1932

Abstract

Land plants can grow to tremendous body sizes, yet even the most complex architectures are the result of iterations of the same developmental processes: organ initiation, growth, and pattern formation. A central question in plant biology is how these processes are regulated and coordinated to allow for the formation of ordered, 3D structures. All these elementary processes first occur in early embryogenesis, during which, from a fertilized egg cell, precursors for all major tissues and stem cells are initiated, followed by tissue growth and patterning. Here we discuss recent progress in our understanding of this phase of plant life. We consider the cellular basis for multicellular development in 3D and focus on the genetic regulatory mechanisms that direct specific steps during early embryogenesis.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cellbio-111315-124929
2016-10-06
2024-09-12
Loading full text...

Full text loading...

/deliver/fulltext/cellbio/32/1/annurev-cellbio-111315-124929.html?itemId=/content/journals/10.1146/annurev-cellbio-111315-124929&mimeType=html&fmt=ahah

Literature Cited

  1. Abe M, Katsumata H, Komeda Y, Takahashi T. 2003. Regulation of shoot epidermal cell differentiation by a pair of homeodomain proteins in Arabidopsis. Development 130:635–43 [Google Scholar]
  2. Abe M, Takahashi T, Komeda Y. 2001. Identification of a cis-regulatory element for L1 layer–specific gene expression, which is targeted by an L1-specific homeodomain protein. Plant J. 26:487–94 [Google Scholar]
  3. Aichinger E, Kornet N, Friedrich T, Laux T. 2012. Plant stem cell niches. Annu. Rev. Plant Biol. 63:615–36 [Google Scholar]
  4. Aida M, Beis D, Heidstra R, Willemsen V, Blilou I. et al. 2004. The PLETHORA genes mediate patterning of the Arabidopsis root stem cell niche. Cell 119:109–20 [Google Scholar]
  5. Ambrose JC, Shoji T, Kotzer AM, Pighin JA, Wasteneys GO. 2007. The Arabidopsis CLASP gene encodes a microtubule-associated protein involved in cell expansion and division. Plant Cell 19:2763–75 [Google Scholar]
  6. Autran D, Baroux C, Raissig MT, Lenormand T, Wittig M. et al. 2011. Maternal epigenetic pathways control parental contributions to Arabidopsis early embryogenesis. Cell 145:707–19 [Google Scholar]
  7. Azimzadeh J, Nacry P, Christodoulidou A, Drevensek S, Camilleri C. et al. 2008. Arabidopsis TONNEAU1 proteins are essential for preprophase band formation and interact with centrin. Plant Cell 20:2146–59 [Google Scholar]
  8. Babu Y, Musielak T, Henschen A, Bayer M. 2013. Suspensor length determines developmental progression of the embryo in Arabidopsis. Plant Physiol. 162:1448–58 [Google Scholar]
  9. Baroux C, Blanvillain R, Gallois P. 2001. Paternally inherited transgenes are down-regulated but retain low activity during early embryogenesis in Arabidopsis. FEBS Lett. 509:11–16 [Google Scholar]
  10. Barton MK, Poethig RS. 1993. Formation of the shoot apical meristem in Arabidopsis thaliana: an analysis of development in the wild type and in the shoot meristemless mutant. Development 119:823–31 [Google Scholar]
  11. Bayer M, Nawy T, Giglione C, Galli M, Meinnel T, Lukowitz W. 2009. Paternal control of embryonic patterning in Arabidopsis thaliana. Science 323:1485–88 [Google Scholar]
  12. Besson S, Dumais J. 2011. Universal rule for the symmetric division of plant cells. PNAS 108:6294–99 [Google Scholar]
  13. Besson S, Dumais J. 2014. Stochasticity in the symmetric division of plant cells: when the exceptions are the rule. Front. Plant Sci. 5:538 [Google Scholar]
  14. Bishopp A, Help H, El-Showk S, Weijers D, Scheres B. et al. 2011. A mutually inhibitory interaction between auxin and cytokinin specifies vascular pattern in roots. Curr. Biol. 21:917–26 [Google Scholar]
  15. Bleckmann A, Alter S, Dresselhaus T. 2014. The beginning of a seed: regulatory mechanisms of double fertilization. Front. Plant Sci. 5:452 [Google Scholar]
  16. Boer DR, Freire-Rios A, van den Berg WAM, Saaki T, Manfield IW. et al. 2014. Structural basis for DNA binding specificity by the auxin-dependent ARF transcription factors. Cell 156:577–89 [Google Scholar]
  17. Brandt R, Salla-Martret M, Bou-Torrent J, Musielak T, Stahl M. et al. 2012. Genome-wide binding-site analysis of REVOLUTA reveals a link between leaf patterning and light-mediated growth responses. Plant J. 72:31–42 [Google Scholar]
  18. Breuninger H, Rikirsch E, Hermann M, Ueda M, Laux T. 2008. Differential expression of WOX genes mediates apical-basal axis formation in the Arabidopsis embryo. Dev. Cell 14:867–76 [Google Scholar]
  19. Ceccato L, Masiero S, Sinha Roy D, Bencivenga S, Roig-Villanova I. et al. 2013. Maternal control of PIN1 is required for female gametophyte development in Arabidopsis. PLOS ONE 8:e66148 [Google Scholar]
  20. Chandler JW. 2016. Auxin response factors. Plant Cell Environ. 391014–28 [Google Scholar]
  21. Chandler JW, Werr W. 2015. Cytokinin-auxin crosstalk in cell type specification. Trends Plant Sci. 20:291–300 [Google Scholar]
  22. Chen M, Liu H, Kong J, Yang Y, Zhang N. et al. 2011. RopGEF7 regulates PLETHORA-dependent maintenance of the root stem cell niche in Arabidopsis. Plant Cell 23:2880–94 [Google Scholar]
  23. Clowes FAL. 1956. Nucleic acids in root apical meristems of Zea. New Phytol. 55:29–34 [Google Scholar]
  24. Costa LM, Marshall E, Tesfaye M, Silverstein KAT, Mori M. et al. 2014. Central cell-derived peptides regulate early embryo patterning in flowering plants. Science 344:168–72 [Google Scholar]
