson P. 1993. pannier, a negative regulator of achaete and scute in Drosophila, encodes a zinc finger protein with homology to the vertebrate transcription factor GATA-1. Development 119:1277–91 [Google Scholar]
  123. Raz E, Shilo BZ. 1993. Establishment of ventral cell fates in the Drosophila embryonic ectoderm requires DER, the EGF receptor homolog. Genes Dev 7:1937–48 [Google Scholar]
  124. Riggleman B, Schedl P, Wieschaus E. 1990. Spatial expression of the Drosophila segment polarity gene armadillo is posttranscriptionally regulated by wingless. . Cell 63:549–60 [Google Scholar]
  125. Rosenberg UC, Schröder C, Preiss A, Kienlin A, S Coté. et al. 1986. Structural homology of the product of the Drosophila Krüppel gene with Xenopus transcription factor IIIA. Nature 319:336–39 [Google Scholar]
  126. Ruberte E, Marty T, Nellen D, Affolter M, Basler K. 1995. An absolute requirement for both the type II and type I receptors, Punt and Thick veins, for Dpp signaling in vivo. Cell 80:889–97 [Google Scholar]
  127. Rubin GM, Spradling AC. 1982. Genetic transformation of Drosophila with transposable element vectors. Science 218:348–53 [Google Scholar]
  128. Rutledge BJ, Zhang K, Bier E, Jan YN, Perrimon N. 1992. The Drosophila spitz gene encodes a putative EGF-like growth factor involved in dorsal-ventral axis formation and neurogenesis. Genes Dev 6:1503–17 [Google Scholar]
  129. Sander K. 1976. Specification of the basic body pattern in insects. Adv. Insect Phys. 12:129–238 [Google Scholar]
  130. Sanson B, Alexandre C, Facetti N, Vincent JP. 1999. Engrailed and hedgehog make the range of wingless asymmetric in Drosophila embryos. Cell 98:207–16 [Google Scholar]
  131. Schejter ED, Shilo BZ. 1989. The Drosophila EGF receptor homolog (DER) gene is allelic to faint little ball, a locus essential for embryonic development. Cell 56:1093–104 [Google Scholar]
  132. Schroeder MD, Greer C, Gaul U. 2011. How to make stripes: deciphering the transition from non-periodic to periodic patterns in Drosophila segmentation. Development 138:143067–78 [Google Scholar]
  133. Schubiger G, Hadorn E. 1968. Auto- and allotypic differentiation in vivo cultivated foreleg blastemas of Drosophila melanogaster. Dev. Biol. 17:584–602 [Google Scholar]
  134. Schüpbach T, Wieschaus E. 1986. Germline autonomy of maternal-effect mutations altering the embryonic body pattern of Drosophila. Dev. Biol. 113:443–48 [Google Scholar]
  135. Schüpbach T, Wieschaus E. 1989. Maternal-effect mutations altering the anterior-posterior pattern of the Drosophila embryo. Roux's Arch. Dev. Biol. 195:302–17 [Google Scholar]
  136. Scott MP, Weiner AJ. 1984. Structural relationships among genes that control development: sequence homology between the Antennapedia. Ultrabithorax, and fushi tarazu loci of Drosophila. . PNAS 81:4115–19 [Google Scholar]
  137. Scott MP, Weiner AJ, Hazelrigg T, Polisky BA, Pirrotta V. et al. 1983. The molecular organization of the Antennapedia locus of Drosophila. Cell 35:763–76 [Google Scholar]
  138. Seeger M, Tear G, Ferres-Marco D, Goodman CS. 1993. Mutations affecting growth cone guidance in Drosophila: genes necessary for guidance toward or away from the midline. Neuron 10:3409–26 [Google Scholar]
  139. Shimell MJ, Ferguson EL, Childs SR, O'Connor MB. 1991. The Drosophila dorsal-ventral patterning gene tolloid is related to human bone morphogenetic protein 1. Cell 67:469–81 [Google Scholar]
  140. Sigrist S, Jacobs H, Stratmann R, Lehner CF. 1995. Exit from mitosis is regulated by Drosophila fizzy and the sequential destruction of cyclins A, B and B3. EMBO J 14:4827–38 [Google Scholar]
  141. Simpson P. 1983. Maternal and zygotic gene interactions during formation of the dorso-ventral pattern in Drosophila embryos. Genetics 105:615–32 [Google Scholar]
  142. Spemann H. 1935. The organizer-effect in embryonic development Nobel Lect. http://www.nobelprize.org/nobel_prizes/medicine/laureates/1935/spemann-lecture.html [Google Scholar]
  143. Spencer FA, Hoffmann FM, Gelbart WM. 1982. Decapentaplegic: a gene complex affecting morphogenesis in Drosophila melanogaster. Cell 28:3451–61 [Google Scholar]
