1932

Abstract

Organoids are miniaturized and simplified versions of an organ produced in vitro from stem or progenitor cells. They are used as a model system consisting of multiple cell types forming an architecture relevant to the organ and carrying out the function of the organ. They are a useful tool to study development, homeostasis, regeneration, and disease. The imaging of organoids has become a pivotal method to visualize and understand their self-organization, symmetry breaking, growth, differentiation, and function. In this review, we discuss imaging methods, how to analyze these images, and challenges in organoid research.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cellbio-120320-035146
2022-10-06
2024-04-29
Loading full text...

Full text loading...

/deliver/fulltext/cellbio/38/1/annurev-cellbio-120320-035146.html?itemId=/content/journals/10.1146/annurev-cellbio-120320-035146&mimeType=html&fmt=ahah

Literature Cited

  1. Albanese A, Swaney JM, Yun DH, Evans NB, Antonucci JM et al. 2020. Multiscale 3D phenotyping of human cerebral organoids. Sci. Rep. 10:21487
    [Google Scholar]
  2. Andersen J, Revah O, Miura Y, Thom N, Amin ND et al. 2020. Generation of functional human 3D cortico-motor assembloids. Cell 183:1913–29.e26
    [Google Scholar]
  3. Azar J, Bahmad HF, Daher D, Moubarak MM, Hadadeh O et al. 2021. The use of stem cell-derived organoids in disease modeling: an update. Int. J. Mol. Sci. 22:7667
    [Google Scholar]
  4. Bakhti M, Scheibner K, Tritschler S, Bastidas-Ponce A, Tarquis-Medina M et al. 2019. Establishment of a high-resolution 3D modeling system for studying pancreatic epithelial cell biology in vitro. Mol. Metab. 30:16–29
    [Google Scholar]
  5. Betjes MA, Zheng X, Kok RNU, van Zon JS, Tans SJ. 2021. Cell tracking for organoids: lessons from developmental biology. Front. Cell Dev. Biol. 9:675013
    [Google Scholar]
  6. Beydag-Tasöz BS, D'Costa JV, Hersemann L, Luppino F, Kim YH et al. 2021. A combined transcriptional and dynamic roadmap of single human pancreatic endocrine progenitors reveals proliferative capacity and differentiation continuum. bioRxiv 472220. http://doi.org/10.1101/2021.12.15.472220
    [Crossref]
  7. Borten MA, Bajikar SS, Sasaki N, Clevers H, Janes KA. 2018. Automated brightfield morphometry of 3D organoid populations by OrganoSeg. Sci. Rep. 8:5319
    [Google Scholar]
  8. Bouchard MB, Voleti V, Mendes CS, Lacefield C, Grueber WB et al. 2015. Swept confocally-aligned planar excitation (SCAPE) microscopy for high speed volumetric imaging of behaving organisms. Nat. Photon. 9:113–19
    [Google Scholar]
  9. Brandenberg N, Hoehnel S, Kuttler F, Homicsko K, Ceroni C et al. 2020. High-throughput automated organoid culture via stem-cell aggregation in microcavity arrays. Nat. Biomed. Eng. 4:863–74
    [Google Scholar]
  10. Brémond Martin C, Simon Chane C, Clouchoux C, Histace A 2021. Recent trends and perspectives in cerebral organoids imaging and analysis. Front. Neurosci. 15:629067
    [Google Scholar]
  11. Browne AW, Arnesano C, Harutyunyan N, Khuu T, Martinez JC et al. 2017. Structural and functional characterization of human stem-cell-derived retinal organoids by live imaging. Invest. Ophthalmol. Vis. Sci. 58:3311–18
    [Google Scholar]
  12. Buchmann B, Engelbrecht LK, Fernandez P, Hutterer FP, Raich MK et al. 2021. Mechanical plasticity of collagen directs branch elongation in human mammary gland organoids. Nat. Commun. 12:2759
    [Google Scholar]
