1932

Abstract

Although tissue homeostasis—the steady state—implies stability, our organs are in a state of continual, large-scale cellular flux. This flux underpins an organ's ability to homeostatically renew, to non-homeostatically resize upon altered functional demand, and to return to homeostasis after resizing or injury—in other words, to be dynamic. Here, I examine the basic unit of organ-scale cell dynamics: the cellular life cycle of birth, differentiation, and death. Focusing on epithelial organs, I discuss how spatial patterns and temporal kinetics of life cycle stages depend upon lineage organization and tissue architecture. I review how signaling between stages coordinates life cycle dynamics to enforce homeostasis, and I highlight how particular stages are transiently unbalanced to drive organ resizing or repair. Finally, I offer that considering organs as a collective of not cells but rather cell life cycles provides a powerful vantage for deciphering homeostatic and non-homeostatic tissue states.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cellbio-120420-114855
2022-10-06
2024-04-29
Loading full text...

Full text loading...

/deliver/fulltext/cellbio/38/1/annurev-cellbio-120420-114855.html?itemId=/content/journals/10.1146/annurev-cellbio-120420-114855&mimeType=html&fmt=ahah

Literature Cited

  1. Akhtar N, Li W, Mironov A, Streuli CH. 2016. Rac1 controls both the secretory function of the mammary gland and its remodeling for successive gestations. Dev. Cell 38:5522–35
    [Google Scholar]
  2. Aldewachi HS, Wright NA, Appleton DR, Watson AJ. 1975. The effect of starvation and refeeding on cell population kinetics in the rat small bowel mucosa. J. Anat. 119:Part 1105–21
    [Google Scholar]
  3. Altmann GG. 1972. Influence of starvation and refeeding on mucosal size and epithelial renewal in the rat small intestine. Am. J. Anat. 133:4391–400
    [Google Scholar]
  4. Amcheslavsky A, Ito N, Jiang J, Ip YT. 2011. Tuberous sclerosis complex and Myc coordinate the growth and division of Drosophila intestinal stem cells. J. Cell Biol. 193:4695–710
    [Google Scholar]
  5. Amcheslavsky A, Lindblad JL, Bergmann A. 2020. Transiently “undead” enterocytes mediate homeostatic tissue turnover in the adult Drosophila midgut. Cell Rep 33:8108408
    [Google Scholar]
  6. Andreasen E, Ottesen J. 1945. Studies on the lymphocyte production. Investigations on the nucleic acid turnover in the lymphoid organs. Acta Physiol. Scand. 10:3–4258–70
    [Google Scholar]
  7. Aragona M, Sifrim A, Malfait M, Song Y, Van Herck J et al. 2020. Mechanisms of stretch-mediated skin expansion at single-cell resolution. Nature 584:7820268–73
    [Google Scholar]
  8. Bailey EC, Kobielski S, Park J, Losick VP. 2021. Polyploidy in tissue repair and regeneration. Cold Spring Harb. Perspect. Biol 13:a040881
    [Google Scholar]
  9. Baker NE. 2020. Emerging mechanisms of cell competition. Nat. Rev. Genet. 21:11683–97
    [Google Scholar]
  10. Becker AJ, McCulloch EA, Till JE. 1963. Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells. Nature 197:4866452–54
