1932

Abstract

Cell migration is central to a multitude of physiological processes, including embryonic development, immune surveillance, and wound healing, and deregulated migration is key to cancer dissemination. Decades of investigations have uncovered many of the molecular and physical mechanisms underlying cell migration. Together with protrusion extension and cell body retraction, adhesion to the substrate via specific focal adhesion points has long been considered an essential step in cell migration. Although this is true for cells moving on two-dimensional substrates, recent studies have demonstrated that focal adhesions are not required for cells moving in three dimensions, in which confinement is sufficient to maintain a cell in contact with its substrate. Here, we review the investigations that have led to challenging the requirement of specific adhesions for migration, discuss the physical mechanisms proposed for cell body translocation during focal adhesion–independent migration, and highlight the remaining open questions for the future.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cellbio-111315-125341
2016-10-06
2024-04-15
Loading full text...

Full text loading...

/deliver/fulltext/cellbio/32/1/annurev-cellbio-111315-125341.html?itemId=/content/journals/10.1146/annurev-cellbio-111315-125341&mimeType=html&fmt=ahah

Literature Cited

  1. Abercrombie M. 1980. The Croonian Lecture, 1978: the crawling movement of metazoan cells. Proc. R. Soc. B Biol. Sci. 207:129–47 [Google Scholar]
  2. Abercrombie M, Heaysman JE, Pegrum SM. 1970a. The locomotion of fibroblasts in culture. I. Movements of the leading edge. Exp. Cell Res. 59:393–8 [Google Scholar]
  3. Abercrombie M, Heaysman JE, Pegrum SM. 1970b. The locomotion of fibroblasts in culture. III. Movements of particles on the dorsal surface of the leading lamella. Exp. Cell Res. 62:389–98 [Google Scholar]
  4. Adams DH, Shaw S. 1994. Leucocyte-endothelial interactions and regulation of leucocyte migration. Lancet 343:831–36 [Google Scholar]
  5. Allena R, Thiam H, Piel M, Aubry D. 2015. A mechanical model to investigate the role of the nucleus during confined cell migration. Comput. Methods Biomech. Biomed. Eng. 18:Suppl. 11868–69 [Google Scholar]
  6. Armstrong PB, Lackie JM. 1975. Studies of intercellular invasion in vitro using rabbit peritoneal neutrophil granulocytes (PMNS). I. Role of contact inhibition of locomotion. J. Cell Biol. 65:439–62 [Google Scholar]
  7. Auffray C, Fogg D, Garfa M, Elain G, Join-Lambert O. et al. 2007. Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science 317:666–70 [Google Scholar]
  8. Bae AJ, Bodenschatz E. 2010. On the swimming of Dictyostelium amoebae. PNAS 107:E165–66 [Google Scholar]
  9. Balaban NQ, Schwarz US, Riveline D, Goichberg P, Tzur G. et al. 2001. Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nat. Cell Biol. 3:466–72 [Google Scholar]
  10. Balzer EM, Tong Z, Paul CD, Hung WC, Stroka KM. et al. 2012. Physical confinement alters tumor cell adhesion and migration phenotypes. FASEB J. 26:4045–56 [Google Scholar]
  11. Barnhart EL, Lee KC, Keren K, Mogilner A, Theriot JA. 2011. An adhesion-dependent switch between mechanisms that determine motile cell shape. PLOS Biol. 9:e1001059 [Google Scholar]
  12. Barry NP, Bretscher MS. 2010. Dictyostelium amoebae and neutrophils can swim. PNAS 107:11376–80 [Google Scholar]