  13. Chen B-C, Legant WR, Wang K, Shao L, Milkie DE et al. 2014. Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution. Science 346:1257998
    [Google Scholar]
  14. Cho AN, Jin Y, An Y, Kim J, Choi YS et al. 2021. Microfluidic device with brain extracellular matrix promotes structural and functional maturation of human brain organoids. Nat. Commun. 12:4730
    [Google Scholar]
  15. Choi WJ, Yoon J-K, Paulson B, Lee C-H, Yim J-J et al. 2022. Image correlation-based method to assess ciliary beat frequency in human airway organoids. IEEE Trans. Med. Imaging 41:374–82
    [Google Scholar]
  16. Co JY, Margalef-Català M, Li X, Mah AT, Kuo CJ et al. 2019. Controlling epithelial polarity: a human enteroid model for host-pathogen interactions. Cell Rep 26:2509–20.e4
    [Google Scholar]
  17. Cowan CS, Renner M, De Gennaro M, Gross-Scherf B, Goldblum D et al. 2020. Cell types of the human retina and its organoids at single-cell resolution. Cell 182:1623–40.e34
    [Google Scholar]
  18. Cullen DK, Gordian-Velez WJ, Struzyna LA, Jgamadze D, Lim J et al. 2019. Bundled three-dimensional human axon tracts derived from brain organoids. iScience 21:57–67
    [Google Scholar]
  19. Czerniecki SM, Cruz NM, Harder JL, Menon R, Annis J et al. 2018. High-throughput screening enhances kidney organoid differentiation from human pluripotent stem cells and enables automated multidimensional phenotyping. Cell Stem Cell 22:929–40.e4
    [Google Scholar]
  20. D'Imprima E, Montero MG, Gawrzak S, Ronchi P, Zagoriy I et al. 2021. Integrated light and electron microscopy continuum resolution imaging of 3D cell cultures. bioRxiv 450855. http://doi.org/10.1101/2021.07.02.450855
    [Crossref]
  21. de Medeiros G, Norlin N, Gunther S, Albert M, Panavaite L et al. 2015. Confocal multiview light-sheet microscopy. Nat. Commun. 6:8881
    [Google Scholar]
  22. de Medeiros G, Ortiz R, Strnad P, Boni A, Maurer F, Moos Fet al 2022. Multiscale light-sheet organoid imaging framework. Nat. Commun 134864
  23. Deben C, De La Hoz EC, Le Compte M, Van Schil P, Hendriks JM et al. 2021. OrBITS: A high-throughput, time-lapse, and label-free drug screening platform for patient-derived 3D organoids. bioRxiv 459656. https://doi.org/10.1101/2021.09.09.459656
    [Crossref]
  24. Delgado-Rodriguez P, Brooks CJ, Vaquero JJ, Muñoz-Barrutia A. 2022. Innovations in ex vivo Light Sheet Fluorescence Microscopy. Prog. Biophys. Mol. Biol. 168:37–51
    [Google Scholar]
  25. Drost J, Clevers H. 2017. Translational applications of adult stem cell-derived organoids. Development 144:968–75
    [Google Scholar]
  26. Du Y, Li X, Niu Q, Mo X, Qui M et al. 2020. Development of a miniaturized 3D organoid culture platform for ultra-high-throughput screening. J. Mol. Cell Biol. 12:630–43
    [Google Scholar]
  27. Eiraku M, Watanabe K, Matsuo-Takasaki M, Kawada M, Yonemura S et al. 2008. Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals. Cell Stem Cell 3:519–32
    [Google Scholar]
  28. el Azhar Y, Sonnen KF. 2021. Development in a dish—in vitro models of mammalian embryonic development. Front. Cell Dev. Biol. 9:655993
    [Google Scholar]
  29. Faustino Martins JM, Fischer C, Urzi A, Vidal R, Kunz S et al. 2020. Self-organizing 3D human trunk neuromuscular organoids. Cell Stem Cell 26:172–86.e6
    [Google Scholar]
  30. Gjorevski N, Nikolaev M, Brown TE, Mitrofanova O, Brandenberg N et al. 2022. Tissue geometry drives deterministic organoid patterning. Science 375:eaaw9021
    [Google Scholar]
