- Home
- A-Z Publications
- Annual Review of Cell and Developmental Biology
- Previous Issues
- Volume 15, 1999
Annual Review of Cell and Developmental Biology - Volume 15, 1999
Volume 15, 1999
- Preface
-
- Review Articles
-
-
-
Vacuolar Import of Proteins and Organelles From The Cytoplasm
Vol. 15 (1999), pp. 1–32More Less▪ AbstractMany cellular processes require a balance between protein synthesis and protein degradation. The vacuole/lysosome is the main site of protein and organellar turnover within the cell due to its ability to sequester numerous hydrolases within a membrane-enclosed compartment. Several mechanisms are used to deliver substrates, as well as resident hydrolases, to this organelle. The delivery processes involve dynamic rearrangements of membrane. In addition, continual adjustments are made to respond to changes in environmental conditions. In this review, we focus on recent progress made in analyzing these delivery processes at a molecular level. The identification of protein components involved in the recognition, sequestration, and transport events has begun to provide information about this important area of eukaryotic cell physiology.
-
-
-
-
Blue-Light Photoreceptors in Higher Plants
Vol. 15 (1999), pp. 33–62More Less▪ AbstractIn the past few years great progress has been made in identifying and characterizing plant photoreceptors active in the blue/UV-A regions of the spectrum. These photoreceptors include cryptochrome 1 and cryptochrome 2, which are similar in structure and chromophore composition to the prokaryotic DNA photolyases. However, they have a C-terminal extension that is not present in photolyases and lack photolyase activity. They are involved in regulation of cell elongation and in many other processes, including interfacing with circadian rhythms and activating gene transcription. Animal cryptochromes that play a photoreceptor role in circadian rhythms have also been characterized. Phototropin, the protein product of the NPH1 gene in Arabidopsis, likely serves as the photoreceptor for phototropism and appears to have no other role. A plasma membrane protein, it serves as photoreceptor, kinase, and substrate for light-activated phosphorylation. The carotenoid zeaxanthin may serve as the chromophore for a photoreceptor involved in blue-light-activated stomatal opening. The properties of these photoreceptors and some of the downstream events they are known to activate are discussed.
-
-
-
Cooperation Between Microtubule- and Actin-Based Motor Proteins
Vol. 15 (1999), pp. 63–80More Less▪ AbstractOrganelle transport has been proposed to proceed in two steps: long-range transport along microtubules and local delivery via actin filaments. This model is supported by recent studies of pigment transport in several cell types and transport in neurons, and in several cases, class V myosin has been implicated as the actin-based motor. Mutations in mice (dilute) and yeast (myo2) have also implicated this class of myosin in organelle transport, and genetic interactions in yeast have indicated that a kinesin-related protein (Smy1p) plays a supporting role. This link between members of two different motor superfamilies has now taken a surprising turn: There is evidence for a physical interaction between class V myosins and kinesin or Smy1p in both mice and yeast.
-
-
-
Molecular Mechanisms of Neural Crest Formation
Vol. 15 (1999), pp. 81–112More Less▪ AbstractThe neural crest is a transient population of multipotent precursor cells named for its site of origin at the crest of the closing neural folds in vertebrate embryos. Following neural tube closure, these cells become migratory and populate diverse regions throughout the embryo where they give rise to most of the neurons and support cells of the peripheral nervous system (PNS), pigment cells, smooth muscle, craniofacial cartilage, and bone. Because of its remarkable ability to generate such diverse derivatives, the neural crest has fascinated developmental biologists for over one hundred years. A great deal has been learned about the migratory pathways neural crest cells follow and the signals that may trigger their differentiation, but until recently comparatively little was known about earlier steps in neural crest development. In the past few years progress has been made in understanding these earlier events, including how the precursors of these multipotent cells are specified in the early embryo and the mechanisms by which they become migratory. In this review, we first examine the mechanisms underlying neural crest induction, paying particular attention to a number of growth factor and transcription factor families that have been implicated in this process. We also discuss when and how the fate of neural crest precursors may diverge from those of nearby neural and epidermal populations. Finally, we review recent advances in our understanding of how neural crest cells become migratory and address the process of neural crest diversification.
