1932

Abstract

The brain constantly changes to store memories and adapt to new conditions. One type of plasticity that has gained increasing interest during the last years is the generation of new cells. The generation of both new neurons and glial cells contributes to neural plasticity and to some neural repair. There are substantial differences between mammalian species with regard to the extent of and mechanisms behind cell exchange in neural plasticity. Both neurogenesis and gliogenesis have several specific features in humans, which may contribute to the unique plasticity of the human brain.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cellbio-111315-124953
2016-10-06
2024-06-13
Loading full text...

Full text loading...

/deliver/fulltext/cellbio/32/1/annurev-cellbio-111315-124953.html?itemId=/content/journals/10.1146/annurev-cellbio-111315-124953&mimeType=html&fmt=ahah

Literature Cited

  1. Ajami B, Bennett JL, Krieger C, Tetzlaff W, Rossi FM. 2007. Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nat. Neurosci. 10:1538–43 [Google Scholar]
  2. Altman J, Das GD. 1965. Autoradiographic and histological evidence of postnatal neurogenesis in rats. J. Comp. Neurol. 124:319–35 [Google Scholar]
  3. Arvidsson A, Collin T, Kirik D, Kokaia Z, Lindvall O. 2002. Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat. Med. 8:963–70 [Google Scholar]
  4. Barnabé-Heider F, Göritz C, Sabelström H, Takebayashi H, Pfrieger FW. et al. 2010. Origin of new glial cells in the intact and injured adult spinal cord. Cell Stem Cell 7:470–82 [Google Scholar]
  5. Bedard A, Cossette M, Levesque M, Parent A. 2002. Proliferating cells can differentiate into neurons in the striatum of normal adult monkey. Neurosci. Lett. 328:213–16 [Google Scholar]
  6. Ben Abdallah NM, Slomianka L, Vyssotski AL, Lipp HP. 2010. Early age-related changes in adult hippocampal neurogenesis in C57 mice. Neurobiol. Aging 31:151–61 [Google Scholar]
  7. Bergles DE, Richardson WD. 2016. Oligodendrocyte development and plasticity. Cold Spring Harb. Perspect. Biol. 8a020453 [Google Scholar]
  8. Bergmann O, Liebl J, Bernard S, Alkass K, Yeung MS. et al. 2012. The age of olfactory bulb neurons in humans. Neuron 74:634–39 [Google Scholar]
  9. Bergmann O, Spalding KL, Frisén J. 2015. Adult neurogenesis in humans. Cold Spring Harb. Perspect. Biol. 7:a018994 [Google Scholar]
  10. Bhardwaj RD, Curtis MA, Spalding KL, Buchholz BA, Fink D. et al. 2006. Neocortical neurogenesis in humans is restricted to development. PNAS 103:12564–68 [Google Scholar]
  11. Bonaguidi MA, Wheeler MA, Shapiro JS, Stadel RP, Sun GJ. et al. 2011. In vivo clonal analysis reveals self-renewing and multipotent adult neural stem cell characteristics. Cell 145:1142–55 [Google Scholar]
  12. Calzolari F, Michel J, Baumgart EV, Theis F, Gotz M, Ninkovic J. 2015. Fast clonal expansion and limited neural stem cell self-renewal in the adult subependymal zone. Nat. Neurosci. 18:490–92 [Google Scholar]
  13. Carlén M, Cassidy RM, Brismar H, Smith GA, Enquist LW, Frisén J. 2002. Functional integration of adult-born neurons. Curr. Biol. 12:606–8 [Google Scholar]
  14. Carlén M, Meletis K, Göritz C, Darsalia V, Evergren E. et al. 2009. Forebrain ependymal cells are Notch-dependent and generate neuroblasts and astrocytes after stroke. Nat. Neurosci. 12:259–67 [Google Scholar]