  25. Crawford BCW, Sewell J, Golembeski G, Roshan C, Long JA, Yanofsky MF. 2015. Genetic control of distal stem cell fate within root and embryonic meristems. Science 347:655–59 [Google Scholar]
  26. De Rybel B, Adibi M, Breda AS, Wendrich JR, Smit ME. et al. 2014. Plant development. Integration of growth and patterning during vascular tissue formation in Arabidopsis. Science 345:1255215 [Google Scholar]
  27. De Rybel B, Mähönen AP, Helariutta Y, Weijers D. 2016. Plant vascular development: from early specification to differentiation. Nat. Rev. Mol. Cell Biol. 17:30–40 [Google Scholar]
  28. De Rybel B, Möller B, Yoshida S, Grabowicz I, Barbier de Reuille P. et al. 2013. A bHLH complex controls embryonic vascular tissue establishment and indeterminate growth in Arabidopsis. Dev. Cell 24:426–37 [Google Scholar]
  29. de Wildeman E. 1893. Études sur l'attache des cloisons cellulaires. Mém. Couronn. Mém. Savants Étrang. Acad. R. Belg. 53:1–84 [Google Scholar]
  30. Del Toro–De León G, Garcia-Aguilar M, Gillmor CS. 2014. Non-equivalent contributions of maternal and paternal genomes to early plant embryogenesis. Nature 514:624–27 [Google Scholar]
  31. Del Toro–De León G, Lepe-Soltero D, Gillmor CS. 2016. Zygotic genome activation in isogenic and hybrid plant embryos. Curr. Opin. Plant Biol. 29:148–53 [Google Scholar]
  32. Ding Z, Friml J. 2010. Auxin regulates distal stem cell differentiation in Arabidopsis roots. PNAS 107:12046–51 [Google Scholar]
  33. Drevensek S, Goussot M, Duroc Y, Christodoulidou A, Steyaert S. et al. 2012. The Arabidopsis TRM1-TON1 interaction reveals a recruitment network common to plant cortical microtubule arrays and eukaryotic centrosomes. Plant Cell 24:178–91 [Google Scholar]
  34. Drews GN, Koltunow AMG. 2011. The female gametophyte. Arabidopsis Book 9:e0155 [Google Scholar]
  35. Drisch RC, Stahl Y. 2015. Function and regulation of transcription factors involved in root apical meristem and stem cell maintenance. Front. Plant Sci. 6:505 [Google Scholar]
  36. Dumas C, Rogowsky P. 2008. Fertilization and early seed formation. C. R. Biol. 331:715–25 [Google Scholar]
  37. el-Showk S, Help-Rinta-Rahko H, Blomster T, Siligato R, Marée AF. et al. 2015. Parsimonious model of vascular patterning links transverse hormone fluxes to lateral root initiation: Auxin leads the way, while cytokinin levels out. PLOS Comput. Biol. 11:e1004450 [Google Scholar]
  38. Emery JF, Floyd SK, Alvarez J, Eshed Y, Hawker NP. et al. 2003. Radial patterning of Arabidopsis shoots by class III HD-ZIP and KANADI genes. Curr. Biol. 13:1768–74 [Google Scholar]
  39. Errera L. 1886. Sur une condition fondamentale d'équilibre des cellules vivantes. C. R. Hebd. Séances Acad. Sci. 103:822–24 [Google Scholar]
  40. Finet C, Jaillais Y. 2012. Auxology: when auxin meets plant evo-devo. Dev. Biol. 369:19–31 [Google Scholar]
  41. Fiume E, Fletcher JC. 2012. Regulation of Arabidopsis embryo and endosperm development by the polypeptide signaling molecule CLE8. Plant Cell 24:1000–12 [Google Scholar]
  42. Fletcher JC, Brand U, Running MP, Simon R, Meyerowitz EM. 1999. Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems. Science 283:1911–14 [Google Scholar]
  43. Flores-Sandoval E, Eklund DM, Bowman JL. 2015. A simple auxin transcriptional response system regulates multiple morphogenetic processes in the liverwort Marchantia polymorpha. PLOS Genet. 11:e1005207 [Google Scholar]
  44. Floyd SK, Bowman JL. 2004. Gene regulation: ancient microRNA target sequences in plants. Nature 428:485–86 [Google Scholar]
  45. Forzani C, Aichinger E, Sornay E, Willemsen V, Laux T. et al. 2014. WOX5 suppresses CYCLIN D activity to establish quiescence at the center of the root stem cell niche. Curr. Biol. 24:1939–44 [Google Scholar]
  46. Friml J, Vieten A, Sauer M, Weijers D, Schwarz H. et al. 2003. Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature 426:147–53 [Google Scholar]
  47. Fu Y, Gu Y, Zheng Z, Wasteneys G, Yang Z. 2005. Arabidopsis interdigitating cell growth requires two antagonistic pathways with opposing action on cell morphogenesis. Cell 120:687–700 [Google Scholar]
  48. Fu Y, Xu T, Zhu L, Wen M, Yang Z. 2009. A ROP GTPase signaling pathway controls cortical microtubule ordering and cell expansion in Arabidopsis. Curr. Biol. 19:1827–32 [Google Scholar]
  49. Fujie M, Kuroiwa H, Kawano S, Kuroiwa T. 1993. Studies on the behavior of organelles and their nucleoids in the root apical meristem of Arabidopsis thaliana (L.) Col. Planta 189:443–52 [Google Scholar]
  50. Fukaki H, Tameda S, Masuda H, Tasaka M. 2002. Lateral root formation is blocked by a gain-of-function mutation in the SOLITARY-ROOT/IAA14 gene of Arabidopsis. Plant J. 29:153–68 [Google Scholar]
  51. Galatis B, Apostolakos P. 2004. The role of the cytoskeleton in the morphogenesis and function of stomatal complexes. New Phytol. 161:613–39 [Google Scholar]
  52. Galinha C, Hofhuis H, Luijten M, Willemsen V, Blilou I. et al. 2007. PLETHORA proteins as dose-dependent master regulators of Arabidopsis root development. Nature 449:1053–57 [Google Scholar]
  53. Gallagher KL, Paquette AJ, Nakajima K, Benfey PN. 2004. Mechanisms regulating SHORT-ROOT intercellular movement. Curr. Biol. 14:1847–51 [Google Scholar]
  54. Gooh K, Ueda M, Aruga K, Park J, Arata H. et al. 2015. Live-cell imaging and optical manipulation of Arabidopsis early embryogenesis. Dev. Cell 34:242–51 [Google Scholar]