  31. Gonçalves CA, Larsen M, Jung S, Stratmann J, Nakamura A et al. 2021. A 3D system to model human pancreas development and its reference single-cell transcriptome atlas identify signaling pathways required for progenitor expansion. Nat. Commun. 12:3144
    [Google Scholar]
  32. Gracz AD, Williamson IA, Roche KC, Johnston MJ, Wang F et al. 2015. A high-throughput platform for stem cell niche co-cultures and downstream gene expression analysis. Nat. Cell Biol. 17:340–49
    [Google Scholar]
  33. Gritti N, Lim JL, Anlas K, Pandya M, Aalderink G et al. 2021. MOrgAna: accessible quantitative analysis of organoids with machine learning. Development 148:dev199611
    [Google Scholar]
  34. Gut G, Herrmann MD, Pelkmans L. 2018. Multiplexed protein maps link subcellular organization to cellular states. Science 361:eaar7042
    [Google Scholar]
  35. Hashmi A, Tlili S, Perrin P, Martinez-Arias A, Lenne P-F. 2021. Cell-state transitions and collective cell movement generate an endoderm-like region in gastruloids. bioRxiv 105551. https://doi.org/10.1101/2020.05.21.105551
    [Crossref]
  36. He Z, Maynard A, Jain A, Gerber T, Petri R et al. 2022. Lineage recording in human cerebral organoids. Nat. Methods 19:90–99
    [Google Scholar]
  37. Held M, Santeramo I, Wilm B, Murray P, Lévy R. 2018. Ex vivo live cell tracking in kidney organoids using light sheet fluorescence microscopy. PLOS ONE 13:e0199918
    [Google Scholar]
  38. Hirokawa Y, Clarke J, Palmieri M, Tan T, Mouradov D et al. 2021. Low-viscosity matrix suspension culture enables scalable analysis of patient-derived organoids and tumoroids from the large intestine. Commun. Biol. 4:1067
    [Google Scholar]
  39. Hof L, Moreth T, Koch M, Liebisch T, Kurtz M et al. 2021. Long-term live imaging and multiscale analysis identify heterogeneity and core principles of epithelial organoid morphogenesis. BMC Biol 19:37
    [Google Scholar]
  40. Hotte K, Koch M, Hof L, Tuppi M, Moreth T et al. 2019. Ultra-thin fluorocarbon foils optimise multiscale imaging of three-dimensional native and optically cleared specimens. Sci. Rep. 9:17292
    [Google Scholar]
  41. Huisken J, Swoger J, Del Bene F, Wittbrodt J, Stelzer EH. 2004. Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science 305:1007–9
    [Google Scholar]
  42. Ishihara K, Mukherjee A, Gromberg E, Brugués J, Tanaka EM, Jülicher F. 2021. Topological morphogenesis of neuroepithelial organoids. bioRxiv 455385. https://doi.org/10.1101/2021.08.08.455385
    [Crossref]
  43. Iwasawa K, Takebe T. 2021. Organogenesis in vitro. Curr. Opin. Cell Biol. 73:84–91
    [Google Scholar]
  44. Jacquemin G, Wurmser A, Huyghe M, Sun W, Homayed Z et al. 2022. Paracrine signalling between intestinal epithelial and tumour cells induces a regenerative programme. eLife 11:e76541
    [Google Scholar]
  45. Kagawa H, Javali A, Khoei HH, Sommer TM, Sestini G et al. 2022. Human blastoids model blastocyst development and implantation. Nature 601:600–5
    [Google Scholar]
  46. Karzbrun E, Kshirsagar A, Cohen SR, Hanna JH, Reiner O. 2018. Human brain organoids on a chip reveal the physics of folding. Nat. Phys. 14:515–22
    [Google Scholar]
  47. Kassis T, Hernandez-Gordillo V, Langer R, Griffith LG. 2019. OrgaQuant: human intestinal organoid localization and quantification using deep convolutional neural networks. Sci. Rep. 9:12479
    [Google Scholar]
  48. Kastner C, Hendricks A, Deinlein H, Hankir M, Germer C-T et al. 2021. Organoid models for cancer research—from bed to bench side and back. Cancers 13:4812