  15. Clelland CD, Choi M, Romberg C, Clemenson GD Jr., Fragniere A. et al. 2009. A functional role for adult hippocampal neurogenesis in spatial pattern separation. Science 325:210–13 [Google Scholar]
  16. Coskun V, Wu H, Blanchi B, Tsao S, Kim K. et al. 2008. CD133+ neural stem cells in the ependyma of mammalian postnatal forebrain. PNAS 105:1026–31 [Google Scholar]
  17. Crawford AH, Tripathi RB, Foerster S, McKenzie I, Kougioumtzidou E. et al. 2016. Pre-existing mature oligodendrocytes do not contribute to remyelination following toxin-induced spinal cord demyelination. Am. J. Pathol. 186:511–16 [Google Scholar]
  18. Curtis MA, Kam M, Nannmark U, Anderson MF, Axell MZ. et al. 2007. Human neuroblasts migrate to the olfactory bulb via a lateral ventricular extension. Science 315:1243–49 [Google Scholar]
  19. Dayer AG, Cleaver KM, Abouantoun T, Cameron HA. 2005. New GABAergic interneurons in the adult neocortex and striatum are generated from different precursors. J. Cell Biol. 168:415–27 [Google Scholar]
  20. Dimou L, Simon C, Kirchhoff F, Takebayashi H, Gotz M. 2008. Progeny of Olig2-expressing progenitors in the gray and white matter of the adult mouse cerebral cortex. J. Neurosci. 28:10434–42 [Google Scholar]
  21. Elmore MR, Najafi AR, Koike MA, Dagher NN, Spangenberg EE. et al. 2014. Colony-stimulating factor 1 receptor signaling is necessary for microglia viability, unmasking a microglia progenitor cell in the adult brain. Neuron 82:380–97 [Google Scholar]
  22. Encinas JM, Michurina TV, Peunova N, Park JH, Tordo J. et al. 2011. Division-coupled astrocytic differentiation and age-related depletion of neural stem cells in the adult hippocampus. Cell Stem Cell 8:566–79 [Google Scholar]
  23. Eriksson PS, Perfilieva E, Björk-Eriksson T, Alborn AM, Nordborg C. et al. 1998. Neurogenesis in the adult human hippocampus. Nat. Med. 4:1313–17 [Google Scholar]
  24. Ernst A, Alkass K, Bernard S, Salehpour M, Perl S. et al. 2014. Neurogenesis in the striatum of the adult human brain. Cell 156:1072–83 [Google Scholar]
  25. Ernst A, Frisén J. 2015. Adult neurogenesis in humans—common and unique traits in mammals. PLOS Biol. 13:e1002045 [Google Scholar]
  26. Faiz M, Sachewsky N, Gascon S, Bang KW, Morshead CM, Nagy A. 2015. Adult neural stem cells from the subventricular zone give rise to reactive astrocytes in the cortex after stroke. Cell Stem Cell 17:624–34 [Google Scholar]
  27. Fawcett JW. 2006. Overcoming inhibition in the damaged spinal cord. J. Neurotrauma 23:371–83 [Google Scholar]
  28. Gibson EM, Purger D, Mount CW, Goldstein AK, Lin GL. et al. 2014. Neuronal activity promotes oligodendrogenesis and adaptive myelination in the mammalian brain. Science 344:1252304 [Google Scholar]
  29. Ginhoux F, Greter M, Leboeuf M, Nandi S, See P. et al. 2010. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330:841–45 [Google Scholar]
  30. Göritz C, Dias DO, Tomilin N, Barbacid M, Shupliakov O, Frisén J. 2011. A pericyte origin of spinal cord scar tissue. Science 333:238–42 [Google Scholar]
  31. Göritz C, Frisén J. 2012. Neural stem cells and neurogenesis in the adult. Cell Stem Cell 10:657–59 [Google Scholar]
  32. Imayoshi I, Sakamoto M, Ohtsuka T, Takao K, Miyakawa T. et al. 2008. Roles of continuous neurogenesis in the structural and functional integrity of the adult forebrain. Nat. Neurosci. 11:1153–61 [Google Scholar]
