1932

Abstract

In recent years, our vision of lysosomes has drastically changed. Formerly considered to be mere degradative compartments, they are now recognized as key players in many cellular processes. The ability of lysosomes to respond to different stimuli revealed a complex and coordinated regulation of lysosomal gene expression. This review discusses the participation of the transcription factors TFEB and TFE3 in the regulation of lysosomal function and biogenesis, as well as the role of the lysosomal pathway in cellular adaptation to a variety of stress conditions, including nutrient deprivation, mitochondrial dysfunction, protein misfolding, and pathogen infection. We also describe how cancer cells make use of TFEB and TFE3 to promote their own survival and highlight the potential of these transcription factors as therapeutic targets for the treatment of neurological and lysosomal diseases.

Keyword(s): autophagylysosomesmTORstressTFE3TFEB
Loading

Article metrics loading...

/content/journals/10.1146/annurev-cellbio-111315-125407
2016-10-06
2024-09-07
Loading full text...

Full text loading...

/deliver/fulltext/cellbio/32/1/annurev-cellbio-111315-125407.html?itemId=/content/journals/10.1146/annurev-cellbio-111315-125407&mimeType=html&fmt=ahah

Literature Cited

  1. Alderton GK. 2015. Autophagy: surviving stress in pancreatic cancer. Nat. Rev. Cancer 15:513 [Google Scholar]
  2. Andrews NW. 2000. Regulated secretion of conventional lysosomes. Trends Cell Biol. 10:316–21 [Google Scholar]
  3. Argani P. 2015. MiT family translocation renal cell carcinoma. Semin. Diagn. Pathol. 32:103–13 [Google Scholar]
  4. Argani P, Hawkins A, Griffin CA, Goldstein JD, Haas M. et al. 2001. A distinctive pediatric renal neoplasm characterized by epithelioid morphology, basement membrane production, focal HMB45 immunoreactivity, and t(6;11)(p21.1;q12) chromosome translocation. Am. J. Pathol. 158:2089–96 [Google Scholar]
  5. Awad O, Sarkar C, Panicker LM, Miller D, Zeng X. et al. 2015. Altered TFEB-mediated lysosomal biogenesis in Gaucher disease iPSC-derived neuronal cells. Hum. Mol. Genet. 24:5775–88 [Google Scholar]
  6. Bar-Peled L, Schweitzer LD, Zoncu R, Sabatini DM. 2012. Ragulator is a GEF for the Rag GTPases that signal amino acid levels to mTORC1. Cell 150:1196–208 [Google Scholar]
  7. Bertolotto C, Lesueur F, Giuliano S, Strub T, de Lichy M. et al. 2011. A SUMOylation-defective MITF germline mutation predisposes to melanoma and renal carcinoma. Nature 480:94–98 [Google Scholar]
  8. Betschinger J, Nichols J, Dietmann S, Corrin PD, Paddison PJ, Smith A. 2013. Exit from pluripotency is gated by intracellular redistribution of the bHLH transcription factor Tfe3. Cell 153:335–47 [Google Scholar]
  9. Campbell GR, Rawat P, Bruckman RS, Spector SA. 2015. Human immunodeficiency virus type 1 Nef inhibits autophagy through transcription factor EB sequestration. PLOS Pathog. 11:e1005018 [Google Scholar]
  10. Campbell GR, Spector SA. 2013. Inhibition of human immunodeficiency virus type-1 through autophagy. Curr. Opin. Microbiol. 16:349–54 [Google Scholar]
  11. Chauhan S, Ahmed Z, Bradfute SB, Arko-Mensah J, Mandell MA. et al. 2015. Pharmaceutical screen identifies novel target processes for activation of autophagy with a broad translational potential. Nat. Commun. 6:8620 [Google Scholar]
  12. Cheli Y, Ohanna M, Ballotti R, Bertolotto C. 2010. Fifteen-year quest for microphthalmia-associated transcription factor target genes. Pigment Cell Melanoma Res. 23:27–40 [Google Scholar]
  13. Chua JP, Reddy SL, Merry DE, Adachi H, Katsuno M. et al. 2014. Transcriptional activation of TFEB/ZKSCAN3 target genes underlies enhanced autophagy in spinobulbar muscular atrophy. Hum. Mol. Genet. 23:1376–86 [Google Scholar]