-
-
-
Lymphocyte Survival—The Struggle Against Death
Vol. 15 (1999), pp. 113–140More Less▪ AbstractCell proliferation and cell death must be closely regulated to maintain the integrity of the immune system during the lifetime of multicellular organisms. Proliferative expansion of lymphoid cells is required for effective immune responses against invading microorganisms. However, following infection eradication, expanded effector cells must be eliminated to prevent non-adaptive accumulation of cells. Therefore, higher vertebrates have developed an extensive network of signal transduction pathways that allow integration of cell survival and cell death stimuli. This network functions to ensure the controlled activation and expansion of cells during an immune response and the deletion of lymphoid cells that are no longer needed at the end of an immune response. Extracellular signals appear to control both mechanisms. Ultimate responses are integrated through cell surface receptors that are linked to intracellular signaling cascades. These signal transduction pathways converge to regulate cell fate at both transcriptional and post-transcriptional levels. In this review, the role of pathways triggered by TNFR-related molecules that determine the fate of lymphoid cells during development and activation is summarized.
-
-
-
The Road Less Traveled1: Emerging Principles of Kinesin Motor Utilization
Vol. 15 (1999), pp. 141–183More Less▪ AbstractProteins of the kinesin superfamily utilize a conserved catalytic motor domain to generate movements in a wide variety of cellular processes. In this review, we discuss the rapid expansion in our understanding of how eukaryotic cells take advantage of these proteins to generate force and movement in diverse functional contexts. We summarize several recent examples revealing that the simplest view of a kinesin motor protein binding to and translocating a cargo along a microtubule track is inadequate. In fact, this paradigm captures only a small subset of the many ways in which cells harness force production to the generation of intracellular movements and functions. We also highlight several situations where the catalytic kinesin motor domain may not be used to generate movement, but instead may be used in other biochemical and functional contexts. Finally, we review some recent ideas about kinesin motor regulation, redundancy, and cargo attachment strategies.
-
-
-
Proteins of the ADF/Cofilin Family: Essential Regulators of Actin Dynamics
Vol. 15 (1999), pp. 185–230More Less▪ AbstractUbiquitous among eukaryotes, the ADF/cofilins are essential proteins responsible for the high turnover rates of actin filaments in vivo. In vertebrates, ADF and cofilin are products of different genes. Both bind to F-actin cooperatively and induce a twist in the actin filament that results in the loss of the phalloidin-binding site. This conformational change may be responsible for the enhancement of the off rate of subunits at the minus end of ADF/cofilin-decorated filaments and for the weak filament-severing activity. Binding of ADF/cofilin is competitive with tropomyosin. Other regulatory mechanisms in animal cells include binding of phosphoinositides, phosphorylation by LIM kinases on a single serine, and changes in pH. Although vertebrate ADF/cofilins contain a nuclear localization sequence, they are usually concentrated in regions containing dynamic actin pools, such as the leading edge of migrating cells and neuronal growth cones. ADF/cofilins are essential for cytokinesis, phagocytosis, fluid phase endocytosis, and other cellular processes dependent upon actin dynamics.
-
-
-
Visual Transduction in Drosophila
Vol. 15 (1999), pp. 231–268More Less▪ AbstractThe Drosophila phototransduction cascade has emerged as an attractive paradigm for understanding the molecular mechanisms underlying visual transduction, as well as other G protein–coupled signaling cascades that are activated and terminated with great rapidity. A large collection of mutants affecting the fly visual cascade have been isolated, and the nature and function of many of the affected gene products have been identified. Virtually all of the proteins, including those that were initially classified as novel, are highly related to vertebrate homologs. Recently, it has become apparent that most of the proteins central to Drosophila phototransduction are coupled into a supramolecular signaling complex, signalplex, through association with a PDZ-containing scaffold protein. The characterization of this complex has led to a re-evaluation of the mechanisms underlying the activation and deactivation of the phototransduction cascade.