  55. Grienenberger E, Fletcher JC. 2015. Polypeptide signaling molecules in plant development. Curr. Opin. Plant Biol. 23:8–14 [Google Scholar]
  56. Gu X-L, Wang H, Huang H, Cui X-F. 2012. SPT6L encoding a putative WG/GW-repeat protein regulates apical-basal polarity of embryo in Arabidopsis. Mol. Plant 5:249–59 [Google Scholar]
  57. Haecker A, Groß-Hardt R, Geiges B, Sarkar A, Breuninger H. et al. 2004. Expression dynamics of WOX genes mark cell fate decisions during early embryonic patterning in Arabidopsis thaliana. Development 131:657–68 [Google Scholar]
  58. Hamann T, Mayer U, Jürgens G. 1999. The auxin-insensitive bodenlos mutation affects primary root formation and apical-basal patterning in the Arabidopsis embryo. Development 126:1387–95 [Google Scholar]
  59. Han M, Park Y, Kim I, Kim EH, Yu TK. et al. 2014. Structural basis for the auxin-induced transcriptional regulation by Aux/IAA17. PNAS 111:18613–18 [Google Scholar]
  60. Hanzawa Y, Takahashi T, Komeda Y. 1997. ACL5: an Arabidopsis gene required for internodal elongation after flowering. Plant J. 12:863–74 [Google Scholar]
  61. Hanzawa Y, Takahashi T, Michael AJ, Burtin D, Long D. et al. 2000. ACAULIS5, an Arabidopsis gene required for stem elongation, encodes a spermine synthase. EMBO J. 19:4248–56 [Google Scholar]
  62. Hardtke CS, Berleth T. 1998. The Arabidopsis gene MONOPTEROS encodes a transcription factor mediating embryo axis formation and vascular development. EMBO J. 17:1405–11 [Google Scholar]
  63. Hedman H, Zhu T, Arnold SV, Sohlberg JJ. 2013. Analysis of the WUSCHEL-RELATED HOMEOBOX gene family in the conifer Picea abies reveals extensive conservation as well as dynamic patterns. BMC Plant Biol. 13:1–10 [Google Scholar]
  64. Helariutta Y, Fukaki H, Wysocka-Diller J, Nakajima K, Jung J. et al. 2000. The SHORT-ROOT gene controls radial patterning of the Arabidopsis root through radial signaling. Cell 101:555–67 [Google Scholar]
  65. Hofmeister W. 1863. Zusätze und Berichtigungen zu den 1851 veröffentlichen Untersuchungengen der Entwicklung höherer kryptogame. Jahrb. Wiss. Bot. 3:259–93 [Google Scholar]
  66. Hu T-X, Yu M, Zhao J. 2010. Comparative transcriptional profiling analysis of the two daughter cells from tobacco zygote reveals the transcriptome differences in the apical and basal cells. BMC Plant Biol. 10:1–16 [Google Scholar]
  67. Hu T-X, Yu M, Zhao J. 2011. Comparative transcriptional analysis reveals differential gene expression between asymmetric and symmetric zygotic divisions in tobacco. PLOS ONE 6:e27120 [Google Scholar]
  68. Huang JB, Liu H, Chen M, Li X, Wang M. et al. 2014. ROP3 GTPase contributes to polar auxin transport and auxin responses and is important for embryogenesis and seedling growth in Arabidopsis. Plant Cell 26:3501–18 [Google Scholar]
  69. Imai A, Hanzawa Y, Komura M, Yamamoto KT, Komeda Y, Takahashi T. 2006. The dwarf phenotype of the Arabidopsis acl5 mutant is suppressed by a mutation in an upstream ORF of a bHLH gene. Development 133:3575–85 [Google Scholar]
  70. Ingouff M, Rademacher S, Holec S, Šoljić L, Xin N. et al. 2010. Zygotic resetting of the HISTONE 3 variant repertoire participates in epigenetic reprogramming in Arabidopsis. Curr. Biol. 20:2137–43 [Google Scholar]
  71. Ingram GC, Boisnard-Lorig C, Dumas C, Rogowsky PM. 2000. Expression patterns of genes encoding HD-ZipIV homeo domain proteins define specific domains in maize embryos and meristems. Plant J. 22:401–14 [Google Scholar]
  72. Ingram GC, Magnard JL, Vergne P, Dumas C, Rogowsky PM. 1999. ZmOCL1, an HDGL2 family homeobox gene, is expressed in the outer cell layer throughout maize development. Plant Mol. Biol. 40:343–54 [Google Scholar]
  73. Ishihama N, Yamada R, Yoshioka M, Katou S, Yoshioka H. 2011. Phosphorylation of the Nicotiana benthamiana WRKY8 transcription factor by MAPK functions in the defense response. Plant Cell 23:1153–70 [Google Scholar]
  74. Ito M, Sentoku N, Nishimura A, Hong SK, Sato Y, Matsuoka M. 2002. Position dependent expression of GL2-type homeobox gene, Roc1: significance for protoderm differentiation and radial pattern formation in early rice embryogenesis. Plant J. 29:497–507 [Google Scholar]
  75. Jeong S, Palmer TM, Lukowitz W. 2011. The RWP-RK factor GROUNDED promotes embryonic polarity by facilitating YODA MAP kinase signaling. Curr. Biol. 21:1268–76 [Google Scholar]
  76. Johnson KL, Degnan KA, Walker RJ, Ingram GC. 2005. AtDEK1 is essential for specification of embryonic epidermal cell fate. Plant J. 44:114–27 [Google Scholar]
  77. Johri BM. 1984. Embryology of Angiosperms Berlin: Springer [Google Scholar]
  78. Johri BM, Ambegaokoar KB, Srivastava PS. 1992. Comparative Embryology of Angiosperms Berlin: Springer [Google Scholar]
  79. Jones-Rhoades MW, Bartel DP. 2004. Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol. Cell 14:787–99 [Google Scholar]
  80. Jürgens G, Mayer U. 1994. Arabidopsis. Embryos: Colour Atlas of Development JBL Bard 7–21 London: Wolfe [Google Scholar]
  81. Kamiya N, Nagasaki H, Morikami A, Sato Y, Matsuoka M. 2003. Isolation and characterization of a rice WUSCHEL-type homeobox gene that is specifically expressed in the central cells of a quiescent center in the root apical meristem. Plant J. 35:429–41 [Google Scholar]