    [Google Scholar]
  11. Benham-Pyle BW, Pruitt BL, Nelson WJ. 2015. Mechanical strain induces E-cadherin-dependent Yap1 and β-catenin activation to drive cell cycle entry. Science 348:62381024–27
    [Google Scholar]
  12. Bizzozero G. 1892. Ueber die schlauchförmigen Drüsen des Magendarmkanals und die Beziehungen ihres Epithels zu dem Oberflächenepithel der Schleimhaut [On the tubular glands of the gastrointestinal tract and the relation of their epithelium to the surface epithelium of the mucous membrane]. Arch. Für Mikrosk. Anat. 40:1325–75
    [Google Scholar]
  13. Bonfini A, Dobson AJ, Duneau D, Revah J, Liu X et al. 2021. Multiscale analysis reveals that diet-dependent midgut plasticity emerges from alterations in both stem cell niche coupling and enterocyte size. eLife 10:e64125
    [Google Scholar]
  14. Boumard B, Bardin AJ. 2021. An amuse-bouche of stem cell regulation: underlying principles and mechanisms from adult Drosophila intestinal stem cells. Curr. Opin. Cell Biol. 73:58–68
    [Google Scholar]
  15. Buchon N, Broderick NA, Kuraishi T, Lemaitre B. 2010. Drosophila EGFR pathway coordinates stem cell proliferation and gut remodeling following infection. BMC Biol 8:152
    [Google Scholar]
  16. Bullen TF, Forrest S, Campbell F, Dodson AR, Hershman MJ et al. 2006. Characterization of epithelial cell shedding from human small intestine. Lab. Invest. 86:101052–63
    [Google Scholar]
  17. Byrd KM, Piehl NC, Patel JH, Huh WJ, Sequeira I et al. 2019. Heterogeneity within stratified epithelial stem cell populations maintains the oral mucosa in response to physiological stress. Cell Stem Cell 25:6814–29.e6
    [Google Scholar]
  18. Centanin L, Hoeckendorf B, Wittbrodt J. 2011. Fate restriction and multipotency in retinal stem cells. Cell Stem Cell 9:6553–62
    [Google Scholar]
  19. Chen C-H, Luhur A, Sokol N. 2015. Lin-28 promotes symmetric stem cell division and drives adaptive growth in the adult Drosophila intestine. Development 142:203478–87
    [Google Scholar]
  20. Cheng H, Leblond CP. 1974. Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. V. Unitarian theory of the origin of the four epithelial cell types. Am. J. Anat. 141:4537–61
    [Google Scholar]
  21. Choi N-H, Lucchetta E, Ohlstein B. 2011. Nonautonomous regulation of Drosophila midgut stem cell proliferation by the insulin-signaling pathway. PNAS 108:4618702–7
    [Google Scholar]
  22. Clarke RM. 1975. The time-course of changes in mucosal architecture and epithelial cell production and cell shedding in the small intestine of the rat fed after fasting. J. Anat. 120:Part 2321–27
    [Google Scholar]
  23. Clevers H, Watt FM. 2018. Defining adult stem cells by function, not by phenotype. Annu. Rev. Biochem. 87:1015–27
    [Google Scholar]
  24. Colom B, Alcolea MP, Piedrafita G, Hall MWJ, Wabik A et al. 2020. Spatial competition shapes the dynamic mutational landscape of normal esophageal epithelium. Nat. Genet. 52:6604–14
    [Google Scholar]
