1932

Abstract

Eukaryotic cells across the tree of life organize their subcellular components via intracellular transport mechanisms. In canonical transport, myosin, kinesin, and dynein motor proteins interact with cargos via adaptor proteins and move along filamentous actin or microtubule tracks. In contrast to this canonical mode, hitchhiking is a newly discovered mode of intracellular transport in which a cargo attaches itself to an already-motile cargo rather than directly associating with a motor protein itself. Many cargos including messenger RNAs, protein complexes, and organelles hitchhike on membrane-bound cargos. Hitchhiking-like behaviors have been shown to impact cellular processes including local protein translation, long-distance signaling, and organelle network reorganization. Here, we review instances of cargo hitchhiking in fungal, animal, and plant cells and discuss the potential cellular and evolutionary importance of hitchhiking in these different contexts.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cellbio-120420-104341
2022-10-06
2024-06-19
Loading full text...

Full text loading...

/deliver/fulltext/cellbio/38/1/annurev-cellbio-120420-104341.html?itemId=/content/journals/10.1146/annurev-cellbio-120420-104341&mimeType=html&fmt=ahah

Literature Cited

  1. Ali I, Yang W-C. 2020. The functions of kinesin and kinesin-related proteins in eukaryotes. Cell Adhes. Migr. 14:1139–52
    [Google Scholar]
  2. Allen NS, Allen RD. 1978a. Cytoplasmic streaming in green plants. Annu. Rev. Biophys. Bioeng. 7:497–526
    [Google Scholar]
  3. Allen RD, Allen NS. 1978b. Cytoplasmic streaming in amoeboid movement. Annu. Rev. Biophys. Bioeng. 7:469–95
    [Google Scholar]
  4. Aronov S, Gelin-Licht R, Zipor G, Haim L, Safran E, Gerst JE. 2007. mRNAs encoding polarity and exocytosis factors are cotransported with the cortical endoplasmic reticulum to the incipient bud in Saccharomyces cerevisiae. Mol. Cell. Biol. 27:93441–55
    [Google Scholar]
  5. Avisar D, Abu-Abied M, Belausov E, Sadot E. 2012. Myosin XIK is a major player in cytoplasm dynamics and is regulated by two amino acids in its tail. J. Exp. Bot. 63:1241–49
    [Google Scholar]
  6. Avisar D, Prokhnevsky AI, Makarova KS, Koonin EV, Dolja VV. 2008. Myosin XI-K is required for rapid trafficking of Golgi stacks, peroxisomes, and mitochondria in leaf cells of Nicotiana benthamiana. Plant Physiol 146:31098–108
    [Google Scholar]
  7. Banaś AK, Aggarwal C, Łabuz J, Sztatelman O, Gabryś H. 2012. Blue light signalling in chloroplast movements. J. Exp. Bot. 63:41559–74
    [Google Scholar]
  8. Baumann S, Pohlmann T, Jungbluth M, Brachmann A, Feldbrügge M. 2012. Kinesin-3 and dynein mediate microtubule-dependent co-transport of mRNPs and endosomes. J. Cell Sci. 125:112740–52
    [Google Scholar]
  9. Bielska E, Schuster M, Roger Y, Berepiki A, Soanes DM et al. 2014. Hook is an adapter that coordinates kinesin-3 and dynein cargo attachment on early endosomes. J. Cell Biol. 204:6989–1007
    [Google Scholar]
  10. Boevink P, Oparka K, Cruz SS, Martin B, Betteridge A, Hawes C. 1998. Stacks on tracks: the plant Golgi apparatus traffics on an actin/ER network. Plant J 15:3441–47
    [Google Scholar]
  11. Böhl F, Kruse C, Frank A, Ferring D, Jansen R-P. 2000. She2p, a novel RNA-binding protein tethers ASH1 mRNA to the Myo4p myosin motor via She3p. EMBO J 19:205514–24
    [Google Scholar]
  12. Bretscher A. 2003. Polarized growth and organelle segregation in yeast. J. Cell Biol. 160:6811–16
    [Google Scholar]