  82. Kanei M, Horiguchi G, Tsukaya H. 2012. Stable establishment of cotyledon identity during embryogenesis in Arabidopsis by ANGUSTIFOLIA3 and HANABA TARANU. Development 139:2436–46 [Google Scholar]
  83. Katayama H, Iwamoto K, Kariya Y, Asakawa T, Kan T. et al. 2015. A negative feedback loop controlling bHLH complexes is involved in vascular cell division and differentiation in the root apical meristem. Curr. Biol. 25:3144–50 [Google Scholar]
  84. Kato H, Ishizaki K, Kouno M, Shirakawa M, Bowman JL. et al. 2015. Auxin-mediated transcriptional system with a minimal set of components is critical for morphogenesis through the life cycle in Marchantia polymorpha. PLOS Genet. 11:e1005084 [Google Scholar]
  85. Kieffer M, Stern Y, Cook H, Clerici E, Maulbetsch C. et al. 2006. Analysis of the transcription factor WUSCHEL and its functional homologue in Antirrhinum reveals a potential mechanism for their roles in meristem maintenance. Plant Cell 18:560–73 [Google Scholar]
  86. Knauer S, Holt AL, Rubio-Somoza I, Tucker EJ, Hinze A. et al. 2013. A protodermal miR394 signal defines a region of stem cell competence in the Arabidopsis shoot meristem. Dev. Cell 24:125–32 [Google Scholar]
  87. Korasick DA, Westfall CS, Lee SG, Nanao MH, Dumas R. et al. 2014. Molecular basis for AUXIN RESPONSE FACTOR protein interaction and the control of auxin response repression. PNAS 111:5427–32 [Google Scholar]
  88. Kost B, Mathur J, Chua N-H. 1999. Cytoskeleton in plant development. Curr. Opin. Plant Biol. 2:462–70 [Google Scholar]
  89. Kumlehn J, Lörz H, Kranz E. 1999. Monitoring individual development of isolated wheat zygotes: a novel approach to study early embryogenesis. Protoplasma 208:156–62 [Google Scholar]
  90. Kuroha T, Tokunaga H, Kojima M, Ueda N, Ishida T. et al. 2009. Functional analyses of LONELY GUY cytokinin-activating enzymes reveal the importance of the direct activation pathway in Arabidopsis. Plant Cell 21:3152–69 [Google Scholar]
  91. Lau S, Slane D, Herud O, Kong J, Jürgens G. 2012. Early embryogenesis in flowering plants: setting up the basic body pattern. Annu. Rev. Plant Biol. 63:483–506 [Google Scholar]
  92. Laux T, Mayer KF, Berger J, Jürgens G. 1996. The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis. Development 122:87–97 [Google Scholar]
  93. Lavy M, Prigge MJ, Tigyi K, Estelle M. 2012. The cyclophilin DIAGEOTROPICA has a conserved role in auxin signaling. Development 139:1115–24 [Google Scholar]
  94. Lawit SJ, Chamberlin MA, Agee A, Caswell ES, Albertsen MC. 2013. Transgenic manipulation of plant embryo sacs tracked through cell-type-specific fluorescent markers: cell labeling, cell ablation, and adventitious embryos. Plant Reprod. 26:125–37 [Google Scholar]
  95. Lee C, Clark SE. 2015. A WUSCHEL-independent stem cell specification pathway is repressed by PHB, PHV and CNA in Arabidopsis. PLOS ONE 10:e0126006 [Google Scholar]
  96. Levesque MP, Vernoux T, Busch W, Cui H, Wang JY. et al. 2006. Whole-genome analysis of the SHORT-ROOT developmental pathway in Arabidopsis. PLOS Biol. 4:e143 [Google Scholar]
  97. Li Y, Shen Y, Cai C, Zhong C, Zhu L. et al. 2010. The type II Arabidopsis formin14 interacts with microtubules and microfilaments to regulate cell division. Plant Cell 22:2710–26 [Google Scholar]
  98. Liao CY, Smet W, Brunoud G, Yoshida S, Vernoux T, Weijers D. 2015. Reporters for sensitive and quantitative measurement of auxin response. Nat. Methods 12:207–10 [Google Scholar]
  99. Lie C, Kelsom C, Wu X. 2012. WOX2 and STIMPY-LIKE/WOX8 promote cotyledon boundary formation in Arabidopsis. Plant J. 72:674–82 [Google Scholar]
  100. Lim J, Jung JW, Lim CE, Lee M-H, Kim BJ. et al. 2005. Conservation and diversification of SCARECROW in maize. Plant Mol. Biol. 59:619–30 [Google Scholar]
  101. Lituiev DS, Krohn NG, Müller B, Jackson D, Hellriegel B. et al. 2013. Theoretical and experimental evidence indicates that there is no detectable auxin gradient in the angiosperm female gametophyte. Development 140:4544–53 [Google Scholar]
  102. Liu Y, Li X, Zhao J, Tang X, Tian S. et al. 2015. Direct evidence that suspensor cells have embryogenic potential that is suppressed by the embryo proper during normal embryogenesis. PNAS 112:12432–37 [Google Scholar]
  103. Lloyd DW. 1991. The Cytoskeletal Basis of Plant Growth and Form London: Academic [Google Scholar]
  104. Long JA, Moan EI, Medford JI, Barton MK. 1996. A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis. Nature 379:66–69 [Google Scholar]
  105. Long JA, Ohno C, Smith ZR, Meyerowitz EM. 2006. TOPLESS regulates apical embryonic fate in Arabidopsis. Science 312:1520–23 [Google Scholar]
  106. Long Y, Smet W, Cruz-Ramírez A, Castelijns B, de Jonge W. et al. 2015. Arabidopsis BIRD zinc finger proteins jointly stabilize tissue boundaries by confining the cell fate regulator SHORT-ROOT and contributing to fate specification. Plant Cell 27:1185–99 [Google Scholar]
  107. Louveaux M, Hamant O. 2013. The mechanics behind cell division. Curr. Opin. Plant Biol. 16:774–79 [Google Scholar]
  108. Lukowitz W, Roeder A, Parmenter D, Somerville C. 2004. A MAPKK kinase gene regulates extra-embryonic cell fate in Arabidopsis. Cell 116:109–19 [Google Scholar]
  109. Mähönen AP, Tusscher KT, Siligato R, Smetana O, Díaz-Triviño S. et al. 2014. PLETHORA gradient formation mechanism separates auxin responses. Nature 515:125–29 [Google Scholar]
  110. Mallory AC, Reinhart BJ, Jones-Rhoades MW, Tang G, Zamore PD. et al. 2004. MicroRNA control of PHABULOSA in leaf development: importance of pairing to the microRNA 5′ region. EMBO J. 23:3356–64 [Google Scholar]