  13. Bartholomaus I, Kawakami N, Odoardi F, Schlager C, Miljkovic D. et al. 2009. Effector T cell interactions with meningeal vascular structures in nascent autoimmune CNS lesions. Nature 462:94–98 [Google Scholar]
  14. Bergert M, Chandradoss SD, Desai RA, Paluch E. 2012. Cell mechanics control rapid transitions between blebs and lamellipodia during migration. PNAS 109:14434–39 [Google Scholar]
  15. Bergert M, Erzberger A, Desai RA, Aspalter IM, Oates AC. et al. 2015. Force transmission during adhesion-independent migration. Nat. Cell Biol. 17:524–29 [Google Scholar]
  16. Blair DF. 1990. The bacterial flagellar motor. Semin. Cell Biol. 1:75–85 [Google Scholar]
  17. Blaser H, Reichman-Fried M, Castanon I, Dumstrei K, Marlow FL. et al. 2006. Migration of zebrafish primordial germ cells: a role for myosin contraction and cytoplasmic flow. Dev. Cell 11:613–27 [Google Scholar]
  18. Bouvard D, Brakebusch C, Gustafsson E, Aszodi A, Bengtsson T. et al. 2001. Functional consequences of integrin gene mutations in mice. Circ. Res. 89:211–23 [Google Scholar]
  19. Brown AF. 1982. Neutrophil granulocytes: adhesion and locomotion on collagen substrata and in collagen matrices. J. Cell Sci. 58:455–67 [Google Scholar]
  20. Butcher EC. 1991. Leukocyte-endothelial cell recognition: three (or more) steps to specificity and diversity. Cell 67:1033–36 [Google Scholar]
  21. Carlos TM, Harlan JM. 1994. Leukocyte-endothelial adhesion molecules. Blood 84:2068–101 [Google Scholar]
  22. Case LB, Waterman CM. 2015. Integration of actin dynamics and cell adhesion by a three-dimensional, mechanosensitive molecular clutch. Nat. Cell Biol. 17:955–63 [Google Scholar]
  23. Cattin AL, Burden JJ, Van Emmenis L, Mackenzie FE, Hoving JJ. et al. 2015. Macrophage-induced blood vessels guide Schwann cell–mediated regeneration of peripheral nerves. Cell 162:1127–39 [Google Scholar]
  24. Charras G, Paluch E. 2008. Blebs lead the way: how to migrate without lamellipodia. Nat. Rev. Mol. Cell Biol. 9:730–36 [Google Scholar]
  25. Choi CK, Vicente-Manzanares M, Zareno J, Whitmore LA, Mogilner A, Horwitz AR. 2008. Actin and alpha-actinin orchestrate the assembly and maturation of nascent adhesions in a myosin II motor–independent manner. Nat. Cell Biol. 10:1039–50 [Google Scholar]
  26. Cramer LP. 2010. Forming the cell rear first: breaking cell symmetry to trigger directed cell migration. Nat. Cell Biol. 12:628–32 [Google Scholar]
  27. Danuser G, Allard J, Mogilner A. 2013. Mathematical modeling of eukaryotic cell migration: insights beyond experiments. Annu. Rev. Cell Dev. Biol. 29:501–28 [Google Scholar]
  28. Davidson PM, Sliz J, Isermann P, Denais C, Lammerding J. 2015. Design of a microfluidic device to quantify dynamic intra-nuclear deformation during cell migration through confining environments. Integr. Biol. 7:1534–46 [Google Scholar]
  29. De Bruyn PP. 1946. The amoeboid movement of the mammalian leukocyte in tissue culture. Anat. Rec. 95:177–91 [Google Scholar]
  30. Dembo M, Wang YL. 1999. Stresses at the cell-to-substrate interface during locomotion of fibroblasts. Biophys. J. 76:2307–16 [Google Scholar]
  31. Diz-Muñoz A, Krieg M, Bergert M, Ibarlucea-Benitez I, Muller DJ. et al. 2010. Control of directed cell migration in vivo by membrane-to-cortex attachment. PLOS Biol. 8:e1000544 [Google Scholar]