-
-
-
Biochemical Pathways of Caspase Activation During Apoptosis
Vol. 15 (1999), pp. 269–290More Less▪ AbstractCaspase activation plays a central role in the execution of apoptosis. The key components of the biochemical pathways of caspase activation have been recently elucidated. In this review, we focus on the two most well-studied pathways of caspase activation: the cell surface death receptor pathway and the mitochondria-initiated pathway. In the cell surface death receptor pathway, activation of caspase-8 following its recruitment to the death-inducing signaling complex (DISC) is the critical event that transmits the death signal. This event is regulated at several different levels by various viral and mammalian proteins. Activated caspase-8 can activate downstream caspases by direct cleavage or indirectly by cleaving Bid and inducing cytochrome c release from the mitochondria.
In the mitochondrial-initiated pathway, caspase activation is triggered by the formation of a multimeric Apaf-1/cytochrome c complex that is fully functional in recruiting and activating procaspase-9. Activated caspase-9 will then cleave and activate downstream caspases such as caspase-3, -6, and -7. This pathway is regulated at several steps, including the release of cytochrome c from the mitochondria, the binding and hydrolysis of dATP/ATP by Apaf-1, and the inhibition of caspase activation by the proteins that belong to the inhibitors of apoptosis (IAP).
-
-
-
Regulation of Nuclear Localization: A Key to a Door
Vol. 15 (1999), pp. 291–339More Less▪ AbstractInformation can be transferred between the nucleus and the cytoplasm by translocating macromolecules across the nuclear envelope. Communication of extracellular or intracellular changes to the nucleus frequently leads to a transcriptional response that allows cells to survive in a continuously changing environment. Eukaryotic cells have evolved ways to regulate this movement of macromolecules between the cytoplasm and the nucleus such that the transfer of information occurs only under conditions in which a transcriptional response is required. This review focuses on the ways in which cells regulate movement of proteins across the nuclear envelope and the significance of this regulation for controlling diverse biological processes.
-
-
-
Actin-Related Proteins
Vol. 15 (1999), pp. 341–363More Less▪ AbstractActin-related proteins (Arps) participate in a diverse array of cellular processes. They modulate assembly of conventional actin, contribute to microtubule-based motility catalyzed by dynein, and serve as integral components of large protein complexes required for gene expression. We highlight here recent work aimed at understanding the roles played by Arps in each of these processes.
-
-
-
Cell Polarity in Yeast
Vol. 15 (1999), pp. 365–391More Less▪ AbstractSubcellular asymmetry, cell polarity, is fundamental to the diverse specialized functions of eukaryotic cells. In yeast, cell polarization is essential to division and mating. As a result, this highly accessible experimental system serves as a paradigm for deciphering the molecular mechanisms underlying the generation of polarity. Beyond yeast, cell polarity is essential to the partitioning of cell fate in embryonic development, the generation of axons and their guidance during neuronal development, and the intimate communication between lymphocytes within the immune system. The polarization of yeast cells shares many features with that of these more complex examples, including regulation by both intrinsic and extrinsic cues, conserved regulatory molecules such as Cdc42 GTPase, and asymmetry of the cytoskeleton as its centerpiece. This review summarizes the molecular pathways governing the generation of cell polarity in yeast.
-
-
-
Vertebrate Endoderm Development
Vol. 15 (1999), pp. 393–410More Less▪ AbstractEndoderm, one of the three principal germ layers, contributes to all organs of the alimentary tract. For simplicity, this review divides formation of endodermal organs into four fundamental steps: (a) formation of endoderm during gastrulation, (b) morphogenesis of a gut tube from a sheet of cells, (c) budding of organ domains from the tube, and (d) differentiation of organ-specific cell types within the growing buds. We discuss possible mechanisms that regulate how undifferentiated endoderm becomes specified into a myriad of cell types that populate the respiratory and gastrointestinal tracts.