  111. Mansfield SG, Briarty LG. 1991. Early embryogenesis in Arabidopsis thaliana. II. The developing embryo. Can. J. Bot. 69:461–76 [Google Scholar]
  112. Mao G, Meng X, Liu Y, Zheng Z, Chen Z, Zhang S. 2011. Phosphorylation of a WRKY transcription factor by two pathogen-responsive MAPKs drives phytoalexin biosynthesis in Arabidopsis. Plant Cell 23:1639–53 [Google Scholar]
  113. Masoud K, Herzog E, Chabouté M-E, Schmit A-C. 2013. Microtubule nucleation and establishment of the mitotic spindle in vascular plant cells. Plant J. 75:245–57 [Google Scholar]
  114. Mayer KFX, Schoof H, Haecker A, Lenhard M, Jürgens G, Laux T. 1998. Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell 95:805–15 [Google Scholar]
  115. Meyer S, Scholten S. 2007. Equivalent parental contribution to early plant zygotic development. Curr. Biol. 17:1686–91 [Google Scholar]
  116. Mineyuki Y. 1999. The preprophase band of microtubules: its function as a cytokinetic apparatus in higher plants. Int. Rev. Cytol. 187:1–49 [Google Scholar]
  117. Miyashima S, Honda M, Hashimoto K, Tatematsu K, Hashimoto T. et al. 2013. A comprehensive expression analysis of the Arabidopsis MICRORNA165/6 gene family during embryogenesis reveals a conserved role in meristem specification and a non-cell-autonomous function. Plant Cell Physiol. 54:375–84 [Google Scholar]
  118. Mogensen HL, Suthar HK. 1979. Ultrastructure of the egg apparatus of Nicotiana tabacum (Solanaceae) before and after fertilization. Bot. Gaz. 140:168–79 [Google Scholar]
  119. Möller B, Weijers D. 2009. Auxin control of embryo patterning. Cold Spring Harb. Perspect. Biol. 1:a001545 [Google Scholar]
  120. Moreno-Risueno MA, Sozzani R, Yardimci GG, Petricka JJ, Vernoux T. et al. 2015. Transcriptional control of tissue formation throughout root development. Science 350:426–30 [Google Scholar]
  121. Mukherjee K, Brocchieri L, Bürglin TR. 2009. A comprehensive classification and evolutionary analysis of plant homeobox genes. Mol. Biol. Evol. 26:2775–94 [Google Scholar]
  122. Müller B, Sheen J. 2008. Cytokinin and auxin interplay in root stem-cell specification during early embryogenesis. Nature 453:1094–97 [Google Scholar]
  123. Muraro D, Mellor N, Pound MP, Help H, Lucas M. et al. 2014. Integration of hormonal signaling networks and mobile microRNAs is required for vascular patterning in Arabidopsis roots. PNAS 111:857–62 [Google Scholar]
  124. Mylona P, Linstead P, Martienssen R, Dolan L. 2002. SCHIZORIZA controls an asymmetric cell division and restricts epidermal identity in the Arabidopsis root. Development 129:4327–34 [Google Scholar]
  125. Nakajima K, Sena G, Nawy T, Benfey PN. 2001. Intercellular movement of the putative transcription factor SHR in root patterning. Nature 413:307–11 [Google Scholar]
  126. Nanao MH, Vinos-Poyo T, Brunoud G, Thévenon E, Mazzoleni M. et al. 2014. Structural basis for oligomerization of auxin transcriptional regulators. Nat. Commun. 5:3617 [Google Scholar]
  127. Nardmann J, Reisewitz P, Werr W. 2009. Discrete shoot and root stem cell–promoting WUS/WOX5 functions are an evolutionary innovation of angiosperms. Mol. Biol. Evol. 26:1745–55 [Google Scholar]
  128. Nardmann J, Werr W. 2006. The shoot stem cell niche in angiosperms: Expression patterns of WUS orthologues in rice and maize imply major modifications in the course of mono- and dicot evolution. Mol. Biol. Evol. 23:2492–504 [Google Scholar]
  129. Nawy T, Bayer M, Mravec J, Friml J, Birnbaum KD, Lukowitz W. 2010. The GATA factor HANABA TARANU is required to position the proembryo boundary in the early Arabidopsis embryo. Dev. Cell 19:103–13 [Google Scholar]
  130. Nodine MD, Bartel DP. 2010. MicroRNAs prevent precocious gene expression and enable pattern formation during plant embryogenesis. Genes Dev. 24:2678–92 [Google Scholar]
  131. Nodine MD, Bartel DP. 2012. Maternal and paternal genomes contribute equally to the transcriptome of early plant embryos. Nature 482:94–97 [Google Scholar]
  132. Nodine MD, Yadegari R, Tax FE. 2007. RPK1 and TOAD2 are two receptor-like kinases redundantly required for Arabidopsis embryonic pattern formation. Dev. Cell 12:943–56 [Google Scholar]
  133. Ogawa E, Yamada Y, Sezaki N, Kosaka S, Kondo H. et al. 2015. ATML1 and PDF2 play a redundant and essential role in Arabidopsis embryo development. Plant Cell Physiol. 56:1183–92 [Google Scholar]
  134. Ohashi-Ito K, Matsukawa M, Fukuda H. 2013. An atypical bHLH transcription factor regulates early xylem development downstream of auxin. Plant Cell Physiol. 54:398–405 [Google Scholar]
  135. Ohashi-Ito K, Saegusa M, Iwamoto K, Oda Y, Katayama H. et al. 2014. A bHLH complex activates vascular cell division via cytokinin action in root apical meristem. Curr. Biol. 24:2053–58 [Google Scholar]
  136. Pagnussat GC, Alandete-Saez M, Bowman JL, Sundaresan V. 2009. Auxin-dependent patterning and gamete specification in the Arabidopsis female gametophyte. Science 324:1684–89 [Google Scholar]
  137. Palovaara J, Saiga S, Weijers D. 2013. Transcriptomics approaches in the early Arabidopsis embryo. Trends Plant Sci. 18:514–21 [Google Scholar]
  138. Perales M, Reddy GV. 2012. Stem cell maintenance in shoot apical meristems. Curr. Opin. Plant Biol. 15:10–16 [Google Scholar]
  139. Pernas M, Ryan E, Dolan L. 2010. SCHIZORIZA controls tissue system complexity in plants. Curr. Biol. 20:818–23 [Google Scholar]