  32. Dusenbery DB. 2009. Living at Micro Scale: The Unexpected Physics of Being Small Cambridge, MA/London: Harvard Univ. Press
  33. Eisenbach M. 1990. Functions of the flagellar modes of rotation in bacterial motility and chemotaxis. Mol. Microbiol. 4:161–67 [Google Scholar]
  34. Elgeti J, Winkler RG, Gompper G. 2015. Physics of microswimmers—single particle motion and collective behavior: a review. Rep. Prog. Phys. 78:056601 [Google Scholar]
  35. Evans E. 1992. Equilibrium “wetting” of surfaces by membrane-covered vesicles. Adv. Colloid Interface Sci. 39:103–28 [Google Scholar]
  36. Even-Ram S, Yamada KM. 2005. Cell migration in 3D matrix. Curr. Opin. Cell Biol. 17:524–32 [Google Scholar]
  37. Fässler R, Georges-Labouesse E, Hirsch E. 1996. Genetic analyses of integrin function in mice. Curr. Opin. Cell Biol. 8:641–46 [Google Scholar]
  38. Fässler R, Meyer M. 1995. Consequences of lack of β1 integrin gene expression in mice. Genes Dev. 9:1896–908 [Google Scholar]
  39. Friedl P. 2004. Prespecification and plasticity: shifting mechanisms of cell migration. Curr. Opin. Cell Biol. 16:14–23 [Google Scholar]
  40. Friedl P, Borgmann S, Brocker EB. 2001. Amoeboid leukocyte crawling through extracellular matrix: lessons from the Dictyostelium paradigm of cell movement. J. Leukoc. Biol. 70:491–509 [Google Scholar]
  41. Friedl P, Brocker EB. 2000. The biology of cell locomotion within three-dimensional extracellular matrix. Cell. Mol. Life Sci. 57:41–64 [Google Scholar]
  42. Friedl P, Entschladen F, Conrad C, Niggemann B, Zanker KS. 1998a. CD4+ T lymphocytes migrating in three-dimensional collagen lattices lack focal adhesions and utilize β1 integrin–independent strategies for polarization, interaction with collagen fibers and locomotion. Eur. J. Immunol. 28:2331–43 [Google Scholar]
  43. Friedl P, Wolf K. 2010. Plasticity of cell migration: a multiscale tuning model. J. Cell Biol. 188:11–19 [Google Scholar]
  44. Friedl P, Zanker KS, Brocker EB. 1998b. Cell migration strategies in 3-D extracellular matrix: differences in morphology, cell matrix interactions, and integrin function. Microsc. Res. Tech. 43:369–78 [Google Scholar]
  45. Gardel ML, Sabass B, Ji L, Danuser G, Schwarz US, Waterman CM. 2008. Traction stress in focal adhesions correlates biphasically with actin retrograde flow speed. J. Cell Biol. 183:999–1005 [Google Scholar]
  46. Gardel ML, Schneider IC, Aratyn-Schaus Y, Waterman CM. 2010. Mechanical integration of actin and adhesion dynamics in cell migration. Annu. Rev. Cell Dev. Biol. 26:315–33 [Google Scholar]
  47. Glacy SD. 1983. Subcellular distribution of rhodamine-actin microinjected into living fibroblastic cells. J. Cell Biol. 97:1207–13 [Google Scholar]
  48. Gupton SL, Anderson KL, Kole TP, Fischer RS, Ponti A. et al. 2005. Cell migration without a lamellipodium: translation of actin dynamics into cell movement mediated by tropomyosin. J. Cell Biol. 168:619–31 [Google Scholar]
  49. Gupton SL, Waterman-Storer CM. 2006. Spatiotemporal feedback between actomyosin and focal-adhesion systems optimizes rapid cell migration. Cell 125:1361–74 [Google Scholar]
  50. Harada T, Swift J, Irianto J, Shin JW, Spinler KR. et al. 2014. Nuclear lamin stiffness is a barrier to 3D migration, but softness can limit survival. J. Cell Biol. 204:669–82 [Google Scholar]