  25. Cooper JM. 1997. Plato: Complete Works Indianapolis, IN: Hackett Publ. Co.
  26. Dailey MJ. 2014. Nutrient-induced intestinal adaption and its effect in obesity. Physiol. Behav. 136:74–78
    [Google Scholar]
  27. Dawson CA, Pal B, Vaillant F, Gandolfo LC, Liu Z et al. 2020. Tissue-resident ductal macrophages survey the mammary epithelium and facilitate tissue remodelling. Nat. Cell Biol. 22:5546–58
    [Google Scholar]
  28. Dawson CA, Visvader JE. 2021. The cellular organization of the mammary gland: insights from microscopy. J. Mammary Gland Biol. Neoplasia 26:171–85
    [Google Scholar]
  29. Dekoninck S, Blanpain C. 2019. Stem cell dynamics, migration and plasticity during wound healing. Nat. Cell Biol. 21:118–24
    [Google Scholar]
  30. Dekoninck S, Hannezo E, Sifrim A, Miroshnikova YA, Aragona M et al. 2020. Defining the design principles of skin epidermis postnatal growth. Cell 181:3604–20.e22
    [Google Scholar]
  31. Deng H, Gerencser AA, Jasper H. 2015. Signal integration by Ca2+ regulates intestinal stem-cell activity. Nature 528:7581212–17
    [Google Scholar]
  32. Donati G, Rognoni E, Hiratsuka T, Liakath-Ali K, Hoste E et al. 2017. Wounding induces dedifferentiation of epidermal Gata6+ cells and acquisition of stem cell properties. Nat. Cell Biol. 19:6603–13
    [Google Scholar]
  33. Doupé DP, Marshall OJ, Dayton H, Brand AH, Perrimon N. 2018. Drosophila intestinal stem and progenitor cells are major sources and regulators of homeostatic niche signals. PNAS 115:4812218–23
    [Google Scholar]
  34. Dray N, Mancini L, Binshtok U, Cheysson F, Supatto W et al. 2021. Dynamic spatiotemporal coordination of neural stem cell fate decisions occurs through local feedback in the adult vertebrate brain. Cell Stem Cell 28:81457–72.e12
    [Google Scholar]
  35. Drozdowski 2006. Intestinal mucosal adaptation. World J. Gastroenterol. 12:294614–27
    [Google Scholar]
  36. Eisenhoffer GT, Loftus PD, Yoshigi M, Otsuna H, Chien C-B et al. 2012. Crowding induces live cell extrusion to maintain homeostatic cell numbers in epithelia. Nature 484:7395546–49
    [Google Scholar]
  37. Foronda D, Weng R, Verma P, Chen Y-W, Cohen SM. 2014. Coordination of insulin and Notch pathway activities by microRNA miR-305 mediates adaptive homeostasis in the intestinal stem cells of the Drosophila gut. Genes Dev 28:212421–31
    [Google Scholar]
  38. Franco JJ, Atieh Y, Bryan CD, Kwan KM, Eisenhoffer GT. 2019. Cellular crowding influences extrusion and proliferation to facilitate epithelial tissue repair. Mol. Biol. Cell. 30:161890–99
    [Google Scholar]
  39. Fu NY, Rios AC, Pal B, Law CW, Jamieson P et al. 2017. Identification of quiescent and spatially restricted mammary stem cells that are hormone responsive. Nat. Cell Biol. 19:3164–76
    [Google Scholar]
  40. Fukada S. 2018. The roles of muscle stem cells in muscle injury, atrophy and hypertrophy. J. Biochem. 163:5353–58
    [Google Scholar]
  41. Ge Y, Fuchs E. 2018. Stretching the limits: from homeostasis to stem cell plasticity in wound healing and cancer. Nat. Rev. Genet. 19:5311–25
    [Google Scholar]
  42. Gervais L, Bardin AJ. 2017. Tissue homeostasis and aging: new insight from the fly intestine. Curr. Opin. Cell Biol. 48:97–105
    [Google Scholar]
  43. Ghazavi F, Huysentruyt J, De Coninck J, Kourula S, Martens S et al. 2022. Executioner caspases 3 and 7 are dispensable for intestinal epithelium turnover and homeostasis at steady state. PNAS 119:6e2024508119
    [Google Scholar]
  44. Gokoffski KK, Wu H-H, Beites CL, Kim J, Kim EJ et al. 2011. Activin and GDF11 collaborate in feedback control of neuroepithelial stem cell proliferation and fate. Development 138:194131–42
    [Google Scholar]
  45. Gordon DM. 2016. The evolution of the algorithms for collective behavior. Cell Sys 3:6514–20
    [Google Scholar]
  46. Gu Y, Forostyan T, Sabbadini R, Rosenblatt J. 2011. Epithelial cell extrusion requires the sphingosine-1-phosphate receptor 2 pathway. J. Cell Biol. 193:4667–76
    [Google Scholar]
  47. Gudipaty SA, Lindblom J, Loftus PD, Redd MJ, Edes K et al. 2017. Mechanical stretch triggers rapid epithelial cell division through Piezo1. Nature 543:7643118–21
    [Google Scholar]
  48. Harris H. 2000. The Birth of the Cell New Haven, CT: Yale Univ. Press
  49. He L, Si G, Huang J, Samuel ADT, Perrimon N. 2018. Mechanical regulation of stem-cell differentiation by the stretch-activated Piezo channel. Nature 555:7694103–6
    [Google Scholar]
  50. Hermiston ML, Wong MH, Gordon JI. 1996. Forced expression of E-cadherin in the mouse intestinal epithelium slows cell migration and provides evidence for nonautonomous regulation of cell fate in a self-renewing system. Genes Dev 10:8985–96
    [Google Scholar]
  51. Hsu Y-C, Li L, Fuchs E 2014. Transit-amplifying cells orchestrate stem cell activity and tissue regeneration. Cell 157:4935–49
    [Google Scholar]
  52. Itzkovitz S, Blat IC, Jacks T, Clevers H, van Oudenaarden A. 2012. Optimality in the development of intestinal crypts. Cell 148:3608–19
    [Google Scholar]
  53. Jackson CM. 1925. The Effects of Inanition and Malnutrition Upon Growth and Structure Philadelphia: P. Blakiston's Son & Co.