  140. Peterson KM, Shyu C, Burr CA, Horst RJ, Kanaoka MM. et al. 2013. Arabidopsis homeodomain-leucine zipper IV proteins promote stomatal development and ectopically induce stomata beyond the epidermis. Development 140:1924–35 [Google Scholar]
  141. Petricka JJ, Van Norman JM, Benfey PN. 2009. Symmetry breaking in plants: molecular mechanisms regulating asymmetric cell divisions in Arabidopsis. Cold Spring Harb. Perspect. Biol. 1:a000497 [Google Scholar]
  142. Pi L, Aichinger E, van der Graaff E, Llavata-Peris CI, Weijers D. et al. 2015. Organizer-derived WOX5 signal maintains root columella stem cells through chromatin-mediated repression of CDF4 expression. Dev. Cell 33:576–88 [Google Scholar]
  143. Pietra S, Gustavsson A, Kiefer C, Kalmbach L, Horstedt P. et al. 2013. Arabidopsis SABRE and CLASP interact to stabilize cell division plane orientation and planar polarity. Nat. Commun. 4:2779 [Google Scholar]
  144. Pillot M, Baroux C, Vazquez MA, Autran D, Leblanc O. et al. 2010. Embryo and endosperm inherit distinct chromatin and transcriptional states from the female gametes in Arabidopsis. Plant Cell 22:307–20 [Google Scholar]
  145. Pires ND, Yi K, Breuninger H, Catarino B, Menand B, Dolan L. 2013. Recruitment and remodeling of an ancient gene regulatory network during land plant evolution. PNAS 110:9571–76 [Google Scholar]
  146. Plavskin Y, Nagashima A, Peeroud P-F, Hasebe M, Quatrano RS. et al. 2016. Ancient trans-acting siRNAs confer robustness and sensitivity onto the auxin response. Dev. Cell 36:276–89 [Google Scholar]
  147. Prigge MJ, Lavy M, Ashton NW, Estelle M. 2010. Physcomitrella patens auxin-resistant mutants affect conserved elements of an auxin-signaling pathway. Curr. Biol. 20:1907–12 [Google Scholar]
  148. Prigge MJ, Otsuga D, Alonso JM, Ecker JR, Drews GN, Clark SE. 2005. Class III homeodomain-leucine zipper gene family members have overlapping, antagonistic, and distinct roles in Arabidopsis development. Plant Cell 17:61–76 [Google Scholar]
  149. Rademacher EH, Lokerse AS, Schlereth A, Llavata-Peris CI, Bayer M. et al. 2012. Different auxin response machineries control distinct cell fates in the early plant embryo. Dev. Cell 22:211–22 [Google Scholar]
  150. Rademacher EH, Möller B, Lokerse AS, Llavata-Peris CI, van den Berg W, Weijers D. 2011. A cellular expression map of the Arabidopsis AUXIN RESPONSE FACTOR gene family. Plant J. 68:597–606 [Google Scholar]
  151. Radoeva T, Weijers D. 2014. A roadmap to embryo identity in plants. Trends Plant Sci. 19:709–16 [Google Scholar]
  152. Rasmussen CG, Wright AJ, Müller S. 2013. The role of the cytoskeleton and associated proteins in determination of the plant cell division plane. Plant J. 75:258–69 [Google Scholar]
  153. Reinhart BJ, Liu T, Newell NR, Magnani E, Huang T. et al. 2013. Establishing a framework for the ad/abaxial regulatory network of Arabidopsis: ascertaining targets of class III HOMEODOMAIN LEUCINE ZIPPER and KANADI regulation. Plant Cell 25:3228–49 [Google Scholar]
  154. Robert HS, Grones P, Stepanova AN, Robles LM, Lokerse AS. et al. 2013. Local auxin sources orient the apical-basal axis in Arabidopsis embryos. Curr. Biol. 23:2506–12 [Google Scholar]
  155. Robert HS, Grunewald W, Sauer M, Cannoot B, Soriano M. et al. 2015. Plant embryogenesis requires AUX/LAX-mediated auxin influx. Development 142:702–11 [Google Scholar]
  156. Růžička K, Šimášková M, Duclercq J, Petrášek J, Zažímalová E. et al. 2009. Cytokinin regulates root meristem activity via modulation of the polar auxin transport. PNAS 106:4284–89 [Google Scholar]
  157. Sachs J. 1878. Über die Anordnung der Zellen in jüngsten Pflanzentheilen. Arb. Bot. Inst. 2:46–104 [Google Scholar]
  158. Saiga S, Möller B, Watanabe-Taneda A, Abe M, Weijers D, Komeda Y. 2012. Control of embryonic meristem initiation in Arabidopsis by PHD-finger protein complexes. Development 139:1391–98 [Google Scholar]
  159. San-Bento R, Farcot E, Galletti R, Creff A, Ingram G. 2014. Epidermal identity is maintained by cell-cell communication via a universally active feedback loop in Arabidopsis thaliana. Plant J. 77:46–58 [Google Scholar]
  160. Sang Y, Silva-Ortega CO, Wu S, Yamaguchi N, Wu MF. et al. 2012. Mutations in two non-canonical Arabidopsis SWI2/SNF2 chromatin remodeling ATPases cause embryogenesis and stem cell maintenance defects. Plant J. 72:1000–14 [Google Scholar]
  161. Sarkar AK, Luijten M, Miyashima S, Lenhard M, Hashimoto T. et al. 2007. Conserved factors regulate signalling in Arabidopsis thaliana shoot and root stem cell organizers. Nature 446:811–14 [Google Scholar]
  162. Sato A, Toyooka K, Okamoto T. 2010. Asymmetric cell division of rice zygotes located in embryo sac and produced by in vitro fertilization. Sex. Plant Reprod. 23:211–17 [Google Scholar]
  163. Schaller GE, Street IH, Kieber JJ. 2014. Cytokinin and the cell cycle. Curr. Opin. Plant Biol. 21:7–15 [Google Scholar]
  164. Scheres B, Di Laurenzio L, Willemsen V, Hauser MT, Janmaat K. et al. 1995. Mutations affecting the radial organisation of the Arabidopsis root display specific defects throughout the embryonic axis. Development 121:53–62 [Google Scholar]
  165. Scheres B, Wolkenfelt H, Willemsen V, Terlouw M, Lawson E. et al. 1994. Embryonic origin of the Arabidopsis primary root and root meristem initials. Development 120:2475–87 [Google Scholar]