  51. Haston WS, Shields JM, Wilkinson PC. 1982. Lymphocyte locomotion and attachment on two-dimensional surfaces and in three-dimensional matrices. J. Cell Biol. 92:747–52 [Google Scholar]
  52. Hawkins RJ, Piel M, Faure-Andre G, Lennon-Dumenil AM, Joanny JF. et al. 2009. Pushing off the walls: a mechanism of cell motility in confinement. Phys. Rev. Lett. 102:058103 [Google Scholar]
  53. Hawkins RJ, Poincloux R, Benichou O, Piel M, Chavrier P, Voituriez R. 2011. Spontaneous contractility-mediated cortical flow generates cell migration in three-dimensional environments. Biophys. J. 101:1041–45 [Google Scholar]
  54. Henson JH, Svitkina TM, Burns AR, Hughes HE, MacPartland KJ. et al. 1999. Two components of actin-based retrograde flow in sea urchin coelomocytes. Mol. Biol. Cell 10:4075–90 [Google Scholar]
  55. Hirsch E, Iglesias A, Potocnik AJ, Hartmann U, Fässler R. 1996. Impaired migration but not differentiation of haematopoietic stem cells in the absence of β1 integrins. Nature 380:171–75 [Google Scholar]
  56. Holwill ME, Foster GF, Hamasaki T, Satir P. 1995. Biophysical aspects and modelling of ciliary motility. Cell Motil. Cytoskelet. 32:114–20 [Google Scholar]
  57. Howe JD, Barry NP, Bretscher MS. 2013. How do amoebae swim and crawl?. PLOS ONE 8:e74382 [Google Scholar]
  58. Hu K, Ji L, Applegate KT, Danuser G, Waterman-Storer CM. 2007. Differential transmission of actin motion within focal adhesions. Science 315:111–15 [Google Scholar]
  59. Hynes RO. 2004. The emergence of integrins: a personal and historical perspective. Matrix Biol. 23:333–40 [Google Scholar]
  60. Jacobelli J, Friedman RS, Conti MA, Lennon-Dumenil AM, Piel M. et al. 2010. Confinement-optimized three-dimensional T cell amoeboid motility is modulated via myosin IIA–regulated adhesions. Nat. Immunol. 11:953–61 [Google Scholar]
  61. Kanchanawong P, Shtengel G, Pasapera AM, Ramko EB, Davidson MW. et al. 2010. Nanoscale architecture of integrin-based cell adhesions. Nature 468:580–84 [Google Scholar]
  62. Kardash E, Reichman-Fried M, Maitre JL, Boldajipour B, Papusheva E. et al. 2010. A role for Rho GTPases and cell-cell adhesion in single-cell motility in vivo. Nat. Cell Biol. 12:47–53 [Google Scholar]
  63. Krause M, Wolf K. 2015. Cancer cell migration in 3D tissue: negotiating space by proteolysis and nuclear deformability. Cell Adhes. Migr. 9:357–66 [Google Scholar]
  64. Kubow KE, Horwitz AR. 2011. Reducing background fluorescence reveals adhesions in 3D matrices. Nat. Cell Biol. 13:3–5 author reply 5–7 [Google Scholar]
  65. Lämmermann T, Afonso PV, Angermann BR, Wang JM, Kastenmuller W. et al. 2013. Neutrophil swarms require LTB4 and integrins at sites of cell death in vivo. Nature 498:371–75 [Google Scholar]
  66. Lämmermann T, Bader BL, Monkley SJ, Worbs T, Wedlich-Soldner R. et al. 2008. Rapid leukocyte migration by integrin-independent flowing and squeezing. Nature 453:51–55 [Google Scholar]
  67. Lämmermann T, Sixt M. 2009. Mechanical modes of ‘amoeboid’ cell migration. Curr. Opin. Cell Biol. 21:636–44 [Google Scholar]
  68. Lautscham LA, Kammerer C, Lange JR, Kolb T, Mark C. et al. 2015. Migration in confined 3D environments is determined by a combination of adhesiveness, nuclear volume, contractility, and cell stiffness. Biophys. J. 109:900–13 [Google Scholar]
  69. Lim FY, Koon YL, Chiam KH. 2013. A computational model of amoeboid cell migration. Comput. Methods Biomech. Biomed. Eng. 16:1085–95 [Google Scholar]