  54. Jiang H, Edgar BA. 2009. EGFR signaling regulates the proliferation of Drosophila adult midgut progenitors. Development 136:3483–93
    [Google Scholar]
  55. Jin Y, Patel PH, Kohlmaier A, Pavlovic B, Zhang C, Edgar BA. 2017. Intestinal stem cell pool regulation in Drosophila. Stem Cell Rep 8:61479–87
    [Google Scholar]
  56. Kapuria S, Karpac J, Biteau B, Hwangbo D, Jasper H. 2012. Notch-mediated suppression of TSC2 expression regulates cell differentiation in the Drosophila intestinal stem cell lineage. PLOS Genet 8:11e1003045
    [Google Scholar]
  57. Kim CFB, Jackson EL, Woolfenden AE, Lawrence S, Babar I et al. 2005. Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell 121:6823–35
    [Google Scholar]
  58. Klein AM, Simons BD. 2011. Universal patterns of stem cell fate in cycling adult tissues. Development 138:153103–11
    [Google Scholar]
  59. Knopf F, Hammond C, Chekuru A, Kurth T, Hans S et al. 2011. Bone regenerates via dedifferentiation of osteoblasts in the zebrafish fin. Dev. Cell 20:5713–24
    [Google Scholar]
  60. Kolahgar G, Suijkerbuijk SJE, Kucinski I, Poirier EZ, Mansour S et al. 2015. Cell competition modifies adult stem cell and tissue population dynamics in a JAK-STAT-dependent manner. Dev. Cell 34:3297–309
    [Google Scholar]
  61. Krndija D, Marjou FE, Guirao B, Richon S, Leroy O et al. 2019. Active cell migration is critical for steady-state epithelial turnover in the gut. Science 365:6454705–10
    [Google Scholar]
  62. Ladoux B, Mège R-M. 2017. Mechanobiology of collective cell behaviours. Nat. Rev. Mol. Cell Biol. 18:12743–57
    [Google Scholar]
  63. Lander AD, Gokoffski KK, Wan FYM, Nie Q, Calof AL. 2009. Cell lineages and the logic of proliferative control. PLOS Biol 7:1e15
    [Google Scholar]
  64. Leblond CP. 1981. The life history of cells in renewing systems. Am. J. Anat. 160:2114–58
    [Google Scholar]
  65. Leblond CP, Stevens CE. 1948. The constant renewal of the intestinal epithelium in the albino rat. Anat. Rec. 100:3357–77
    [Google Scholar]
  66. Leblond CP, Stevens CE, Bogoroch R. 1948. Histological localization of newly-formed desoxyribonucleic acid. Science 108:2811531–33
    [Google Scholar]
  67. Leblond CP, Walker BE. 1956. Renewal of cell populations. Physiol. Rev. 36:2255–76
    [Google Scholar]
  68. Leedham SJ. 2020. Reserving the right to change the intestinal stem cell model. Cell Stem Cell 26:3301–2
    [Google Scholar]
  69. Levayer R, Dupont C, Moreno E. 2016. Tissue crowding induces caspase-dependent competition for space. Curr. Biol. 26:5670–77
    [Google Scholar]
  70. Li H, Janssens J, De Waegeneer M, Kolluru SS, Kristofer D et al. 2022. Fly Cell Atlas: a single-nucleus transcriptomic atlas of the adult fruit fly. Science 375:6584eabk2432
    [Google Scholar]
  71. Liang J, Balachandra S, Ngo S, O'Brien LE. 2017. Feedback regulation of steady-state epithelial turnover and organ size. Nature 548:7669588–91
    [Google Scholar]
  72. Lippens S, Denecker G, Ovaere P, Vandenabeele P, Declercq W. 2005. Death penalty for keratinocytes: apoptosis versus cornification. Cell Death Differ 12:21497–508