  166. Schlereth A, Möller B, Liu W, Kientz M, Flipse J. et al. 2010. MONOPTEROS controls embryonic root initiation by regulating a mobile transcription factor. Nature 464:913–16 [Google Scholar]
  167. Schoof H, Lenhard M, Haecker A, Mayer KFX, Jürgens G, Laux T. 2000. The stem cell population of Arabidopsis shoot meristems is maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell 100:635–44 [Google Scholar]
  168. Schulz R, Jensen WA. 1968. Capsella embryogenesis: the egg, zygote, and young embryo. Am. J. Bot. 55:807–19 [Google Scholar]
  169. Šimášková M, O'Brien JA, Khan M, Van Noorden G, Ötvös K. et al. 2015. Cytokinin response factors regulate PIN-FORMED auxin transporters. Nat. Commun. 6:8717 [Google Scholar]
  170. Singh H. 1978. Embryology of Gymnosperms. Encycl. Plant Anat. Berlin/Stuttgart: Gebrüder Bornstraeger [Google Scholar]
  171. Sivaramakrishna D. 1978. Size relationships of apical cell and basal cell in two-celled embryos in angiosperms. Can. J. Bot. 56:1434–38 [Google Scholar]
  172. Slane D, Kong J, Berendzen KW, Kilian J, Henschen A. et al. 2014. Cell type–specific transcriptome analysis in the early Arabidopsis thaliana embryo. Development 141:4831–40 [Google Scholar]
  173. Smith ZR, Long JA. 2010. Control of Arabidopsis apical-basal embryo polarity by antagonistic transcription factors. Nature 464:423–26 [Google Scholar]
  174. Soriano M, Li H, Jacquard C, Angenent GC, Krochko J. et al. 2014. Plasticity in cell division patterns and auxin transport dependency during in vitro embryogenesis in Brassica napus. Plant Cell 26:2568–81 [Google Scholar]
  175. Spinner L, Gadeyne A, Belcram K, Goussot M, Moison M. et al. 2013. A protein phosphatase 2A complex spatially controls plant cell division. Nat. Commun. 4:1863 [Google Scholar]
  176. Stuurman J, Jäggi F, Kuhlemeier C. 2002. Shoot meristem maintenance is controlled by a GRAS-gene mediated signal from differentiating cells. Genes Dev. 16:2213–18 [Google Scholar]
  177. Szemenyei H, Hannon M, Long JA. 2008. TOPLESS mediates auxin-dependent transcriptional repression during Arabidopsis embryogenesis. Science 319:1384–86 [Google Scholar]
  178. Takada S, Iida H. 2014. Specification of epidermal cell fate in plant shoots. Front. Plant Sci. 5:49 [Google Scholar]
  179. Takada S, Jürgens G. 2007. Transcriptional regulation of epidermal cell fate in the Arabidopsis embryo. Development 134:1141–50 [Google Scholar]
  180. Takada S, Takada N, Yoshida A. 2013. ATML1 promotes epidermal cell differentiation in Arabidopsis shoots. Development 140:1919–23 [Google Scholar]
  181. Tam TH, Catarino B, Dolan L. 2015. Conserved regulatory mechanism controls the development of cells with rooting functions in land plants. PNAS 112:E3959–68 [Google Scholar]
  182. Tanaka H, Watanabe M, Watanabe D, Tanaka T, Machida C, Machida Y. 2002. ACR4, a putative receptor kinase gene of Arabidopsis thaliana, that is expressed in the outer cell layers of embryos and plants, is involved in proper embryogenesis. Plant Cell Physiol. 43:419–28 [Google Scholar]
  183. ten Hove CA, Willemsen V, de Vries WJ, van Dijken A, Scheres B, Heidstra R. 2010. SCHIZORIZA encodes a nuclear factor regulating asymmetry of stem cell divisions in the Arabidopsis root. Curr. Biol. 20:452–7 [Google Scholar]
  184. Tian H, Wabnik K, Niu T, Li H, Yu Q. et al. 2014. WOX5-IAA17 feedback circuit–mediated cellular auxin response is crucial for the patterning of root stem cell niches in Arabidopsis. Mol. Plant 7:277–89 [Google Scholar]
  185. Tian J, Han L, Feng Z, Wang G, Liu W. et al. 2015. Orchestration of microtubules and the actin cytoskeleton in trichome cell shape determination by a plant-unique kinesin. eLife 4:e09351 [Google Scholar]
  186. Tivendale ND, Ross JJ, Cohen JD. 2014. The shifting paradigms of auxin biosynthesis. Trends Plant Sci. 19:44–51 [Google Scholar]
  187. Tiwari SB, Hagen G, Guilfoyle T. 2003. The roles of auxin response factor domains in auxin-responsive transcription. Plant Cell 15:533–43 [Google Scholar]
  188. Tokunaga H, Kojima M, Kuroha T, Ishida T, Sugimoto K. et al. 2012. Arabidopsis lonely guy (LOG) multiple mutants reveal a central role of the LOG-dependent pathway in cytokinin activation. Plant J. 69:355–65 [Google Scholar]
  189. Torres-Ruiz RA, Jürgens G. 1994. Mutations in the FASS gene uncouple pattern formation and morphogenesis in Arabidopsis development. Development 120:2967–78 [Google Scholar]
  190. Turchi L, Baima S, Morelli G, Ruberti I. 2015. Interplay of HD-Zip II and III transcription factors in auxin-regulated plant development. J. Exp. Bot. 66:5043–53 [Google Scholar]
  191. Turchi L, Carabelli M, Ruzza V, Possenti M, Sassi M. et al. 2013. Arabidopsis HD-ZIP II transcription factors control apical embryo development and meristem function. Development 140:2118–29 [Google Scholar]
  192. Ueda M, Zhang Z, Laux T. 2011. Transcriptional activation of Arabidopsis axis patterning genes WOX8/9 links zygote polarity to embryo development. Dev. Cell 20:264–70 [Google Scholar]
  193. Ulmasov T, Hagen G, Guilfoyle TJ. 1999. Activation and repression of transcription by auxin-response factors. PNAS 96:5844–49 [Google Scholar]
  194. van den Berg C, Willemsen V, Hendriks G, Weisbeek P, Scheres B. 1997. Short-range control of cell differentiation in the Arabidopsis root meristem. Nature 390:287–89 [Google Scholar]
  195. Vanstraelen M, Van Damme D, De Rycke R, Mylle E, Inzé D, Geelen D. 2006. Cell cycle–dependent targeting of a kinesin at the plasma membrane demarcates the division site in plant cells. Curr. Biol. 16:308–14 [Google Scholar]