  70. Liu YJ, Le Berre M, Lautenschlaeger F, Maiuri P, Callan-Jones A. et al. 2015. Confinement and low adhesion induce fast amoeboid migration of slow mesenchymal cells. Cell 160:659–72 [Google Scholar]
  71. Loomis WF, Fuller D, Gutierrez E, Groisman A, Rappel WJ. 2012. Innate non-specific cell substratum adhesion. PLOS ONE 7:e42033 [Google Scholar]
  72. Madsen CD, Hooper S, Tozluoglu M, Bruckbauer A, Fletcher G. et al. 2015. STRIPAK components determine mode of cancer cell migration and metastasis. Nat. Cell Biol. 17:68–80 [Google Scholar]
  73. Madsen CD, Sahai E. 2010. Cancer dissemination—lessons from leukocytes. Dev. Cell 19:13–26 [Google Scholar]
  74. Mak M, Reinhart-King CA, Erickson D. 2013. Elucidating mechanical transition effects of invading cancer cells with a subnucleus-scaled microfluidic serial dimensional modulation device. Lab Chip 13:340–48 [Google Scholar]
  75. Malawista SE, de Boisfleury Chevance A. 1997. Random locomotion and chemotaxis of human blood polymorphonuclear leukocytes (PMN) in the presence of EDTA: PMN in close quarters require neither leukocyte integrins nor external divalent cations. PNAS 94:11577–82 [Google Scholar]
  76. Malawista SE, de Boisfleury Chevance A, Boxer LA. 2000. Random locomotion and chemotaxis of human blood polymorphonuclear leukocytes from a patient with leukocyte adhesion deficiency-1: normal displacement in close quarters via chimneying. Cell Motil. Cytoskelet. 46:183–89 [Google Scholar]
  77. Malboubi M, Jayo A, Parsons M, Charras G. 2015. An open access microfluidic device for the study of the physical limits of cancer cell deformation during migration in confined environments. Microelectron. Eng. 144:42–45 [Google Scholar]
  78. Mandeville JT, Lawson MA, Maxfield FR. 1997. Dynamic imaging of neutrophil migration in three dimensions: mechanical interactions between cells and matrix. J. Leukoc. Biol. 61:188–200 [Google Scholar]
  79. Medeiros NA, Burnette DT, Forscher P. 2006. Myosin II functions in actin-bundle turnover in neuronal growth cones. Nat. Cell Biol. 8:215–26 [Google Scholar]
  80. Mills GB, Moolenaar WH. 2003. The emerging role of lysophosphatidic acid in cancer. Nat. Rev. Cancer 3:582–91 [Google Scholar]
  81. Mitchison T, Kirschner M. 1988. Cytoskeletal dynamics and nerve growth. Neuron 1:761–72 [Google Scholar]
  82. Overstreet MG, Gaylo A, Angermann BR, Hughson A, Hyun YM. et al. 2013. Inflammation-induced interstitial migration of effector CD4+ T cells is dependent on integrin αV. Nat. Immunol. 14:949–58 [Google Scholar]
  83. Palecek SP, Loftus JC, Ginsberg MH, Lauffenburger DA, Horwitz AF. 1997. Integrin-ligand binding properties govern cell migration speed through cell-substratum adhesiveness. Nature 385:537–40 [Google Scholar]
  84. Paluch EK, Raz E. 2013. The role and regulation of blebs in cell migration. Curr. Opin. Cell Biol. 25:582–90 [Google Scholar]
  85. Pankova K, Rosel D, Novotny M, Brabek J. 2010. The molecular mechanisms of transition between mesenchymal and amoeboid invasiveness in tumor cells. Cell. Mol. Life Sci. 67:63–71 [Google Scholar]
  86. Phillipson M, Heit B, Colarusso P, Liu L, Ballantyne CM, Kubes P. 2006. Intraluminal crawling of neutrophils to emigration sites: a molecularly distinct process from adhesion in the recruitment cascade. J. Exp. Med. 203:2569–75 [Google Scholar]