  13. Burute M, Kapitein LC. 2019. Cellular logistics: unraveling the interplay between microtubule organization and intracellular transport. Annu. Rev. Cell Dev. Biol. 35:29–54
    [Google Scholar]
  14. Caballero-Lima D, Hautbergue GM, Wilson SA, Sudbery PE. 2014. In Candida albicans hyphae, Sec2p is physically associated with SEC2 mRNA on secretory vesicles. Mol. Microbiol. 94:4828–42
    [Google Scholar]
  15. Cabukusta B, Berlin I, van Elsland DM, Forkink I, Spits M et al. 2020. Human VAPome analysis reveals MOSPD1 and MOSPD3 as membrane contact site proteins interacting with FFAT-related FFNT motifs. Cell Rep 33:10108475
    [Google Scholar]
  16. Chang P, Torres J, Lewis RA, Mowry KL, Houliston E, King ML. 2004. Localization of RNAs to the mitochondrial cloud in Xenopus oocytes through entrapment and association with endoplasmic reticulum. Mol. Biol. Cell 15:104669–81
    [Google Scholar]
  17. Chou H-L, Tian L, Washida H, Fukuda M, Kumamaru T, Okita TW. 2019. The rice storage protein mRNAs as a model system for RNA localization in higher plants. Plant Sci 284:203–11
    [Google Scholar]
  18. Christensen JR, Kendrick AA, Truong JB, Aguilar-Maldonado A, Adani V et al. 2021. Cytoplasmic dynein-1 cargo diversity is mediated by the combinatorial assembly of FTS–Hook–FHIP complexes. eLife 10:e74538
    [Google Scholar]
  19. Cioni J-M, Lin JQ, Holtermann AV, Koppers M, Jakobs MAH et al. 2019. Late endosomes act as mRNA translation platforms and sustain mitochondria in axons. Cell 176:1–256–72.e15
    [Google Scholar]
  20. Corradi E, Dalla Costa I, Gavoci A, Iyer A, Roccuzzo M et al. 2020. Axonal precursor miRNAs hitchhike on endosomes and locally regulate the development of neural circuits. EMBO J 39:6e102513
    [Google Scholar]
  21. Covill-Cooke C, Toncheva VS, Drew J, Birsa N, López-Doménech G, Kittler JT. 2020. Peroxisomal fission is modulated by the mitochondrial Rho-GTPases, Miro1 and Miro2. EMBO Rep 21:2e49865
    [Google Scholar]
  22. daSilva LLP, Snapp EL, Denecke J, Lippincott-Schwartz J, Hawes C, Brandizzi F. 2004. Endoplasmic reticulum export sites and Golgi bodies behave as single mobile secretory units in plant cells. Plant Cell 16:71753–71
    [Google Scholar]
  23. Dollar G, Struckhoff E, Michaud J, Cohen RS. 2002. Rab11 polarization of the Drosophila oocyte: a novel link between membrane trafficking, microtubule organization, and oskar mRNA localization and translation. Development 129:2517–26
    [Google Scholar]
  24. Egan MJ, McClintock MA, Reck-Peterson SL. 2012. Microtubule-based transport in filamentous fungi. Curr. Opin. Microbiol. 15:6637–45
    [Google Scholar]
  25. Eisenberg-Bord M, Shai N, Schuldiner M, Bohnert M. 2016. A tether is a tether is a tether: tethering at membrane contact sites. Dev. Cell 39:4395–409
    [Google Scholar]
  26. Esseling-Ozdoba A, Houtman D, Van Lammeren AAM, Eiser E, Emons AMC. 2008. Hydrodynamic flow in the cytoplasm of plant cells. J. Microsc. 231:2274–83
    [Google Scholar]
  27. Estrada P, Kim J, Coleman J, Walker L, Dunn B et al. 2003. Myo4p and She3p are required for cortical ER inheritance in Saccharomyces cerevisiae. J. Cell Biol. 163:61255–66
    [Google Scholar]
  28. Fenton AR, Jongens TA, Holzbaur ELF. 2021. Mitochondrial adaptor TRAK2 activates and functionally links opposing kinesin and dynein motors. Nat. Commun. 12:4578
    [Google Scholar]
  29. Fernandez-Moya SM, Bauer KE, Kiebler MA. 2014. Meet the players: local translation at the synapse. Front. Mol. Neurosci. 7:84
    [Google Scholar]
  30. Friedman JR, Dibenedetto JR, West M, Rowland AA, Voeltz GK. 2013. Endoplasmic reticulum-endosome contact increases as endosomes traffic and mature. Mol. Biol. Cell 24:71030–40