  196. Vatén A, Dettmer J, Wu S, Stierhof YD, Miyashima S. et al. 2011. Callose biosynthesis regulates symplastic trafficking during root development. Dev. Cell 21:1144–55 [Google Scholar]
  197. Vera-Sirera F, De Rybel B, Úrbez C, Kouklas E, Pesquera M. et al. 2015. A bHLH-based feedback loop restricts vascular cell proliferation in plants. Dev. Cell 35:432–43 [Google Scholar]
  198. Vielle-Calzada J-P, Baskar R, Grossniklaus U. 2000. Delayed activation of the paternal genome during seed development. Nature 404:91–94 [Google Scholar]
  199. von Wangenheim D, Fangerau J, Schmitz A, Smith RS, Leitte H. et al. 2016. Rules and self-organizing properties of post-embryonic plant organ cell division patterns. Curr. Biol. 26:439–49 [Google Scholar]
  200. Wabnik K, Robert HS, Smith RS, Friml J. 2013. Modeling framework for the establishment of the apical-basal embryonic axis in plants. Curr. Biol. 23:2513–18 [Google Scholar]
  201. Waki T, Hiki T, Watanabe R, Hashimoto T, Nakajima K. 2011. The Arabidopsis RWP-RK protein RKD4 triggers gene expression and pattern formation in early embryogenesis. Curr. Biol. 21:1277–81 [Google Scholar]
  202. Wang H, Ngwenyama N, Liu Y, Walker JC, Zhang S. 2007. Stomatal development and patterning are regulated by environmentally responsive mitogen-activated protein kinases in Arabidopsis. Plant Cell 19:63–73 [Google Scholar]
  203. Wang R, Estelle M. 2014. Diversity and specificity: auxin perception and signaling through the TIR1/AFB pathway. Curr. Opin. Plant Biol. 21:51–58 [Google Scholar]
  204. Wardlaw CW. 1955. Embryogenesis in Plants London: Methuen [Google Scholar]
  205. Weigel D, Jürgens G. 2002. Stem cells that make stems. Nature 415:751–54 [Google Scholar]
  206. Weijers D, Geldner N, Offringa R, Jürgens G. 2001. Seed development (communication arising): early paternal gene activity in Arabidopsis. Nature 414:709–10 [Google Scholar]
  207. Weijers D, Schlereth A, Ehrismann JS, Schwank G, Kientz M, Jürgens G. 2006. Auxin triggers transient local signaling for cell specification in Arabidopsis embryogenesis. Dev. Cell 10:265–70 [Google Scholar]
  208. Weiste C, Droge-Laser W. 2014. The Arabidopsis transcription factor bZIP11 activates auxin-mediated transcription by recruiting the histone acetylation machinery. Nat. Commun. 5:3883 [Google Scholar]
  209. Welch D, Hassan H, Blilou I, Immink R, Heidstra R, Scheres B. 2007. Arabidopsis JACKDAW and MAGPIE zinc finger proteins delimit asymmetric cell division and stabilize tissue boundaries by restricting SHORT-ROOT action. Genes Dev. 21:2196–204 [Google Scholar]
  210. Williams L, Grigg SP, Xie M, Christensen S, Fletcher JC. 2005. Regulation of Arabidopsis shoot apical meristem and lateral organ formation by microRNA miR166g and its AtHD-ZIP target genes. Development 132:3657–68 [Google Scholar]
  211. Wu X, Chory J, Weigel D. 2007. Combinations of WOX activities regulate tissue proliferation during Arabidopsis embryonic development. Dev. Biol. 309:306–16 [Google Scholar]
  212. Wysocka-Diller JW, Helariutta Y, Fukaki H, Malamy JE, Benfey PN. 2000. Molecular analysis of SCARECROW function reveals a radial patterning mechanism common to root and shoot. Development 127:595–603 [Google Scholar]
  213. Xu T, Nagawa S, Yang Z. 2011. Uniform auxin triggers the Rho GTPase–dependent formation of interdigitation patterns in pavement cells. Small GTPases 2:227–32 [Google Scholar]
  214. Xu T-T, Ren S-C, Song X-F, Liu C-M. 2015. CLE19 expressed in the embryo regulates both cotyledon establishment and endosperm development in Arabidopsis. J. Exp. Bot. 66:5217–27 [Google Scholar]
  215. Yoshida S, Barbier de Reuille P, Lane B, Bassel GW, Prusinkiewicz P. et al. 2014. Genetic control of plant development by overriding a geometric division rule. Dev. Cell 29:75–87 [Google Scholar]
  216. Yu M, Zhao J. 2012. The cytological changes of tobacco zygote and proembryo cells induced by beta-glucosyl Yariv reagent suggest the involvement of arabinogalactan proteins in cell division and cell plate formation. BMC Plant Biol. 12:1–16 [Google Scholar]
  217. Zhang Y, Jiao Y, Liu Z, Zhu YX. 2015a. ROW1 maintains quiescent centre identity by confining WOX5 expression to specific cells. Nat. Commun. 6:6003 [Google Scholar]
  218. Zhang Y, Wang P, Shao W, Zhu J-K, Dong J. 2015b. The BASL polarity protein controls a MAPK signaling feedback loop in asymmetric cell division. Dev. Cell 33:136–49 [Google Scholar]
  219. Zhao J, Xin H, Qu L, Ning J, Peng X. et al. 2011. Dynamic changes of transcript profiles after fertilization are associated with de novo transcription and maternal elimination in tobacco zygote, and mark the onset of the maternal-to-zygotic transition. Plant J. 65:131–45 [Google Scholar]
  220. Zhou Y, Honda M, Zhu H, Zhang Z, Guo X. et al. 2015. Spatiotemporal sequestration of miR165/166 by Arabidopsis Argonaute10 promotes shoot apical meristem maintenance. Cell Rep. 10:1819–27 [Google Scholar]
  221. Zhu T, Moschou PN, Alvarez JM, Sohlberg JJ, von Arnold S. 2016. WUSCHEL-RELATED HOMEOBOX 2 is important for protoderm and suspensor development in the gymnosperm Norway spruce. BMC Plant Biol. 16:19 [Google Scholar]
/content/journals/10.1146/annurev-cellbio-111315-124929
Loading
/content/journals/10.1146/annurev-cellbio-111315-124929
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error