-
-
-
Neural Induction
Vol. 15 (1999), pp. 411–433More Less▪ AbstractThe formation of the vertebrate nervous system is initiated at gastrula stages of development, when signals from a specialized cluster of cells (the organizer) trigger neural development in the ectoderm. This process, termed neural induction, was first described in 1924 and stemmed from experiments on amphibia (Spemann & Mangold 1924). In recent years, the molecular mechanisms underlying neural induction in the amphibian have been elucidated. Surprisingly, neuralizing agents secreted by the organizer do not act via receptor-mediated signaling events; rather, these factors antagonize local epidermal inducers within the cells of the dorsal ectoderm and function to uncover the latent neural fate of these cells.
Many of the recent advances in our understanding of vertebrate neural induction come from studies on the frog, Xenopus laevis. It is now clear that a blockade of signaling of the bone morphogenetic proteins (BMPs) during gastrula stages is sufficient to initiate neuralization of the ectoderm in this species. Thus this review first details our current understanding of neural induction, using the amphibian as a model. We then use data emerging from other systems to examine the extent to which the Xenopus studies can be applied to other vertebrate species. The initiation of the neurectoderm-specific gene expression program and subsequent steps in patterning and neuronal development are only touched on here. We focus primarily on the initial establishment of the neural fate in the vertebrate gastrula ectoderm.
-
-
-
SCF and Cullin/RING H2-Based Ubiquitin Ligases
Vol. 15 (1999), pp. 435–467More Less▪ AbstractProtein degradation is deployed to modulate the steady-state abundance of proteins and to switch cellular regulatory circuits from one state to another by abrupt elimination of control proteins. In eukaryotes, the bulk of the protein degradation that occurs in the cytoplasm and nucleus is carried out by the 26S proteasome. In turn, most proteins are thought to be targeted to the 26S proteasome by covalent attachment of a multiubiquitin chain. Ubiquitination of proteins requires a multienzyme system. A key component of ubiquitination pathways, the ubiquitin ligase, controls both the specificity and timing of substrate ubiquitination. This review is focused on a conserved ubiquitin ligase complex known as SCF that plays a key role in marking a variety of regulatory proteins for destruction by the 26S proteasome.
-
-
-
Integration of Signaling Networks that Regulate Dictyostelium Differentiation
Vol. 15 (1999), pp. 469–517More Less▪ AbstractIn Dictyostelium amoebae, cell-type differentiation, spatial patterning, and morphogenesis are controlled by a combination of cell-autonomous mechanisms and intercellular signaling. A chemotactic aggregation of ∼105 cells leads to the formation of a multicellular organism. Cell-type differentiation and cell sorting result in a small number of defined cell types organized along an anteroposterior axis. Finally, a mature fruiting body is created by the terminal differentiation of stalk and spore cells. Analysis of the regulatory program demonstrates a role for several molecules, including GSK-3, signal transducers and activators of transcription (STAT) factors, and cAMP-dependent protein kinase (PKA), that control spatial patterning in metazoans. Unexpectedly, two component systems containing histidine kinases and response regulators also play essential roles in controlling Dictyostelium development. This review focuses on the role of cAMP, which functions intracellularly to mediate the activity of PKA, an essential component in aggregation, cell-type specification, and terminal differentiation. Cytoplasmic cAMP levels are controlled through both the regulated activation of adenylyl cyclases and the degradation by a phosphodiesterase containing a two-component system response regulator. Extracellular cAMP regulates G-protein–dependent and –independent pathways to control aggregation as well as the activity of GSK-3 and the transcription factors GBF and STATa during multicellular development. The integration of these pathways with others regulated by the morphogen DIF-1 to control cell fate decisions are discussed.