    [Google Scholar]
  49. Kok RNU, Hebert L, Huelsz-Prince G, Goos YJ, Zheng X et al. 2020. OrganoidTracker: efficient cell tracking using machine learning and manual error correction. PLOS ONE 15:e0240802
    [Google Scholar]
  50. Krull A, Buchholz T-O, Jug F. 2019. Noise2Void – learning denoising from single noisy images. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)2124–32 New York: IEEE
    [Google Scholar]
  51. Kumar SV, Er PX, Lawlor KT, Motazedian A, Scurr M et al. 2019. Kidney micro-organoids in suspension culture as a scalable source of human pluripotent stem cell-derived kidney cells. Development 146:dev172361
    [Google Scholar]
  52. Ledwig P, Robles FE. 2019. Epi-mode tomographic quantitative phase imaging in thick scattering samples. Biomed. Opt. Express 10:3605–21
    [Google Scholar]
  53. Lee BH, Seijo-Barandiaran I, Grapin-Botton A. 2022. Epithelial morphogenesis in organoids. Curr. Opin. Genet. Dev. 72:30–37
    [Google Scholar]
  54. Lee S, Chang J, Kang S-M, Parigoris E, Lee J-H et al. 2022. High-throughput formation and image-based analysis of basal-in mammary organoids in 384-well plates. Sci. Rep. 12:317
    [Google Scholar]
  55. Legland D, Arganda-Carreras I, Andrey P 2016. MorphoLibJ: integrated library and plugins for mathematical morphology with ImageJ. Bioinformatics 32:3532–34
    [Google Scholar]
  56. Lewis A, Keshara R, Kim YH, Grapin-Botton A. 2021. Self-organization of organoids from endoderm-derived cells. J. Mol. Med. 99:449–62
    [Google Scholar]
  57. Lukonin I, Serra D, Challet Meylan L, Volkmann K, Baaten J et al. 2020. Phenotypic landscape of intestinal organoid regeneration. Nature 586:275–80
    [Google Scholar]
  58. Lukonin I, Zinner M, Liberali P. 2021. Organoids in image-based phenotypic chemical screens. Exp. Mol. Med. 53:1495–502
    [Google Scholar]
  59. Martínez-Ara G, Taberner N, Takayama M, Sandaltzopoulou E, Villava CE et al. 2021. Optogenetic control of apical constriction induces synthetic morphogenesis in mammalian tissues. bioRxiv 440475. https://doi.org/10.1101/2021.04.20.440475
    [Crossref]
  60. Mathew B, Schmitz A, Muñoz-Descalzo S, Ansari N, Pampaloni F et al. 2015. Robust and automated three-dimensional segmentation of densely packed cell nuclei in different biological specimens with Lines-of-Sight decomposition. BMC Bioinform. 16:187
    [Google Scholar]
  61. Matthews J, Schuster B, Kashaf SS, Liu P, Ben-Yishay R et al. 2022. OrganoID: a versatile deep learning platform for tracking and analysis of single-organoid dynamics. bioRxiv 476248. https://doi.org/10.1101/2022.01.13.476248
    [Crossref]
  62. McDole K, Guignard L, Amat F, Berger A, Malandain G et al. 2018. In toto imaging and reconstruction of post-implantation mouse development at the single-cell level. Cell 175:859–76.e33
    [Google Scholar]
  63. Mills RJ, Parker BL, Quaife-Ryan GA, Voges HK, Needham EJ et al. 2019. Drug screening in human PSC-cardiac organoids identifies pro-proliferative compounds acting via the mevalonate pathway. Cell Stem Cell 24:895–907.e6
    [Google Scholar]
  64. Mills RJ, Titmarsh DM, Koenig X, Parker BL, Ryall JG et al. 2017. Functional screening in human cardiac organoids reveals a metabolic mechanism for cardiomyocyte cell cycle arrest. PNAS 114:E8372–81
    [Google Scholar]
  65. Miura Y, Li MY, Birey F, Ikeda K, Revah O et al. 2020. Generation of human striatal organoids and cortico-striatal assembloids from human pluripotent stem cells. Nat. Biotechnol. 38:1421–30
    [Google Scholar]