    [Google Scholar]
  73. Liu Q, Liu K, Cui G, Huang X, Yao S et al. 2019. Lung regeneration by multipotent stem cells residing at the bronchioalveolar-duct junction. Nat. Genet. 51:4728–38
    [Google Scholar]
  74. Loudhaief R, Brun-Barale A, Benguettat O, Nawrot-Esposito M-P, Pauron D et al. 2017. Apoptosis restores cellular density by eliminating a physiologically or genetically induced excess of enterocytes in the Drosophila midgut. Development 144:5808–19
    [Google Scholar]
  75. Marinari E, Mehonic A, Curran S, Gale J, Duke T, Baum B. 2012. Live-cell delamination counterbalances epithelial growth to limit tissue overcrowding. Nature 484:7395542–45
    [Google Scholar]
  76. Martin JL, Sanders EN, Moreno-Roman P, Jaramillo Koyama LA, Balachandra S et al. 2018. Long-term live imaging of the Drosophila adult midgut reveals real-time dynamics of division, differentiation and loss. eLife 7:e36248
    [Google Scholar]
  77. Matsui T, Kadono-Maekubo N, Suzuki Y, Furuichi Y, Shiraga K et al. 2021. A unique mode of keratinocyte death requires intracellular acidification. PNAS 118:17e2020722118
    [Google Scholar]
  78. Meizlish ML, Franklin RA, Zhou X, Medzhitov R. 2021. Tissue homeostasis and inflammation. Annu. Rev. Immunol. 39:1557–81
    [Google Scholar]
  79. Mesa KR, Kawaguchi K, Cockburn K, Gonzalez D, Boucher J et al. 2018. Homeostatic epidermal stem cell self-renewal is driven by local differentiation. Cell Stem Cell 23:5677–86.e4
    [Google Scholar]
  80. Monks J, Henson PM. 2009. Differentiation of the mammary epithelial cell during involution: implications for breast cancer. J. Mammary Gland Biol. Neoplasia 14:2159–70
    [Google Scholar]
  81. Monks J, Smith-Steinhart C, Kruk ER, Fadok VA, Henson PM. 2008. Epithelial cells remove apoptotic epithelial cells during post-lactation involution of the mouse mammary gland. Biol. Reprod. 78:4586–94
    [Google Scholar]
  82. Morioka S, Maueröder C, Ravichandran KS. 2019. Living on the edge: efferocytosis at the interface of homeostasis and pathology. Immunity 50:51149–62
    [Google Scholar]
  83. Murach KA, Fry CS, Kirby TJ, Jackson JR, Lee JD et al. 2018. Starring or supporting role? Satellite cells and skeletal muscle fiber size regulation. Physiology 33:126–38
    [Google Scholar]
  84. Nusse YM, Savage AK, Marangoni P, Rosendahl-Huber AKM, Landman TA et al. 2018. Parasitic helminths induce fetal-like reversion in the intestinal stem cell niche. Nature 559:7712109–13
    [Google Scholar]
  85. O'Brien LE, Bilder D. 2013. Beyond the niche: tissue-level coordination of stem cell dynamics. Annu. Rev. Cell Dev. Biol. 29:107–36
    [Google Scholar]
  86. O'Brien LE, Soliman SS, Li X, Bilder D. 2011. Altered modes of stem cell division drive adaptive intestinal growth. Cell 147:3603–14
    [Google Scholar]
  87. Ohara TE, Colonna M, Stappenbeck TS. 2022. Adaptive differentiation promotes intestinal villus recovery. Dev. Cell 57:2166–79.e6
    [Google Scholar]
  88. Ohsawa S, Vaughen J, Igaki T. 2018. Cell extrusion: a stress-responsive force for good or evil in epithelial homeostasis. Dev. Cell 44:3284–96
    [Google Scholar]