    [Google Scholar]
  31. Fundakowski J, Hermesh O, Jansen R-P. 2012. Localization of a subset of yeast mRNAs depends on inheritance of endoplasmic reticulum. Traffic 13:121642–52
    [Google Scholar]
  32. Geitmann A, Nebenführ A. 2015. Navigating the plant cell: intracellular transport logistics in the green kingdom. Mol. Biol. Cell 26:193373–78
    [Google Scholar]
  33. Genz C, Fundakowski J, Hermesh O, Schmid M, Jansen R-P. 2013. Association of the yeast RNA-binding protein She2p with the tubular endoplasmic reticulum depends on membrane curvature. J. Biol. Chem. 288:4532384–93
    [Google Scholar]
  34. Goldstein RE, van de Meent J-W. 2015. A physical perspective on cytoplasmic streaming. Interface Focus 5:420150030
    [Google Scholar]
  35. Guimaraes SC, Schuster M, Bielska E, Dagdas G, Kilaru S et al. 2015. Peroxisomes, lipid droplets, and endoplasmic reticulum “hitchhike” on motile early endosomes. J. Cell Biol. 211:5945–54
    [Google Scholar]
  36. Guo X, Farías GG, Mattera R, Bonifacino JS. 2016. Rab5 and its effector FHF contribute to neuronal polarity through dynein-dependent retrieval of somatodendritic proteins from the axon. PNAS 113:36E5318–27
    [Google Scholar]
  37. Guo Y, Li D, Zhang S, Yang Y, Liu J-J et al. 2018. Visualizing intracellular organelle and cytoskeletal interactions at nanoscale resolution on millisecond timescales. Cell 175:51430–42.e17
    [Google Scholar]
  38. Hamada S, Ishiyama K, Choi S-B, Wang C, Singh S et al. 2003. The transport of prolamine RNAs to prolamine protein bodies in living rice endosperm cells. Plant Cell 15:102253–64
    [Google Scholar]
  39. Hammer JA, Sellers JR. 2012. Walking to work: roles for class V myosins as cargo transporters. Nat. Rev. Mol. Cell Biol. 13:113–26
    [Google Scholar]
  40. Harbauer AB, Hees JT, Wanderoy S, Segura I, Gibbs W et al. 2022. Neuronal mitochondria transport Pink1 mRNA via synaptojanin 2 to support local mitophagy. Neuron 110:9151631.e9
    [Google Scholar]
  41. Hawes C, Osterrieder A, Sparkes IA, Ketelaar T. 2010. Optical tweezers for the micromanipulation of plant cytoplasm and organelles. Curr. Opin. Plant Biol. 13:6731–35
    [Google Scholar]
  42. Henrichs V, Grycova L, Barinka C, Nahacka Z, Neuzil J et al. 2020. Mitochondria-adaptor TRAK1 promotes kinesin-1 driven transport in crowded environments. Nat. Commun. 11:3123
    [Google Scholar]
  43. Herker E, Vieyres G, Beller M, Krahmer N, Bohnert M. 2021. Lipid droplet contact sites in health and disease. Trends Cell Biol 31:5345–58
    [Google Scholar]
  44. Higa T, Suetsugu N, Kong S-G, Wada M. 2014. Actin-dependent plastid movement is required for motive force generation in directional nuclear movement in plants. PNAS 111:114327–31
    [Google Scholar]
  45. Higuchi Y, Ashwin P, Roger Y, Steinberg G. 2014. Early endosome motility spatially organizes polysome distribution. J. Cell Biol. 204:3343–57
    [Google Scholar]
  46. Horgan CP, Hanscom SR, Jolly RS, Futter CE, McCaffrey MW. 2010. Rab11-FIP3 links the Rab11 GTPase and cytoplasmic dynein to mediate transport to the endosomal-recycling compartment. J. Cell Sci. 123:Part 2181–91
    [Google Scholar]
  47. James C, Kehlenbach RH. 2021. The interactome of the VAP family of proteins: an overview. Cells 10:71780
    [Google Scholar]
  48. Jankovics F, Sinka R, Erdélyi M. 2001. An interaction type of genetic screen reveals a role of the Rab11 gene in oskar mRNA localization in the developing Drosophila melanogaster oocyte. Genetics 158:31177–88
    [Google Scholar]