  66. Miura Y, Li MY, Revah O, Yoon SJ, Narazaki G, Pasca SP. 2022. Engineering brain assembloids to interrogate human neural circuits. Nat. Protoc. 17:15–35
    [Google Scholar]
  67. Murrow LM, Weber RJ, Gartner ZJ. 2017. Dissecting the stem cell niche with organoid models: an engineering-based approach. Development 144:998–1007
    [Google Scholar]
  68. Omerzu M, Fenderico N, de Barbanson B, Sprangers J, de Ridder J, Maurice MM 2019. Three-dimensional analysis of single molecule FISH in human colon organoids. Biol. Open 8:bio042812
    [Google Scholar]
  69. Petersen OW, Ronnov-Jessen L, Howlett AR, Bissell MJ. 1992. Interaction with basement membrane serves to rapidly distinguish growth and differentiation pattern of normal and malignant human breast epithelial cells. PNAS 89:9064–68
    [Google Scholar]
  70. Preibisch S, Saalfeld S, Tomancak P. 2009. Globally optimal stitching of tiled 3D microscopic image acquisitions. Bioinformatics 25:1463–65
    [Google Scholar]
  71. Preusser F, Dos Santos N, Contzen J, Stachelscheid H, Costa ET et al. 2021. FRC-QE: a robust and comparable 3D microscopy image quality metric for cleared organoids. Bioinformatics 37:3088–90
    [Google Scholar]
  72. Prevedel R, Diz-Muñoz A, Ruocco G, Antonacci G. 2019. Brillouin microscopy: an emerging tool for mechanobiology. Nat. Methods 16:969–77
    [Google Scholar]
  73. Puschhof J, Pleguezuelos-Manzano C, Clevers H. 2021. Organoids and organs-on-chips: insights into human gut-microbe interactions. Cell Host Microbe 29:867–78
    [Google Scholar]
  74. Renner H, Grabos M, Becker KJ, Kagermeier TE, Wu J et al. 2020. A fully automated high-throughput workflow for 3D-based chemical screening in human midbrain organoids. eLife 9:e52904
    [Google Scholar]
  75. Rossi G, Broguiere N, Miyamoto M, Boni A, Guiet R et al. 2021. Capturing cardiogenesis in gastruloids. Cell Stem Cell 28:230–40.e6
    [Google Scholar]
  76. Saarela U, Akram SU, Desgrange A, Rak-Raszewska A, Shan J et al. 2017. Novel fixed z-direction (FiZD) kidney primordia and an organoid culture system for time-lapse confocal imaging. Development 144:1113–17
    [Google Scholar]
  77. Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N et al. 2009. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459:262–65
    [Google Scholar]
  78. Schmitz A, Fischer SC, Mattheyer C, Pampaloni F, Stelzer EH. 2017. Multiscale image analysis reveals structural heterogeneity of the cell microenvironment in homotypic spheroids. Sci. Rep. 7:43693
    [Google Scholar]
  79. Schoneberg J, Dambournet D, Liu TL, Forster R, Hockemeyer D et al. 2018. 4D cell biology: big data image analytics and lattice light-sheet imaging reveal dynamics of clathrin-mediated endocytosis in stem cell-derived intestinal organoids. Mol. Biol. Cell 29:2959–68
    [Google Scholar]
  80. Schutgens F, Clevers H. 2020. Human organoids: tools for understanding biology and treating diseases. Annu. Rev. Pathol. Mech. Dis. 15:211–34
    [Google Scholar]
  81. Serra D, Mayr U, Boni A, Lukonin I, Rempfler M et al. 2019. Self-organization and symmetry breaking in intestinal organoid development. Nature 569:66–72
    [Google Scholar]
  82. Shankar AS, Du Z, Mora HT, van den Bosch TPP, Korevaar SS et al. 2021. Human kidney organoids produce functional renin. Kidney Int 99:134–47
    [Google Scholar]
  83. Shinozawa T, Kimura M, Cai Y, Saiki N, Yoneyama Y et al. 2021. High-fidelity drug-induced liver injury screen using human pluripotent stem cell-derived organoids. Gastroenterology 160:831–46.e10