  89. Øvrebø JI, Edgar BA. 2018. Polyploidy in tissue homeostasis and regeneration. Development 145:14dev156034
    [Google Scholar]
  90. Pardo-Saganta A, Tata PR, Law BM, Saez B, Chow RD-W et al. 2015. Parent stem cells can serve as niches for their daughter cells. Nature 523:7562597–601
    [Google Scholar]
  91. Pellettieri J, Alvarado AS. 2007. Cell turnover and adult tissue homeostasis: from humans to planarians. Annu. Rev. Genet. 41:83–105
    [Google Scholar]
  92. Pérez-González C, Ceada G, Greco F, Matejčić M, Gómez-González M et al. 2021. Mechanical compartmentalization of the intestinal organoid enables crypt folding and collective cell migration. Nat. Cell Biol. 23:7745–57
    [Google Scholar]
  93. Rosenblatt J, Raff MC, Cramer LP. 2001. An epithelial cell destined for apoptosis signals its neighbors to extrude it by an actin- and myosin-dependent mechanism. Curr. Biol. 11:231847–57
    [Google Scholar]
  94. Rulands S, Simons BD. 2017. Emergence and universality in the regulation of stem cell fate. Curr. Opin. Syst. Biol. 5:57–62
    [Google Scholar]
  95. Salwig I, Spitznagel B, Vazquez-Armendariz AI, Khalooghi K, Guenther S et al. 2019. Bronchioalveolar stem cells are a main source for regeneration of distal lung epithelia in vivo. EMBO J 38:12e102099
    [Google Scholar]
  96. Santacreu BJ, Romero DJ, Pescio LG, Tarallo E, Sterin-Speziale NB, Favale NO 2021. Apoptotic cell extrusion depends on single-cell synthesis of sphingosine-1-phosphate by sphingosine kinase 2. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1866:4158888
    [Google Scholar]
  97. Secor SM, Whang EE, Lane JS, SW Ashley, Diamond J. 2000. Luminal and systemic signals trigger intestinal adaptation in the juvenile python. Am. J. Physiol. Gastrointest. Liver Physiol. 279:6G1177–87
    [Google Scholar]
  98. Seldin L, Le Guelte A, Macara IG 2017. Epithelial plasticity in the mammary gland. Curr. Opin. Cell Biol. 49:59–63
    [Google Scholar]
  99. Sender R, Milo R 2021. The distribution of cellular turnover in the human body. Nat. Med. 27:145–48
    [Google Scholar]
  100. Shingleton AW. 2010. The regulation of organ size in Drosophila. Organogenesis 6:276–87
    [Google Scholar]
  101. Shivdasani RA, Clevers H, de Sauvage FJ. 2021. Tissue regeneration: reserve or reverse?. Science 371:6531784–86
    [Google Scholar]
  102. Siminovitch L, McCulloch EA, Till JE. 1963. The distribution of colony-forming cells among spleen colonies. J. Cell. Comp. Physiol. 62:3327–36
    [Google Scholar]
  103. Stolper J, Ambrosio EM, Danciu D-P, Buono L, Elliott DA et al. 2019. Stem cell topography splits growth and homeostatic functions in the fish gill. eLife 8:e43747
    [Google Scholar]
  104. Suijkerbuijk SJE, Kolahgar G, Kucinski I, Piddini E. 2016. Cell competition drives the growth of intestinal adenomas in Drosophila. Curr. Biol. 26:4428–38
    [Google Scholar]
  105. Sun TP. 1927. Histophysiological study of the epithelial changes in the small intestine of the albino mouse after starvation and refeeding. Anat. Rec. 34:5341–49
    [Google Scholar]