  87. Plotnikov SV, Waterman CM. 2013. Guiding cell migration by tugging. Curr. Opin. Cell Biol. 25:619–26 [Google Scholar]
  88. Prost J, Jülicher F, Joanny JF. 2015. Active gel physics. Nat. Phys. 11:111–17 [Google Scholar]
  89. Purcell EM. 1977. Life at low Reynolds number. Am. J. Phys. 45:3–11 [Google Scholar]
  90. Rafelski SM, Theriot JA. 2004. Crawling toward a unified model of cell mobility: spatial and temporal regulation of actin dynamics. Annu. Rev. Biochem. 73:209–39 [Google Scholar]
  91. Renkawitz J, Schumann K, Weber M, Lämmermann T, Pflicke H. et al. 2009. Adaptive force transmission in amoeboid cell migration. Nat. Cell Biol. 11:1438–43 [Google Scholar]
  92. Renkawitz J, Sixt M. 2010. Mechanisms of force generation and force transmission during interstitial leukocyte migration. EMBO Rep. 11:744–50 [Google Scholar]
  93. Riveline D, Zamir E, Balaban NQ, Schwarz US, Ishizaki T. et al. 2001. Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and ROCK-independent mechanism. J. Cell Biol. 153:1175–86 [Google Scholar]
  94. Rosel D, Brabek J, Tolde O, Mierke CT, Zitterbart DP. et al. 2008. Up-regulation of Rho/ROCK signaling in sarcoma cells drives invasion and increased generation of protrusive forces. Mol. Cancer Res. 6:1410–20 [Google Scholar]
  95. Rösel von Rosenhof AJ, Kleemann CFC, Fleischmann JJF. 1746. Neunundneunzigste und Hunderte. Der monatlich-herausgegebenen Insecten-Belustigung611–23 Nuremberg: Johann Joseph Fleischmann [Google Scholar]
  96. Ruprecht V, Wieser S, Callan-Jones A, Smutny M, Morita H. et al. 2015. Cortical contractility triggers a stochastic switch to fast amoeboid cell motility. Cell 160:673–85 [Google Scholar]
  97. Sahai E, Marshall CJ. 2003. Differing modes of tumour cell invasion have distinct requirements for Rho/ROCK signalling and extracellular proteolysis. Nat. Cell Biol. 5:711–19 [Google Scholar]
  98. Schmidt S, Friedl P. 2010. Interstitial cell migration: integrin-dependent and alternative adhesion mechanisms. Cell Tissue Res. 339:83–92 [Google Scholar]
  99. Schwarz U, Safran S. 2013. Physics of adherent cells. Rev. Mod. Phys. 85:1327 [Google Scholar]
  100. Shimizu Y, Newman W, Gopal TV, Horgan KJ, Graber N. et al. 1991. Four molecular pathways of T cell adhesion to endothelial cells: roles of LFA-1, VCAM-1, and ELAM-1 and changes in pathway hierarchy under different activation conditions. J. Cell Biol. 113:1203–12 [Google Scholar]
  101. Shimizu Y, Newman W, Tanaka Y, Shaw S. 1992. Lymphocyte interactions with endothelial cells. Immunol. Today 13:106–12 [Google Scholar]
  102. Suraneni P, Rubinstein B, Unruh JR, Durnin M, Hanein D, Li R. 2012. The Arp2/3 complex is required for lamellipodia extension and directional fibroblast cell migration. J. Cell Biol. 197:239–51 [Google Scholar]
  103. Suter DM, Errante LD, Belotserkovsky V, Forscher P. 1998. The Ig superfamily cell adhesion molecule, apCAM, mediates growth cone steering by substrate-cytoskeletal coupling. J. Cell Biol. 141:227–40 [Google Scholar]
  104. Tinevez JY, Schulze U, Salbreux G, Roensch J, Joanny JF, Paluch E. 2009. Role of cortical tension in bleb growth. PNAS 106:18581–86 [Google Scholar]
  105. Toyjanova J, Flores-Cortez E, Reichner JS, Franck C. 2015. Matrix confinement plays a pivotal role in regulating neutrophil-generated tractions, speed, and integrin utilization. J. Biol. Chem. 290:3752–63 [Google Scholar]