  14. Colbert JD, Matthews SP, Miller G, Watts C. 2009. Diverse regulatory roles for lysosomal proteases in the immune response. Eur. J. Immunol. 39:2955–65 [Google Scholar]
  15. Cortes CJ, Miranda HC, Frankowski H, Batlevi Y, Young JE. et al. 2014. Polyglutamine-expanded androgen receptor interferes with TFEB to elicit autophagy defects in SBMA. Nat. Neurosci. 17:1180–89 [Google Scholar]
  16. Cui L, Jeong H, Borovecki F, Parkhurst CN, Tanese N, Krainc D. 2006. Transcriptional repression of PGC-1α by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration. Cell 127:59–69 [Google Scholar]
  17. Damme M, Suntio T, Saftig P, Eskelinen EL. 2015. Autophagy in neuronal cells: general principles and physiological and pathological functions. Acta Neuropathol. 129:337–62 [Google Scholar]
  18. Davis IJ, Hsi BL, Arroyo JD, Vargas SO, Yeh YA. et al. 2003. Cloning of an α-TFEB fusion in renal tumors harboring the t(6;11)(p21;q13) chromosome translocation. PNAS 100:6051–56 [Google Scholar]
  19. De Duve C, Pressman BC, Gianetto R, Wattiaux R, Appelmans F. 1955. Tissue fractionation studies. 6. Intracellular distribution patterns of enzymes in rat-liver tissue. Biochem. J. 60:604–17 [Google Scholar]
  20. Decressac M, Mattsson B, Weikop P, Lundblad M, Jakobsson J, Bjorklund A. 2013. TFEB-mediated autophagy rescues midbrain dopamine neurons from α-synuclein toxicity. PNAS 110:E1817–26 [Google Scholar]
  21. Dehay B, Bove J, Rodriguez-Muela N, Perier C, Recasens A. et al. 2010. Pathogenic lysosomal depletion in Parkinson's disease. J. Neurosci. 30:12535–44 [Google Scholar]
  22. Dehay B, Martinez-Vicente M, Caldwell GA, Caldwell KA, Yue Z. et al. 2013. Lysosomal impairment in Parkinson's disease. Mov. Disord. 28:725–32 [Google Scholar]
  23. Demetriades C, Doumpas N, Teleman AA. 2014. Regulation of TORC1 in response to amino acid starvation via lysosomal recruitment of TSC2. Cell 156:786–99 [Google Scholar]
  24. Dibble CC, Elis W, Menon S, Qin W, Klekota J. et al. 2012. TBC1D7 is a third subunit of the TSC1-TSC2 complex upstream of mTORC1. Mol. Cell 47:535–46 [Google Scholar]
  25. Ebrahimi-Fakhari D, Cantuti-Castelvetri I, Fan Z, Rockenstein E, Masliah E. et al. 2011. Distinct roles in vivo for the ubiquitin-proteasome system and the autophagy-lysosomal pathway in the degradation of α-synuclein. J. Neurosci. 31:14508–20 [Google Scholar]
  26. Feeney EJ, Spampanato C, Puertollano R, Ballabio A, Parenti G, Raben N. 2013. What else is in store for autophagy? Exocytosis of autolysosomes as a mechanism of TFEB-mediated cellular clearance in Pompe disease. Autophagy 9:1117–18 [Google Scholar]
  27. Ferron M, Settembre C, Shimazu J, Lacombe J, Kato S. et al. 2013. A RANKL-PKCβ-TFEB signaling cascade is necessary for lysosomal biogenesis in osteoclasts. Genes Dev. 27:955–69 [Google Scholar]
  28. Fujimoto Y, Nakagawa Y, Satoh A, Okuda K, Shingyouchi A. et al. 2013. TFE3 controls lipid metabolism in adipose tissue of male mice by suppressing lipolysis and thermogenesis. Endocrinology 154:3577–88 [Google Scholar]
  29. Fullgrabe J, Klionsky DJ, Joseph B. 2014. The return of the nucleus: transcriptional and epigenetic control of autophagy. Nat. Rev. Mol. Cell Biol. 15:65–74 [Google Scholar]
  30. Gao M, Kaiser CA. 2006. A conserved GTPase-containing complex is required for intracellular sorting of the general amino-acid permease in yeast. Nat. Cell Biol. 8:657–67 [Google Scholar]
  31. Gordon DJ, Resio B, Pellman D. 2012. Causes and consequences of aneuploidy in cancer. Nat. Rev. Genet. 13:189–203 [Google Scholar]
  32. Haq R, Fisher DE. 2011. Biology and clinical relevance of the micropthalmia family of transcription factors in human cancer. J. Clin. Oncol. 29:3474–82 [Google Scholar]