  144. St. Johnston D, Nüsslein-Volhard C. 1992. The origin of pattern and polarity in the Drosophila embryo. Cell 68:201–19 [Google Scholar]
  145. Stanojevic D, Small S, Levine M. 1991. Regulation of a segmentation stripe by overlapping activators and repressors. Science 253:1385–87 [Google Scholar]
  146. Suzuki DT. 1970. Temperature-sensitive mutations in Drosophila melanogaster. Science 170:3959695–706 [Google Scholar]
  147. Szabad J, Schüpbach T, Wieschaus E. 1979. Cell lineage and development in the larval epidermis of Drosophila melanogaster. Dev. Biol. 73:256–71 [Google Scholar]
  148. Tabata T, Eaton S, Kornberg T. 1992. The Drosophila hedgehog gene is expressed specifically in posterior compartment cells and is a target of engrailed regulation. Genes Dev 6:2635–45 [Google Scholar]
  149. Tautz D, Lehmann R, Schnürch H, Schuh R, Seifert E. et al. 1987. Finger protein of novel structure encoded by hunchback, a second member of the gap class of Drosophila segmentation genes. Nature 327:383–89 [Google Scholar]
  150. Tepass U, Gruszynski-DeFeo E, Haag TA, Omatyar L, Török T, Hartenstein V. 1996. Shotgun encodes Drosophila E-cadherin and is preferentially required during cell rearrangement in the neurectoderm and other morphogenetically active epithelia. Genes Dev 10:672–85 [Google Scholar]
  151. Tepass U, Teres C, Knust E. 1990. crumbs encodes an EGF-like protein expressed on the apical membranes of Drosophila epithelial cells and required for the organization of epithelia. Cell 61:787–99 [Google Scholar]
  152. Thisse B, Stoetzel C, Gorostiza-Thisse C, Perrin-Schmitt F. 1988. Sequence of the twist gene and nuclear localization of its protein in endomesodermal cells of early Drosophila embryos. EMBO J 7:2175–83 [Google Scholar]
  153. Van Eeden FJM, Granato M, Schach U, Brand M, Furutani-Seiki M. et al. 1996. Mutations affecting somite formation and patterning in the zebrafish. Danio rerio. Development 123:153–64 [Google Scholar]
  154. Watson JD. 1965. Molecular Biology of the Gene New York: Benjamin [Google Scholar]
  155. Weigel D, Jürgens G, Küttner F, Seifert E, Jäckle H. 1989. The homeotic gene forkhead encodes a nuclear protein and is expressed in the terminal regions of the Drosophila embryo. Cell 57:645–58 [Google Scholar]
  156. Wieschaus E, Gehring W. 1976. Clonal analysis of primordial disc cells in the early embryo of Drosophila melanogaster. Dev. Biol. 50:2249–63 [Google Scholar]
  157. Wieschaus E, Noell E. 1986. Specificity of embryonic lethal mutations in Drosophila analyzed in germ line clones. Roux's Arch. Dev. Biol. 195:63–73 [Google Scholar]
  158. Wieschaus E, Nüsslein-Volhard C. 1986. Looking at embryos. Drosophila: A Practical Approach DB Roberts 199–226 Oxford, UK: IRL Press [Google Scholar]
  159. Wieschaus E, Nüsslein-Volhard C, Jürgens G. 1984a. Mutations affecting the pattern of the larval cuticle in Drosophila melanogaster. III. Zygotic loci on the X-chromosome and the fourth chromosome. Roux's Arch. Dev. Biol. 193:296–307 [Google Scholar]
  160. Wieschaus E, Nüsslein-Volhard C, Kluding H. 1984b. Krüppel, a gene whose activity is required early in the zygotic genome for normal embryonic segmentation. Dev. Biol. 104:172–86 [Google Scholar]
  161. Wigglesworth VB. 1972. The Principles of Insect Physiology London: Chapman and Hall, 7th ed.. [Google Scholar]
  162. Wilson EB. 1925. The Cell in Development and Heredity New York: Macmillan [Google Scholar]
  163. Wodarz A, Ramrath A, Kuchinke U, Knust E. 1999. Bazooka provides an apical cue for Inscuteable localization in Drosophila neuroblasts. Nature 402:544–47 [Google Scholar]
  164. Wolpert L. 1969. Positional information and the spatial pattern of cellular differentiation. J. Theoret. Biol. 25:1–47 [Google Scholar]
  165. Wright TRF. 1970. The genetics of embryogenesis in Drosophila. Adv. Genet. 1970:261–395 [Google Scholar]
  166. Young PE, Richman AM, Ketchum AS, Kiehart DP. 1993. Morphogenesis in Drosophila requires nonmuscle myosin heavy chain function. Genes Dev 7:29–41 [Google Scholar]
/content/journals/10.1146/annurev-cellbio-113015-023138
Loading
/content/journals/10.1146/annurev-cellbio-113015-023138
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error