  106. Tozluoglu M, Tournier AL, Jenkins RP, Hooper S, Bates PA, Sahai E. 2013. Matrix geometry determines optimal cancer cell migration strategy and modulates response to interventions. Nat. Cell Biol. 15:751–62 [Google Scholar]
  107. Trinkaus JP. 1973. Surface activity and locomotion of Fundulus deep cells during blastula and gastrula stages. Dev. Biol. 30:69–103 [Google Scholar]
  108. Webb DJ, Parsons JT, Horwitz AF. 2002. Adhesion assembly, disassembly and turnover in migrating cells—over and over and over again. Nat. Cell Biol. 4:E97–100 [Google Scholar]
  109. Weber I, Wallraff E, Albrecht R, Gerisch G. 1995. Motility and substratum adhesion of Dictyostelium wild-type and cytoskeletal mutant cells: a study by RICM/bright-field double-view image analysis. J. Cell Sci. 108:Pt 41519–30 [Google Scholar]
  110. Weigert R, Porat-Shliom N, Amornphimoltham P. 2013. Imaging cell biology in live animals: ready for prime time. J. Cell Biol. 201:969–79 [Google Scholar]
  111. Wilson K, Lewalle A, Fritzsche M, Thorogate R, Duke T, Charras G. 2013. Mechanisms of leading edge protrusion in interstitial migration. Nat. Commun. 4:2896 [Google Scholar]
  112. Wolf K, Friedl P. 2006. Molecular mechanisms of cancer cell invasion and plasticity. Br. J. Dermatol. 154:Suppl. 111–15 [Google Scholar]
  113. Wolf K, Mazo I, Leung H, Engelke K, von Andrian UH. et al. 2003. Compensation mechanism in tumor cell migration: mesenchymal-amoeboid transition after blocking of pericellular proteolysis. J. Cell Biol. 160:267–77 [Google Scholar]
  114. Wolf K, Te Lindert M, Krause M, Alexander S, Te Riet J. et al. 2013. Physical limits of cell migration: control by ECM space and nuclear deformation and tuning by proteolysis and traction force. J. Cell Biol. 201:1069–84 [Google Scholar]
  115. Woolf E, Grigorova I, Sagiv A, Grabovsky V, Feigelson SW. et al. 2007. Lymph node chemokines promote sustained T lymphocyte motility without triggering stable integrin adhesiveness in the absence of shear forces. Nat. Immunol. 8:1076–85 [Google Scholar]
  116. Wu C, Asokan SB, Berginski ME, Haynes EM, Sharpless NE. et al. 2012. Arp2/3 is critical for lamellipodia and response to extracellular matrix cues but is dispensable for chemotaxis. Cell 148:973–87 [Google Scholar]
  117. Wyckoff JB, Pinner SE, Gschmeissner S, Condeelis JS, Sahai E. 2006. ROCK- and myosin-dependent matrix deformation enables protease-independent tumor-cell invasion in vivo. Curr. Biol. 16:1515–23 [Google Scholar]
  118. Yip AK, Chiam KH, Matsudaira P. 2015. Traction stress analysis and modeling reveal that amoeboid migration in confined spaces is accompanied by expansive forces and requires the structural integrity of the membrane-cortex interactions. Integr. Biol. 7:1196–211 [Google Scholar]
  119. Yumura S, Mori H, Fukui Y. 1984. Localization of actin and myosin for the study of ameboid movement in Dictyostelium using improved immunofluorescence. J. Cell Biol. 99:894–99 [Google Scholar]
  120. Zaman MH, Trapani LM, Sieminski AL, Mackellar D, Gong H. et al. 2006. Migration of tumor cells in 3D matrices is governed by matrix stiffness along with cell-matrix adhesion and proteolysis. PNAS 103:10889–94 [Google Scholar]
/content/journals/10.1146/annurev-cellbio-111315-125341
Loading
/content/journals/10.1146/annurev-cellbio-111315-125341
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error