  33. Hasan M, Koch J, Rakheja D, Pattnaik AK, Brugarolas J. et al. 2013. Trex1 regulates lysosomal biogenesis and interferon-independent activation of antiviral genes. Nat. Immunol. 14:61–71 [Google Scholar]
  34. Hershey CL, Fisher DE. 2004. Mitf and Tfe3: members of a b-HLH-ZIP transcription factor family essential for osteoclast development and function. Bone 34:689–96 [Google Scholar]
  35. Himmelstein DS, Ward SM, Lancia JK, Patterson KR, Binder LI. 2012. Tau as a therapeutic target in neurodegenerative disease. Pharmacol. Ther. 136:8–22 [Google Scholar]
  36. Hong SB, Oh H, Valera VA, Baba M, Schmidt LS, Linehan WM. 2010. Inactivation of the FLCN tumor suppressor gene induces TFE3 transcriptional activity by increasing its nuclear localization. PLOS ONE 5:e15793 [Google Scholar]
  37. Huan C, Kelly ML, Steele R, Shapira I, Gottesman SR, Roman CA. 2006. Transcription factors TFE3 and TFEB are critical for CD40 ligand expression and thymus-dependent humoral immunity. Nat. Immunol. 7:1082–91 [Google Scholar]
  38. Inamura K, Fujiwara M, Togashi Y, Nomura K, Mukai H. et al. 2012. Diverse fusion patterns and heterogeneous clinicopathologic features of renal cell carcinoma with t(6;11) translocation. Am. J. Surg. Pathol. 36:35–42 [Google Scholar]
  39. Iwasaki H, Naka A, Iida KT, Nakagawa Y, Matsuzaka T. et al. 2012. TFE3 regulates muscle metabolic gene expression, increases glycogen stores, and enhances insulin sensitivity in mice. Am. J. Physiol. Endocrinol. Metab. 302:E896–902 [Google Scholar]
  40. Jo EK, Yuk JM, Shin DM, Sasakawa C. 2013. Roles of autophagy in elimination of intracellular bacterial pathogens. Front. Immunol. 4:97 [Google Scholar]
  41. Kauffman EC, Ricketts CJ, Rais-Bahrami S, Yang Y, Merino MJ. et al. 2014. Molecular genetics and cellular features of TFE3 and TFEB fusion kidney cancers. Nat. Rev. Urol. 11:465–75 [Google Scholar]
  42. Kremer A, Louis JV, Jaworski T, Van Leuven F. 2011. GSK3 and Alzheimer's disease: facts and fiction. Front. Mol. Neurosci. 4:17 [Google Scholar]
  43. Kuiper RP, Schepens M, Thijssen J, van Asseldonk M, van den Berg E. et al. 2003. Upregulation of the transcription factor TFEB in t(6;11)(p21;q13)-positive renal cell carcinomas due to promoter substitution. Hum. Mol. Genet. 12:1661–69 [Google Scholar]
  44. La Spada AR. 2012. PPARGC1A/PGC-1α, TFEB and enhanced proteostasis in Huntington disease: defining regulatory linkages between energy production and protein-organelle quality control. Autophagy 8:1845–47 [Google Scholar]
  45. La Spada AR, Taylor JP. 2010. Repeat expansion disease: progress and puzzles in disease pathogenesis. Nat. Rev. Genet. 11:247–58 [Google Scholar]
  46. La Spada AR, Wilson EM, Lubahn DB, Harding AE, Fischbeck KH. 1991. Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature 352:77–79 [Google Scholar]
  47. Ladanyi M, Lui MY, Antonescu CR, Krause-Boehm A, Meindl A. et al. 2001. The der(17)t(X;17)(p11;q25) of human alveolar soft part sarcoma fuses the TFE3 transcription factor gene to ASPL, a novel gene at 17q25. Oncogene 20:48–57 [Google Scholar]
  48. Lapierre LR, De Magalhaes Filho CD, McQuary PR, Chu CC, Visvikis O. et al. 2013. The TFEB orthologue HLH-30 regulates autophagy and modulates longevity in Caenorhabditis elegans. Nat. Commun. 4:2267 [Google Scholar]
  49. Lapierre LR, Hansen M. 2012. Lessons from C. elegans: signaling pathways for longevity. Trends Endocrinol. Metab. 23:637–44 [Google Scholar]
  50. Lee JK, Jin HK, Park MH, Kim BR, Lee PH. et al. 2014. Acid sphingomyelinase modulates the autophagic process by controlling lysosomal biogenesis in Alzheimer's disease. J. Exp. Med. 211:1551–70 [Google Scholar]
  51. Lieberman AP, Puertollano R, Raben N, Slaugenhaupt S, Walkley SU, Ballabio A. 2012. Autophagy in lysosomal storage disorders. Autophagy 8:719–30 [Google Scholar]