    [Google Scholar]
  84. Strnad P, Gunther S, Reichmann J, Krzic U, Balazs B et al. 2016. Inverted light-sheet microscope for imaging mouse pre-implantation development. Nat. Methods 13:139–42
    [Google Scholar]
  85. Sugawara K, Çevrim C, Averof M. 2022. Tracking cell lineages in 3D by incremental deep learning. eLife 11:e69380
    [Google Scholar]
  86. Sui Y, Zhang S, Li Y, Zhang X, Hu W et al. 2020. Generation of functional salivary gland tissue from human submandibular gland stem/progenitor cells. Stem Cell Res. Ther. 11:127
    [Google Scholar]
  87. Tallapragada NP, Cambra HM, Wald T, Keough Jalbert S, Abraham DM et al. 2021. Inflation-collapse dynamics drive patterning and morphogenesis in intestinal organoids. Cell Stem Cell 28:1516–32.e14
    [Google Scholar]
  88. Tanimizu N, Ichinohe N, Sasaki Y, Itoh T, Sudo R et al. 2021. Generation of functional liver organoids on combining hepatocytes and cholangiocytes with hepatobiliary connections ex vivo. Nat. Commun. 12:3390
    [Google Scholar]
  89. Teriyapirom I, Batista-Rocha AS, Koo BK 2021. Genetic engineering in organoids. J. Mol. Med. 99:555–68
    [Google Scholar]
  90. Tinevez JY, Perry N, Schindelin J, Hoopes GM, Reynolds GD et al. 2017. TrackMate: an open and extensible platform for single-particle tracking. Methods 115:80–90
    [Google Scholar]
  91. Vianello S, Lutolf MP. 2021. In vitro endoderm emergence and self-organisation in the absence of extraembryonic tissues and embryonic architecture. bioRxiv 138883. https://doi.org/10.1101/2020.06.07.138883
    [Crossref]
  92. Voleti V, Patel KB, Li W, Perez Campos C, Bharadwaj S et al. 2019. Real-time volumetric microscopy of in vivo dynamics and large-scale samples with SCAPE 2.0. Nat. Methods 16:1054–62
    [Google Scholar]
  93. Vrij EJ, Espinoza S, Heilig M, Kolew A, Schneider M et al. 2016. 3D high throughput screening and profiling of embryoid bodies in thermoformed microwell plates. Lab. Chip 16:734–42
    [Google Scholar]
  94. Xue Y, Browne AW, Tang WC, Delgado J, McLelland BT et al. 2021. Retinal organoids long-term functional characterization using two-photon fluorescence lifetime and hyperspectral microscopy. Front. Cell Neurosci. 15:796903
    [Google Scholar]
  95. Yanagida A, Spindlow D, Nichols J, Dattani A, Smith A, Guo G. 2021. Naive stem cell blastocyst model captures human embryo lineage segregation. Cell Stem Cell 28:1016–22.e4
    [Google Scholar]
  96. Yang Q, Xue SL, Chan CJ, Rempfler M, Vischi D et al. 2021. Cell fate coordinates mechano-osmotic forces in intestinal crypt formation. Nat. Cell Biol. 23:733–44
    [Google Scholar]
  97. Zabolocki M, McCormack K, van den Hurk M, Milky B, Shoubridge AP et al. 2020. BrainPhys neuronal medium optimized for imaging and optogenetics in vitro. Nat. Commun. 11:5550
    [Google Scholar]
  98. Zhao N, Powell RT, Yuan X, Bae G, Roarty KP et al. 2021. Morphological screening of mesenchymal mammary tumor organoids to identify drugs that reverse epithelial-mesenchymal transition. Nat. Commun. 12:4262
    [Google Scholar]
  99. Zhou Z, Van der Jeught K, Fang Y, Yu T, Li Y et al. 2021. An organoid-based screen for epigenetic inhibitors that stimulate antigen presentation and potentiate T-cell-mediated cytotoxicity. Nat. Biomed. Eng. 5:1320–35
    [Google Scholar]
/content/journals/10.1146/annurev-cellbio-120320-035146
Loading
/content/journals/10.1146/annurev-cellbio-120320-035146
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error