  49. Jankowski S, Pohlmann T, Baumann S, Müntjes K, Devan SK et al. 2019. The multi PAM2 protein Upa2 functions as novel core component of endosomal mRNA transport. EMBO Rep 20:9e47381
    [Google Scholar]
  50. Jung H-S, Chory J. 2010. Signaling between chloroplasts and the nucleus: can a systems biology approach bring clarity to a complex and highly regulated pathway?. Plant Physiol. 152:2453–59
    [Google Scholar]
  51. Ketelaar T, de Ruijter N, Niehren S 2014. Optical trapping in plant cells. Plant Cell Morphogenesis: Methods and Protocols V Žárský, F Cvrčková 259–65 Totowa, NJ: Humana Press
    [Google Scholar]
  52. Kollmar M, Mühlhausen S. 2017. Myosin repertoire expansion coincides with eukaryotic diversification in the Mesoproterozoic era. BMC Evol. Biol. 17:211
    [Google Scholar]
  53. Liao Y-C, Fernandopulle MS, Wang G, Choi H, Hao L et al. 2019. RNA granules hitchhike on lysosomes for long-distance transport, using annexin A11 as a molecular tether. Cell 179:1147–64.e20
    [Google Scholar]
  54. Liu L, Li J. 2019. Communications between the endoplasmic reticulum and other organelles during abiotic stress response in plants. Front. Plant Sci. 10:749
    [Google Scholar]
  55. Loewen CJR, Levine TP. 2005. A highly conserved binding site in vesicle-associated membrane protein-associated protein (VAP) for the FFAT motif of lipid-binding proteins. J. Biol. Chem. 280:1414097–104
    [Google Scholar]
  56. Long RM, Gu W, Lorimer E, Singer RH, Chartrand P. 2000. She2p is a novel RNA-binding protein that recruits the Myo4p–She3p complex to ASH1 mRNA. EMBO J 19:236592–601
    [Google Scholar]
  57. Lu M, van Tartwijk FW, Lin JQ, Nijenhuis W, Parutto P et al. 2020. The structure and global distribution of the endoplasmic reticulum network are actively regulated by lysosomes. Sci. Adv. 6:51eabc7209
    [Google Scholar]
  58. Luo K-R, Huang N-C, Chang Y-H, Yu T-S. 2022. Arabidopsis cyclophilins direct plasmodesmata-targeting of mobile mRNA via organelle hitchhiking. Res. Square https://doi.org/10.21203/rs.3.rs-1088339/v1
    [Crossref]
  59. Luo K-R, Huang N-C, Yu T-S. 2018. Selective targeting of mobile mRNAs to plasmodesmata for cell-to-cell movement. Plant Physiol 177:2604–14
    [Google Scholar]
  60. Matanis T, Akhmanova A, Wulf P, Nery ED, Weide T et al. 2002. Bicaudal-D regulates COPI-independent Golgi–ER transport by recruiting the dynein–dynactin motor complex. Nat. Cell Biol. 4:12986–92
    [Google Scholar]
  61. Matsuzaki F, Shirane M, Matsumoto M, Nakayama KI. 2011. Protrudin serves as an adaptor molecule that connects KIF5 and its cargoes in vesicular transport during process formation. Mol. Biol. Cell 22:234602–20
    [Google Scholar]
  62. McKenney RJ, Huynh W, Tanenbaum ME, Bhabha G, Vale RD. 2014. Activation of cytoplasmic dynein motility by dynactin-cargo adapter complexes. Science 345:6194337–41
    [Google Scholar]
  63. Miki H, Okada Y, Hirokawa N. 2005. Analysis of the kinesin superfamily: insights into structure and function. Trends Cell Biol 15:9467–76
    [Google Scholar]
  64. Mogre SS, Christensen JR, Niman CS, Reck-Peterson SL, Koslover EF 2020. Hitching a ride: mechanics of transport initiation through linker-mediated hitchhiking. Biophys. J. 118:61357–69
    [Google Scholar]
  65. Müller J, Pohlmann T, Feldbrügge M. 2019. Core components of endosomal mRNA transport are evolutionarily conserved in fungi. Fungal Genet. Biol. 126:12–16
    [Google Scholar]
  66. Müntjes K, Devan SK, Reichert AS, Feldbrügge M. 2021. Linking transport and translation of mRNAs with endosomes and mitochondria. EMBO Rep 22:10e52445
    [Google Scholar]