  52. Linehan WM, Ricketts CJ. 2013. The metabolic basis of kidney cancer. Semin. Cancer Biol. 23:46–55 [Google Scholar]
  53. Linehan WM, Spellman PT, Ricketts CJ, Creighton CJ, Fei SS. et al. 2016. Comprehensive molecular characterization of papillary renal-cell carcinoma. N. Engl. J. Med. 374:135–45 [Google Scholar]
  54. Luzio JP, Hackmann Y, Dieckmann NM, Griffiths GM. 2014. The biogenesis of lysosomes and lysosome-related organelles. Cold Spring Harb. Perspect. Biol. 6:a016840 [Google Scholar]
  55. Luzio JP, Pryor PR, Bright NA. 2007. Lysosomes: fusion and function. Nat. Rev. Mol. Cell Biol. 8:622–32 [Google Scholar]
  56. Ma X, Liu H, Murphy JT, Foyil SR, Godar RJ. et al. 2015. Regulation of the transcription factor EB-PGC1α axis by beclin-1 controls mitochondrial quality and cardiomyocyte death under stress. Mol. Cell. Biol. 35:956–76 [Google Scholar]
  57. Magers MJ, Udager AM, Mehra R. 2015. MiT family translocation-associated renal cell carcinoma: a contemporary update with emphasis on morphologic, immunophenotypic, and molecular mimics. Arch. Pathol. Lab. Med. 139:1224–33 [Google Scholar]
  58. Martina JA, Chen Y, Gucek M, Puertollano R. 2012. MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB. Autophagy 8:903–14 [Google Scholar]
  59. Martina JA, Diab HI, Brady OA, Puertollano R. 2016. TFEB and TFE3 are novel components of the integrated stress response. EMBO J. 35:479–95 [Google Scholar]
  60. Martina JA, Diab HI, Li L, Lim J-A, Patange S. et al. 2014. The nutrient-responsive transcription factor TFE3 promotes autophagy, lysosomal biogenesis, and clearance of cellular debris. Sci. Signal. 7:ra9 [Google Scholar]
  61. Martina JA, Puertollano R. 2013. Rag GTPases mediate amino acid–dependent recruitment of TFEB and MITF to lysosomes. J. Cell Biol. 200:475–91 [Google Scholar]
  62. Meadows NA, Sharma SM, Faulkner GJ, Ostrowski MC, Hume DA, Cassady AI. 2007. The expression of Clcn7 and Ostm1 in osteoclasts is coregulated by microphthalmia transcription factor. J. Biol. Chem. 282:1891–904 [Google Scholar]
  63. Medina DL, Di Paola S, Peluso I, Armani A, De Stefani D. et al. 2015. Lysosomal calcium signalling regulates autophagy through calcineurin and TFEB. Nat. Cell Biol. 17:288–99 [Google Scholar]
  64. Medina DL, Fraldi A, Bouche V, Annunziata F, Mansueto G. et al. 2011. Transcriptional activation of lysosomal exocytosis promotes cellular clearance. Dev. Cell 21:421–30 [Google Scholar]
  65. Menzies FM, Fleming A, Rubinsztein DC. 2015. Compromised autophagy and neurodegenerative diseases. Nat. Rev. Neurosci. 16:345–57 [Google Scholar]
  66. Merrell K, Wells S, Henderson A, Gorman J, Alt F. et al. 1997. The absence of the transcription activator TFE3 impairs activation of B cells in vivo. Mol. Cell. Biol. 17:3335–44 [Google Scholar]
  67. Moskot M, Montefusco S, Jakobkiewicz-Banecka J, Mozolewski P, Wegrzyn A. et al. 2014. The phytoestrogen genistein modulates lysosomal metabolism and transcription factor EB (TFEB) activation. J. Biol. Chem. 289:17054–69 [Google Scholar]
  68. Motyckova G, Weilbaecher KN, Horstmann M, Rieman DJ, Fisher DZ, Fisher DE. 2001. Linking osteopetrosis and pycnodysostosis: regulation of cathepsin K expression by the microphthalmia transcription factor family. PNAS 98:5798–803 [Google Scholar]
  69. Nada S, Hondo A, Kasai A, Koike M, Saito K. et al. 2009. The novel lipid raft adaptor p18 controls endosome dynamics by anchoring the MEK-ERK pathway to late endosomes. EMBO J. 28:477–89 [Google Scholar]
  70. Nakagawa Y, Shimano H, Yoshikawa T, Ide T, Tamura M. et al. 2006. TFE3 transcriptionally activates hepatic IRS-2, participates in insulin signaling and ameliorates diabetes. Nat. Med. 12:107–13 [Google Scholar]
  71. Narendra D, Walker JE, Youle R. 2012. Mitochondrial quality control mediated by PINK1 and Parkin: links to parkinsonism. Cold Spring Harb. Perspect. Biol. 4:a011338 [Google Scholar]