  33. Johansson CB, Momma S, Clarke DL, Risling M, Lendahl U, Frisén J. 1999. Identification of a neural stem cell in the adult mammalian central nervous system. Cell 96:25–34 [Google Scholar]
  34. Kang E, Wen Z, Song H, Christian KM, Ming GL. 2016. Adult neurogenesis and psychiatric disorders. Cold Spring Harb. Perspect. Biol. In press; doi: 10.1101/cshperspect.a019026 [Google Scholar]
  35. Keirstead HS, Blakemore WF. 1997. Identification of post-mitotic oligodendrocytes incapable of remyelination within the demyelinated adult spinal cord. J. Neuropathol. Exp. Neurol. 56:1191–201 [Google Scholar]
  36. Kempermann G. 2012. New neurons for ‘survival of the fittest’. Nat. Rev. Neurosci. 13:727–36 [Google Scholar]
  37. Kempermann G, Song H, Gage FH. 2015. Neurogenesis in the adult hippocampus. Cold Spring Harb. Perspect. Med. 5:a018812 [Google Scholar]
  38. Khakh BS, Sofroniew MV. 2015. Diversity of astrocyte functions and phenotypes in neural circuits. Nat. Neurosci. 18:942–52 [Google Scholar]
  39. Knoth R, Singec I, Ditter M, Pantazis G, Capetian P. et al. 2010. Murine features of neurogenesis in the human hippocampus across the lifespan from 0 to 100 years. PLOS ONE 5:e8809 [Google Scholar]
  40. Kriegstein A, Alvarez-Buylla A. 2009. The glial nature of embryonic and adult neural stem cells. Annu. Rev. Neurosci. 32:149–84 [Google Scholar]
  41. Kuhn HG. 2015. Control of cell survival in adult mammalian neurogenesis. Cold Spring Harb. Perspect. Biol. 7:a018895 [Google Scholar]
  42. Lledo PM, Merkle FT, Alvarez-Buylla A. 2008. Origin and function of olfactory bulb interneuron diversity. Trends Neurosci. 31:392–400 [Google Scholar]
  43. Luo Y, Coskun V, Liang A, Yu J, Cheng L. et al. 2015. Single-cell transcriptome analyses reveal signals to activate dormant neural stem cells. Cell 161:1175–86 [Google Scholar]
  44. Luzzati F, De Marchis S, Fasolo A, Peretto P. 2006. Neurogenesis in the caudate nucleus of the adult rabbit. J. Neurosci. 26:609–21 [Google Scholar]
  45. Magnusson JP, Goritz C, Tatarishvili J, Dias DO, Smith EM. et al. 2014. A latent neurogenic program in astrocytes regulated by Notch signaling in the mouse. Science 346:237–41 [Google Scholar]
  46. Makinodan M, Rosen KM, Ito S, Corfas G. 2012. A critical period for social experience–dependent oligodendrocyte maturation and myelination. Science 337:1357–60 [Google Scholar]
  47. McKenzie IA, Ohayon D, Li H, de Faria JP, Emery B. et al. 2014. Motor skill learning requires active central myelination. Science 346:318–22 [Google Scholar]
  48. Meletis K, Barnabé-Heider F, Carlén M, Evergren E, Tomilin N. et al. 2008. Spinal cord injury reveals multilineage differentiation of ependymal cells. PLOS Biol. 6:e182 [Google Scholar]
  49. Mildner A, Schmidt H, Nitsche M, Merkler D, Hanisch UK. et al. 2007. Microglia in the adult brain arise from Ly-6ChiCCR2+ monocytes only under defined host conditions. Nat. Neurosci. 10:1544–53 [Google Scholar]
  50. Nakashiba T, Cushman JD, Pelkey KA, Renaudineau S, Buhl DL. et al. 2012. Young dentate granule cells mediate pattern separation, whereas old granule cells facilitate pattern completion. Cell 149:188–201 [Google Scholar]
  51. Ninkovic J, Mori T, Gotz M. 2007. Distinct modes of neuron addition in adult mouse neurogenesis. J. Neurosci. 27:10906–11 [Google Scholar]
  52. Okada S, Nakamura M, Katoh H, Miyao T, Shimazaki T. et al. 2006. Conditional ablation of Stat3 or Socs3 discloses a dual role for reactive astrocytes after spinal cord injury. Nat. Med. 12:829–34 [Google Scholar]