  67. Neefjes J, Cabukusta B 2021. What the VAP: the expanded VAP family of proteins interacting with FFAT and FFAT-related motifs for interorganellar contact. Contact 4: https://doi.org/10.1177/25152564211012246
    [Crossref] [Google Scholar]
  68. Oikawa K, Kasahara M, Kiyosue T, Kagawa T, Suetsugu N et al. 2003. CHLOROPLAST UNUSUAL POSITIONING1 is essential for proper chloroplast positioning. Plant Cell 15:122805–15
    [Google Scholar]
  69. Oikawa K, Matsunaga S, Mano S, Kondo M, Yamada K et al. 2015. Physical interaction between peroxisomes and chloroplasts elucidated by in situ laser analysis. Nat. Plants 1:15035
    [Google Scholar]
  70. Olgeiser L, Haag C, Boerner S, Ule J, Busch A et al. 2019. The key protein of endosomal mRNP transport Rrm4 binds translational landmark sites of cargo mRNAs. EMBO Rep 20:e46588
    [Google Scholar]
  71. Oparka KJ. 2004. Getting the message across: how do plant cells exchange macromolecular complexes?. Trends Plant Sci 9:133–41
    [Google Scholar]
  72. Osterrieder A, Sparkes IA, Botchway SW, Ward A, Ketelaar T et al. 2017. Stacks off tracks: a role for the golgin AtCASP in plant endoplasmic reticulum-Golgi apparatus tethering. J. Exp. Bot. 68:133339–50
    [Google Scholar]
  73. Otero S, Helariutta Y, Benitez-Alfonso Y. 2016. Symplastic communication in organ formation and tissue patterning. Curr. Opin. Plant Biol. 29:21–28
    [Google Scholar]
  74. Özkan N, Koppers M, van Soest I, van Harten A, Jurriens D et al. 2021. ER–lysosome contacts at a pre-axonal region regulate axonal lysosome availability. Nat. Commun. 12:4493
    [Google Scholar]
  75. Peremyslov VV, Cole RA, Fowler JE, Dolja VV. 2015. Myosin-powered membrane compartment drives cytoplasmic streaming, cell expansion, and plant development. PLOS ONE 10:10e0139331
    [Google Scholar]
  76. Peremyslov VV, Klocko AL, Fowler JE, Dolja VV. 2012. Arabidopsis myosin XI-K localizes to the motile endomembrane vesicles associated with F-actin. Front. Plant Sci. 3:184
    [Google Scholar]
  77. Peremyslov VV, Morgun EA, Kurth EG, Makarova KS, Koonin EV, Dolja VV. 2013. Identification of myosin XI receptors in Arabidopsis defines a distinct class of transport vesicles. Plant Cell 25:83022–38
    [Google Scholar]
  78. Perico C, Sparkes I. 2018. Plant organelle dynamics: cytoskeletal control and membrane contact sites. New Phytol. 220:2381–94
    [Google Scholar]
  79. Perkins HT, Allan V 2021. Intertwined and finely balanced: endoplasmic reticulum morphology, dynamics, function, and diseases. Cells 10:92341
    [Google Scholar]
  80. Pohlmann T, Baumann S, Haag C, Albrecht M, Feldbrügge M 2015. A FYVE zinc finger domain protein specifically links mRNA transport to endosome trafficking. eLife 4:e06041
    [Google Scholar]
  81. Popovic D, Nijenhuis W, Kapitein LC, Pelkmans L. 2020. Co-translational targeting of transcripts to endosomes. bioRxiv 208652. https://doi.org/10.1101/2020.07.17.208652
    [Crossref]
  82. Prinz WA, Toulmay A, Balla T. 2020. The functional universe of membrane contact sites. Nat. Rev. Mol. Cell Biol. 21:17–24
    [Google Scholar]
  83. Pruyne DW, Schott DH, Bretscher A. 1998. Tropomyosin-containing actin cables direct the Myo2p-dependent polarized delivery of secretory vesicles in budding yeast. J. Cell Biol. 143:71931–45
    [Google Scholar]
  84. Qin J, Guo Y, Xue B, Shi P, Chen Y et al. 2020. ER-mitochondria contacts promote mtDNA nucleoids active transportation via mitochondrial dynamic tubulation. Nat. Commun. 11:4471
    [Google Scholar]
  85. Qin W, Myers SA, Carey DK, Carr SA, Ting AY. 2021. Spatiotemporally-resolved mapping of RNA binding proteins via functional proximity labeling reveals a mitochondrial mRNA anchor promoting stress recovery. Nat. Commun. 12:4980