  72. Nezich CL, Wang C, Fogel AI, Youle RJ. 2015. MiT/TFE transcription factors are activated during mitophagy downstream of Parkin and Atg5. J. Cell Biol. 210:435–50 [Google Scholar]
  73. Nickerson ML, Warren MB, Toro JR, Matrosova V, Glenn G. et al. 2002. Mutations in a novel gene lead to kidney tumors, lung wall defects, and benign tumors of the hair follicle in patients with the Birt-Hogg-Dube syndrome. Cancer Cell 2:157–64 [Google Scholar]
  74. O'Rourke EJ, Ruvkun G. 2013. MXL-3 and HLH-30 transcriptionally link lipolysis and autophagy to nutrient availability. Nat. Cell Biol. 15:668–76 [Google Scholar]
  75. Oakley H, Cole SL, Logan S, Maus E, Shao P. et al. 2006. Intraneuronal beta-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer's disease mutations: potential factors in amyloid plaque formation. J. Neurosci. 26:10129–40 [Google Scholar]
  76. Oromendia AB, Amon A. 2014. Aneuploidy: implications for protein homeostasis and disease. Dis. Models Mech. 7:15–20 [Google Scholar]
  77. Ostrerova N, Petrucelli L, Farrer M, Mehta N, Choi P. et al. 1999. α-Synuclein shares physical and functional homology with 14-3-3 proteins. J. Neurosci. 19:5782–91 [Google Scholar]
  78. Palmieri M, Impey S, Kang H, di Ronza A, Pelz C. et al. 2011. Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways. Hum. Mol. Genet. 20:3852–66 [Google Scholar]
  79. Pan S, Chen R, Tamura Y, Crispin DA, Lai LA. et al. 2014. Quantitative glycoproteomics analysis reveals changes in N-glycosylation level associated with pancreatic ductal adenocarcinoma. J. Proteome Res. 13:1293–306 [Google Scholar]
  80. Parr C, Carzaniga R, Gentleman SM, Van Leuven F, Walter J, Sastre M. 2012. Glycogen synthase kinase 3 inhibition promotes lysosomal biogenesis and autophagic degradation of the amyloid-beta precursor protein. Mol. Cell. Biol. 32:4410–18 [Google Scholar]
  81. Pastore N, Brady OA, Diab HI, Martina JA, Sun L. et al. 2016. TFEB and TFE3 cooperate in the regulation of the innate immune response in activated macrophages. Autophagy 121240–58 [Google Scholar]
  82. Perera RM, Stoykova S, Nicolay BN, Ross KN, Fitamant J. et al. 2015. Transcriptional control of autophagy-lysosome function drives pancreatic cancer metabolism. Nature 524:361–65 [Google Scholar]
  83. Perez RG, Waymire JC, Lin E, Liu JJ, Guo F, Zigmond MJ. 2002. A role for α-synuclein in the regulation of dopamine biosynthesis. J. Neurosci. 22:3090–99 [Google Scholar]
  84. Peric A, Annaert W. 2015. Early etiology of Alzheimer's disease: tipping the balance toward autophagy or endosomal dysfunction?. Acta Neuropathol. 129:363–81 [Google Scholar]
  85. Petit CS, Roczniak-Ferguson A, Ferguson SM. 2013. Recruitment of folliculin to lysosomes supports the amino acid–dependent activation of Rag GTPases. J. Cell Biol. 202:1107–22 [Google Scholar]
  86. Ploper D, Taelman VF, Robert L, Perez BS, Titz B. et al. 2015. MITF drives endolysosomal biogenesis and potentiates Wnt signaling in melanoma cells. PNAS 112:E420–29 [Google Scholar]
  87. Polishchuk EV, Concilli M, Iacobacci S, Chesi G, Pastore N. et al. 2014. Wilson disease protein ATP7B utilizes lysosomal exocytosis to maintain copper homeostasis. Dev. Cell 29:686–700 [Google Scholar]
  88. Polito VA, Li H, Martini-Stoica H, Wang B, Yang L. et al. 2014. Selective clearance of aberrant tau proteins and rescue of neurotoxicity by transcription factor EB. EMBO Mol. Med. 6:1142–60 [Google Scholar]
  89. Puleston DJ, Simon AK. 2014. Autophagy in the immune system. Immunology 141:1–8 [Google Scholar]
  90. Ramsden M, Kotilinek L, Forster C, Paulson J, McGowan E. et al. 2005. Age-dependent neurofibrillary tangle formation, neuron loss, and memory impairment in a mouse model of human tauopathy (P301L). J. Neurosci. 25:10637–47 [Google Scholar]