  106. Tadokoro T, Gao X, Hong CC, Hotten D, Hogan BLM. 2016. BMP signaling and cellular dynamics during regeneration of airway epithelium from basal progenitors. Development 143:5764–73
    [Google Scholar]
  107. Tamamouna V, Panagi M, Theophanous A, Demosthenous M, Michail M et al. 2020. Evidence of two types of balance between stem cell mitosis and enterocyte nucleus growth in the Drosophila midgut. Development 147:11dev189472
    [Google Scholar]
  108. Tao L, van Bragt MPA, Li Z 2015. A long-lived luminal subpopulation enriched with alveolar progenitors serves as cellular origin of heterogeneous mammary tumors. Stem Cell Rep 5:160–74
    [Google Scholar]
  109. Tata PR, Mou H, Pardo-Saganta A, Zhao R, Prabhu M et al. 2013. Dedifferentiation of committed epithelial cells into stem cells in vivo. Nature 503:7475218–23
    [Google Scholar]
  110. Tata PR, Rajagopal J. 2016. Regulatory circuits and bi-directional signaling between stem cells and their progeny. Cell Stem Cell 19:6686–89
    [Google Scholar]
  111. Tian A, Morejon V, Kohoutek S, Huang Y-C, Deng W-M, Jiang J. 2021. Re-entry into mitosis and regeneration of intestinal stem cells through enteroblast dedifferentiation in Drosophila midguts. bioRxiv 469515. https://doi.org/10.1101/2021.11.22.469515
    [Crossref] [Google Scholar]
  112. Tu S, Johnson SL. 2011. Fate restriction in the growing and regenerating zebrafish fin. Dev. Cell 20:5725–32
    [Google Scholar]
  113. Villars A, Levayer R. 2020. Cell extrusion: crowd pushing and sticky neighbours. Curr. Biol. 30:4R168–71
    [Google Scholar]
  114. Wagner K-U, Boulanger CA, Henry MD, Sgagias M, Hennighausen L, Smith GH. 2002. An adjunct mammary epithelial cell population in parous females: its role in functional adaptation and tissue renewal. Development 129:61377–86
    [Google Scholar]
  115. Wang F, Wang F, Zou Z, Liu D, Wang J, Su Y 2011. Active deformation of apoptotic intestinal epithelial cells with adhesion-restricted polarity contributes to apoptotic clearance. Lab. Invest. 91:3462–71
    [Google Scholar]
  116. Wang Y, George SP, Roy S, Pham E, Esmaeilniakooshkghazi A, Khurana S. 2016. Both the anti- and pro-apoptotic functions of villin regulate cell turnover and intestinal homeostasis. Sci. Rep. 6:35491
    [Google Scholar]
  117. Watson AJM, Duckworth CA, Guan Y, Montrose MH. 2009. Mechanisms of epithelial cell shedding in the mammalian intestine and maintenance of barrier function. Ann. N.Y. Acad. Sci. 1165:1135–42
    [Google Scholar]
  118. Wu H, Tang N. 2021. Stem cells in pulmonary alveolar regeneration. Development 148:2dev193458
    [Google Scholar]
  119. Xie S, Swaffer M, Skotheim JM. 2022. Eukaryotic cell size control and its relation to biosynthesis and senescence. Annu. Rev. Cell Dev. Biol. 38:291319
    [Google Scholar]
  120. Yilmaz OH, Katajisto P, Lamming DW, Gültekin Y, Bauer-Rowe KE et al. 2012. mTORC1 in the Paneth cell niche couples intestinal stem-cell function to calorie intake. Nature 486:7404490–95
    [Google Scholar]
/content/journals/10.1146/annurev-cellbio-120420-114855
Loading
/content/journals/10.1146/annurev-cellbio-120420-114855
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error