  53. Pfenninger CV, Steinhoff C, Hertwig F, Nuber UA. 2011. Prospectively isolated CD133/CD24-positive ependymal cells from the adult spinal cord and lateral ventricle wall differ in their long-term in vitro self-renewal and in vivo gene expression. Glia 59:68–81 [Google Scholar]
  54. Rivers LE, Young KM, Rizzi M, Jamen F, Psachoulia K. et al. 2008. PDGFRA/NG2 glia generate myelinating oligodendrocytes and piriform projection neurons in adult mice. Nat. Neurosci. 11:1392–401 [Google Scholar]
  55. Sabelström H, Stenudd M, Reu P, Dias DO, Elfineh M. et al. 2013. Resident neural stem cells restrict tissue damage and neuronal loss after spinal cord injury in mice. Science 342:637–40 [Google Scholar]
  56. Sahay A, Scobie KN, Hill AS, O'Carroll CM, Kheirbek MA. et al. 2011. Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation. Nature 472:466–70 [Google Scholar]
  57. Sanai N, Nguyen T, Ihrie RA, Mirzadeh Z, Tsai HH. et al. 2011. Corridors of migrating neurons in the human brain and their decline during infancy. Nature 478:382–86 [Google Scholar]
  58. Scholz J, Klein MC, Behrens TE, Johansen-Berg H. 2009. Training induces changes in white-matter architecture. Nat. Neurosci. 12:1370–71 [Google Scholar]
  59. Schulz C, Gomez Perdiguero E, Chorro L, Szabo-Rogers H, Cagnard N. et al. 2012. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 336:86–90 [Google Scholar]
  60. Silver J, Schwab ME, Popovich PG. 2015. Central nervous system regenerative failure: role of oligodendrocytes, astrocytes, and microglia. Cold Spring Harb. Perspect. Biol. 7:a020602 [Google Scholar]
  61. Simons M, Nave KA. 2015. Oligodendrocytes: myelination and axonal support. Cold Spring Harb. Perspect. Biol. 8:a020479 [Google Scholar]
  62. Spalding KL, Bergmann O, Alkass K, Bernard S, Salehpour M. et al. 2013. Dynamics of hippocampal neurogenesis in adult humans. Cell 153:1219–27 [Google Scholar]
  63. Spalding KL, Bhardwaj RD, Buchholz B, Druid H, Frisén J. 2005. Retrospective birth dating of cells in humans. Cell 122:133–43 [Google Scholar]
  64. Toni N, Schinder AF. 2015. Maturation and functional integration of new granule cells into the adult hippocampus. Cold Spring Harb. Perspect. Biol. 8:a018903 [Google Scholar]
  65. van Praag H, Schinder AF, Christie BR, Toni N, Palmer TD, Gage FH. 2002. Functional neurogenesis in the adult hippocampus. Nature 415:1030–34 [Google Scholar]
  66. Wang C, Liu F, Liu Y-Y, Zhao C-H, You Y. et al. 2011. Identification and characterization of neuroblasts in the subventricular zone and rostral migratory stream of the adult human brain. Cell Res. 21:1534–50 [Google Scholar]
  67. Yeung MS, Zdunek S, Bergmann O, Bernard S, Salehpour M. et al. 2014. Dynamics of oligodendrocyte generation and myelination in the human brain. Cell 159:766–74 [Google Scholar]
  68. Young KM, Psachoulia K, Tripathi RB, Dunn SJ, Cossell L. et al. 2013. Oligodendrocyte dynamics in the healthy adult CNS: evidence for myelin remodeling. Neuron 77:873–85 [Google Scholar]
  69. Zatorre RJ, Fields RD, Johansen-Berg H. 2012. Plasticity in gray and white: neuroimaging changes in brain structure during learning. Nat. Neurosci. 15:528–36 [Google Scholar]
/content/journals/10.1146/annurev-cellbio-111315-124953
Loading
/content/journals/10.1146/annurev-cellbio-111315-124953
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error