  91. Raposo G, Marks MS. 2007. Melanosomes—dark organelles enlighten endosomal membrane transport. Nat. Rev. Mol. Cell Biol. 8:786–97 [Google Scholar]
  92. Roczniak-Ferguson A, Petit CS, Froehlich F, Qian S, Ky J. et al. 2012. The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis. Sci. Signal. 5:ra42 [Google Scholar]
  93. Saban R, Simpson C, Davis CA, Dozmorov I, Maier J. et al. 2007. Transcription factor network downstream of protease activated receptors (PARs) modulating mouse bladder inflammation. BMC Immunol. 8:17 [Google Scholar]
  94. Salma N, Song JS, Arany Z, Fisher DE. 2015. Transcription factor Tfe3 directly regulates Pgc-1α in muscle. J. Cell. Physiol. 230:2330–36 [Google Scholar]
  95. Samie M, Cresswell P. 2015. The transcription factor TFEB acts as a molecular switch that regulates exogenous antigen-presentation pathways. Nat. Immunol. 16:729–36 [Google Scholar]
  96. Sancak Y, Bar-Peled L, Zoncu R, Markhard AL, Nada S, Sabatini DM. 2010. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 141:290–303 [Google Scholar]
  97. Sancak Y, Peterson TR, Shaul YD, Lindquist RA, Thoreen CC. et al. 2008. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320:1496–501 [Google Scholar]
  98. Santacruz K, Lewis J, Spires T, Paulson J, Kotilinek L. et al. 2005. Tau suppression in a neurodegenerative mouse model improves memory function. Science 309:476–81 [Google Scholar]
  99. Santaguida S, Amon A. 2015. Aneuploidy triggers a TFEB-mediated lysosomal stress response. Autophagy 12:2383–84 [Google Scholar]
  100. Santaguida S, Vasile E, White E, Amon A. 2015. Aneuploidy-induced cellular stresses limit autophagic degradation. Genes Dev. 29:2010–21 [Google Scholar]
  101. Sardiello M, Palmieri M, di Ronza A, Medina DL, Valenza M. et al. 2009. A gene network regulating lysosomal biogenesis and function. Science 325:473–77 [Google Scholar]
  102. Saucedo LJ, Gao X, Chiarelli DA, Li L, Pan D, Edgar BA. 2003. Rheb promotes cell growth as a component of the insulin/TOR signalling network. Nat. Cell Biol. 5:566–71 [Google Scholar]
  103. Schilling G, Becher MW, Sharp AH, Jinnah HA, Duan K. et al. 1999. Intranuclear inclusions and neuritic aggregates in transgenic mice expressing a mutant N-terminal fragment of huntingtin. Hum. Mol. Genet. 8:397–407 [Google Scholar]
  104. Schilling JD, Machkovech HM, He L, Diwan A, Schaffer JE. 2013. TLR4 activation under lipotoxic conditions leads to synergistic macrophage cell death through a TRIF-dependent pathway. J. Immunol. 190:1285–96 [Google Scholar]
  105. Schmidt LS, Linehan WM. 2015. Molecular genetics and clinical features of Birt-Hogg-Dube syndrome. Nat. Rev. Urol. 12:558–69 [Google Scholar]
  106. Schmidt LS, Nickerson ML, Warren MB, Glenn GM, Toro JR. et al. 2005. Germline BHD-mutation spectrum and phenotype analysis of a large cohort of families with Birt-Hogg-Dube syndrome. Am. J. Hum. Genet. 76:1023–33 [Google Scholar]
  107. Sekiguchi T, Hirose E, Nakashima N, Ii M, Nishimoto T. 2001. Novel G proteins, Rag C and Rag D, interact with GTP-binding proteins, Rag A and Rag B. J. Biol. Chem. 276:7246–57 [Google Scholar]
  108. Settembre C, Ballabio A. 2011. TFEB regulates autophagy: an integrated coordination of cellular degradation and recycling processes. Autophagy 7:1379–81 [Google Scholar]
  109. Settembre C, De Cegli R, Mansueto G, Saha PK, Vetrini F. et al. 2013. TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop. Nat. Cell Biol. 15:647–58 [Google Scholar]
  110. Settembre C, Di Malta C, Polito VA, Garcia Arencibia M, Vetrini F. et al. 2011. TFEB links autophagy to lysosomal biogenesis. Science 332:1429–33 [Google Scholar]