-
-
-
When to Switch to Flowering
Vol. 15 (1999), pp. 519–550More Less▪ AbstractAt a certain stage in their life cycle, plants switch from vegetative to reproductive development. This transition is regulated by multiple developmental and environmental cues. These ensure that the plant switches to flowering at a time when sufficient internal resources have been accumulated and the environmental conditions are favorable. The use of a molecular genetic approach in Arabidopsis has resulted in the identification and cloning of many of the genes involved in regulating floral transition. The current view on the molecular function of these genes, their division into different genetic pathways, and how the pathways interact in a complex regulatory network are summarized.
-
-
-
Regulation of Mammalian O2 Homeostasis by Hypoxia-Inducible Factor 1
Vol. 15 (1999), pp. 551–578More Less▪ AbstractHypoxia-inducible factor 1 (HIF-1) is a heterodimeric basic-helix-loop-helix-PAS transcription factor consisting of HIF-1α and HIF-1β subunits. HIF-1α expression and HIF-1 transcriptional activity increase exponentially as cellular O2 concentration is decreased. Several dozen target genes that are transactivated by HIF-1 have been identified, including those encoding erythropoietin, glucose transporters, glycolytic enzymes, and vascular endothelial growth factor. The products of these genes either increase O2 delivery or allow metabolic adaptation to reduced O2 availability. HIF-1 is required for cardiac and vascular development and embryonic survival. In fetal and postnatal life, HIF-1 is required for a variety of physiological responses to chronic hypoxia. HIF-1 expression is increased in tumor cells by multiple mechanisms and may mediate adaptation to hypoxia that is critical for tumor progression. HIF-1 thus appears to function as a master regulator of O2 homeostasis that plays essential roles in cellular and systemic physiology, development, and pathophysiology.
-
-
-
Mechanisms of Viral Interference with MHC Class I Antigen Processing and Presentation1
Vol. 15 (1999), pp. 579–606More Less▪ AbstractViruses are ubiquitous and dangerous obligate intracellular parasites. To facilitate recognition of virus-infected cells by the immune system, vertebrates evolved a system that displays oligopeptides derived from viral proteins on the surface of cells in association with class I molecules of the major histocompatibility complex. Here we review the mechanisms counter-evolved by viruses to interfere with the generation of viral peptides, their intracellular trafficking, or the cell surface expression of class I molecules bearing viral peptides. This topic is important in its own right because the viruses that encode these proteins represent medically important pathogens, are potential vectors for vaccines or gene therapy, and provide strategies and tools for blocking immune recognition in transplantation, autoimmunity, and gene therapy. In addition, studies on viral interference provide unique insights into unfettered antigen processing and normal cellular functions that are exploited and exaggerated by viruses.
-
Previous Volumes
-
Volume 40 (2024)
-
Volume 39 (2023)
-
Volume 38 (2022)
-
Volume 37 (2021)
-
Volume 36 (2020)
-
Volume 35 (2019)
-
Volume 34 (2018)
-
Volume 33 (2017)
-
Volume 32 (2016)
-
Volume 31 (2015)
-
Volume 30 (2014)
-
Volume 29 (2013)
-
Volume 28 (2012)
-
Volume 27 (2011)
-
Volume 26 (2010)
-
Volume 25 (2009)
-
Volume 24 (2008)
-
Volume 23 (2007)
-
Volume 22 (2006)
-
Volume 21 (2005)
-
Volume 20 (2004)
-
Volume 19 (2003)
-
Volume 18 (2002)
-
Volume 17 (2001)
-
Volume 16 (2000)
-
Volume 15 (1999)
-
Volume 14 (1998)
-
Volume 13 (1997)
-
Volume 12 (1996)
-
Volume 11 (1995)
-
Volume 10 (1994)
-
Volume 9 (1993)
-
Volume 8 (1992)
-
Volume 7 (1991)
-
Volume 6 (1990)
-
Volume 5 (1989)
-
Volume 4 (1988)
-
Volume 3 (1987)
-
Volume 2 (1986)
-
Volume 1 (1985)
-
Volume 0 (1932)