  111. Settembre C, Zoncu R, Medina DL, Vetrini F, Erdin S. et al. 2012. A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO J. 31:1095–108 [Google Scholar]
  112. Shi CS, Shenderov K, Huang NN, Kabat J, Abu-Asab M. et al. 2012. Activation of autophagy by inflammatory signals limits IL-1β production by targeting ubiquitinated inflammasomes for destruction. Nat. Immunol. 13:255–63 [Google Scholar]
  113. Siddiqui A, Bhaumik D, Chinta SJ, Rane A, Rajagopalan S. et al. 2015. Mitochondrial quality control via the PGC1α-TFEB signaling pathway is compromised by Parkin Q311X mutation but independently restored by rapamycin. J. Neurosci. 35:12833–44 [Google Scholar]
  114. Sidhar SK, Clark J, Gill S, Hamoudi R, Crew AJ. et al. 1996. The t(X;1)(p11.2;q21.2) translocation in papillary renal cell carcinoma fuses a novel gene PRCC to the TFE3 transcription factor gene. Hum. Mol. Genet. 5:1333–38 [Google Scholar]
  115. Song W, Wang F, Lotfi P, Sardiello M, Segatori L. 2014. 2-Hydroxypropyl-β-cyclodextrin promotes transcription factor EB-mediated activation of autophagy: implications for therapy. J. Biol. Chem. 289:10211–22 [Google Scholar]
  116. Song W, Wang F, Savini M, Ake A, di Ronza A. et al. 2013. TFEB regulates lysosomal proteostasis. Hum. Mol. Genet. 22:1994–2009 [Google Scholar]
  117. Sopher BL, Thomas PS Jr., LaFevre-Bernt MA, Holm IE, Wilke SA. et al. 2004. Androgen receptor YAC transgenic mice recapitulate SBMA motor neuronopathy and implicate VEGF164 in the motor neuron degeneration. Neuron 41:687–99 [Google Scholar]
  118. Spampanato C, Feeney E, Li L, Cardone M, Lim JA. et al. 2013. Transcription factor EB (TFEB) is a new therapeutic target for Pompe disease. EMBO Mol. Med. 5:691–706 [Google Scholar]
  119. Steingrimsson E, Tessarollo L, Pathak B, Hou L, Arnheiter H. et al. 2002. Mitf and Tfe3, two members of the Mitf-Tfe family of bHLH-Zip transcription factors, have important but functionally redundant roles in osteoclast development. PNAS 99:4477–82 [Google Scholar]
  120. Stingele S, Stoehr G, Peplowska K, Cox J, Mann M, Storchova Z. 2012. Global analysis of genome, transcriptome and proteome reveals the response to aneuploidy in human cells. Mol. Syst. Biol. 8:608 [Google Scholar]
  121. Stocker H, Radimerski T, Schindelholz B, Wittwer F, Belawat P. et al. 2003. Rheb is an essential regulator of S6K in controlling cell growth in Drosophila. Nat. Cell Biol. 5:559–65 [Google Scholar]
  122. Takashima A. 2006. GSK-3 is essential in the pathogenesis of Alzheimer's disease. J. Alzheimer's Dis. 9:309–17 [Google Scholar]
  123. Tang YC, Williams BR, Siegel JJ, Amon A. 2011. Identification of aneuploidy-selective antiproliferation compounds. Cell 144:499–512 [Google Scholar]
  124. Taylor HE, Khatua AK, Popik W. 2014. The innate immune factor apolipoprotein L1 restricts HIV-1 infection. J. Virol. 88:592–603 [Google Scholar]
  125. Tsun ZY, Bar-Peled L, Chantranupong L, Zoncu R, Wang T. et al. 2013. The folliculin tumor suppressor is a GAP for the RagC/D GTPases that signal amino acid levels to mTORC1. Mol. Cell 52:495–505 [Google Scholar]
  126. Tsunemi T, Ashe TD, Morrison BE, Soriano KR, Au J. et al. 2012. PGC-1α rescues Huntington's disease proteotoxicity by preventing oxidative stress and promoting TFEB function. Sci. Transl. Med. 4:142ra97 [Google Scholar]
  127. Tsunemi T, La Spada AR. 2012. PGC-1α at the intersection of bioenergetics regulation and neuron function: from Huntington's disease to Parkinson's disease and beyond. Prog. Neurobiol. 97:142–51 [Google Scholar]
  128. Unuma K, Aki T, Funakoshi T, Hashimoto K, Uemura K. 2015. Extrusion of mitochondrial contents from lipopolysaccharide-stimulated cells: involvement of autophagy. Autophagy 11:1520–36 [Google Scholar]
  129. Unuma K, Aki T, Funakoshi T, Yoshida K, Uemura K. 2013. Cobalt protoporphyrin accelerates TFEB activation and lysosome reformation during LPS-induced septic insults in the rat heart. PLOS ONE 8:e56526 [Google Scholar]
  130. Vainshtein A, Desjardins EM, Armani A, Sandri M, Hood DA. 2015. PGC-1α modulates denervation-induced mitophagy in skeletal muscle. Skelet. Muscle 5:9 [Google Scholar]
  131. Verastegui C, Bertolotto C, Bille K, Abbe P, Ortonne JP, Ballotti R. 2000. TFE3, a transcription factor homologous to microphthalmia, is a potential transcriptional activator of tyrosinase and TyrpI genes. Mol. Endocrinol. 14:449–56 [Google Scholar]
  132. Visvikis O, Ihuegbu N, Labed SA, Luhachack LG, Alves AM. et al. 2014. Innate host defense requires TFEB-mediated transcription of cytoprotective and antimicrobial genes. Immunity 40:896–909 [Google Scholar]
  133. Vitner EB, Platt FM, Futerman AH. 2010. Common and uncommon pathogenic cascades in lysosomal storage diseases. J. Biol. Chem. 285:20423–27 [Google Scholar]
  134. Weydt P, Pineda VV, Torrence AE, Libby RT, Satterfield TF. et al. 2006. Thermoregulatory and metabolic defects in Huntington's disease transgenic mice implicate PGC-1α in Huntington's disease neurodegeneration. Cell Metab. 4:349–62 [Google Scholar]
  135. Wunderlich W, Fialka I, Teis D, Alpi A, Pfeifer A. et al. 2001. A novel 14-kilodalton protein interacts with the mitogen-activated protein kinase scaffold Mp1 on a late endosomal/lysosomal compartment. J. Cell Biol. 152:765–76 [Google Scholar]
  136. Xiao Q, Yan P, Ma X, Liu H, Perez R. et al. 2014. Enhancing astrocytic lysosome biogenesis facilitates Aβ clearance and attenuates amyloid plaque pathogenesis. J. Neurosci. 34:9607–20 [Google Scholar]
  137. Xiao Q, Yan P, Ma X, Liu H, Perez R. et al. 2015. Neuronal-targeted TFEB accelerates lysosomal degradation of APP, reducing Aβ generation and amyloid plaque pathogenesis. J. Neurosci. 35:12137–51 [Google Scholar]
  138. Yagil Z, Hadad Erlich T, Ofir-Birin Y, Tshori S, Kay G. et al. 2012. Transcription factor E3, a major regulator of mast cell–mediated allergic response. J. Allergy Clin. Immunol. 129:1357–66.e5 [Google Scholar]
  139. Yang DS, Stavrides P, Mohan PS, Kaushik S, Kumar A. et al. 2011. Reversal of autophagy dysfunction in the TgCRND8 mouse model of Alzheimer's disease ameliorates amyloid pathologies and memory deficits. Brain 134:258–77 [Google Scholar]
  140. Yang S, Wang X, Contino G, Liesa M, Sahin E. et al. 2011. Pancreatic cancers require autophagy for tumor growth. Genes Dev. 25:717–29 [Google Scholar]
  141. Yu Z, Dadgar N, Albertelli M, Gruis K, Jordan C. et al. 2006. Androgen-dependent pathology demonstrates myopathic contribution to the Kennedy disease phenotype in a mouse knock-in model. J. Clin. Investig. 116:2663–72 [Google Scholar]
  142. Zanocco-Marani T, Vignudelli T, Gemelli C, Pirondi S, Testa A. et al. 2006. Tfe3 expression is closely associated to macrophage terminal differentiation of human hematopoietic myeloid precursors. Exp. Cell Res. 312:4079–89 [Google Scholar]
  143. Zanocco-Marani T, Vignudelli T, Parenti S, Gemelli C, Condorelli F. et al. 2009. TFE3 transcription factor regulates the expression of MAFB during macrophage differentiation. Exp. Cell Res. 315:1798–808 [Google Scholar]
  144. Zhang T, Zhou Q, Ogmundsdottir MH, Moller K, Siddaway R. et al. 2015. Mitf is a master regulator of the v-ATPase, forming a control module for cellular homeostasis with v-ATPase and TORC1. J. Cell Sci. 128:2938–50 [Google Scholar]
  145. Zoncu R, Bar-Peled L, Efeyan A, Wang S, Sancak Y, Sabatini DM. 2011. mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H+-ATPase. Science 334:678–83 [Google Scholar]
/content/journals/10.1146/annurev-cellbio-111315-125407
Loading
/content/journals/10.1146/annurev-cellbio-111315-125407
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error