    [Google Scholar]
  86. Quentin D, Schuhmacher JS, Klink BU, Lauer J, Shaikh TR et al. 2021. Structure of the human FERRY Rab5 effector complex. bioRxiv 449265. https://doi.org/10.1101/2021.06.21.449265
    [Crossref]
  87. Quinlan ME. 2016. Cytoplasmic streaming in the Drosophila oocyte. Annu. Rev. Cell Dev. Biol. 32:173–95
    [Google Scholar]
  88. Raiborg C, Wenzel EM, Pedersen NM, Olsvik H, Schink KO et al. 2015. Repeated ER–endosome contacts promote endosome translocation and neurite outgrowth. Nature 520:7546234–38
    [Google Scholar]
  89. Reck-Peterson SL, Redwine WB, Vale RD, Carter AP. 2018. The cytoplasmic dynein transport machinery and its many cargoes. Nat. Rev. Mol. Cell Biol. 19:6382–98
    [Google Scholar]
  90. Runions J, Brach T, Kühner S, Hawes C. 2006. Photoactivation of GFP reveals protein dynamics within the endoplasmic reticulum membrane. J. Exp. Bot. 57:143–50
    [Google Scholar]
  91. Salogiannis J, Christensen JR, Songster LD, Aguilar-Maldonado A, Shukla N, Reck-Peterson SL. 2021. PxdA interacts with the DipA phosphatase to regulate peroxisome hitchhiking on early endosomes. Mol. Biol. Cell 32:6492–503
    [Google Scholar]
  92. Salogiannis J, Egan MJ, Reck-Peterson SL. 2016. Peroxisomes move by hitchhiking on early endosomes using the novel linker protein PxdA. J. Cell Biol. 212:3289–96
    [Google Scholar]
  93. Salogiannis J, Reck-Peterson SL. 2017. Hitchhiking: a non-canonical mode of microtubule-based transport. Trends Cell Biol 27:2141–50
    [Google Scholar]
  94. Schlager MA, Hoang HT, Urnavicius L, Bullock SL, Carter AP. 2014. In vitro reconstitution of a highly processive recombinant human dynein complex. EMBO J 33:171855–68
    [Google Scholar]
  95. Schmid M, Jaedicke A, Du T-G, Jansen R-P. 2006. Coordination of endoplasmic reticulum and mRNA localization to the yeast bud. Curr. Biol. 16:151538–43
    [Google Scholar]
  96. Schuhmacher JS, tom Dieck S, Christoforidis S, Landerer C, Hersemann L et al. 2021. The novel Rab5 effector FERRY links early endosomes with the translation machinery. bioRxiv 449167. https://doi.org/10.1101/2021.06.20.449167
    [Crossref]
  97. Schumann U, Prestele J, O'Geen H, Brueggeman R, Wanner G, Gietl C. 2007. Requirement of the C3HC4 zinc RING finger of the Arabidopsis PEX10 for photorespiration and leaf peroxisome contact with chloroplasts. PNAS 104:31069–74
    [Google Scholar]
  98. Shepard KA, Gerber AP, Jambhekar A, Takizawa PA, Brown PO et al. 2003. Widespread cytoplasmic mRNA transport in yeast: identification of 22 bud-localized transcripts using DNA microarray analysis. PNAS 100:2011429–34
    [Google Scholar]
  99. Siddiqui N, Straube A. 2017. Intracellular cargo transport by kinesin-3 motors. Biochemistry 82:7803–15
    [Google Scholar]
  100. Singer-Krüger B, Jansen R-P. 2014. Here, there, everywhere. RNA Biol 11:81031–39
    [Google Scholar]
  101. Smith BN, Topp SD, Fallini C, Shibata H, Chen H-J et al. 2017. Mutations in the vesicular trafficking protein annexin A11 are associated with amyotrophic lateral sclerosis. Sci. Transl. Med. 9:388eaad9157
    [Google Scholar]
  102. Sparkes IA, Ketelaar T, de Ruijter NCA, Hawes C. 2009. Grab a Golgi: laser trapping of Golgi bodies reveals in vivo interactions with the endoplasmic reticulum. Traffic 10:5567–71
    [Google Scholar]
  103. Sparkes IA, Teanby NA, Hawes C. 2008. Truncated myosin XI tail fusions inhibit peroxisome, Golgi, and mitochondrial movement in tobacco leaf epidermal cells: a genetic tool for the next generation. J. Exp. Bot. 59:92499–512
    [Google Scholar]
  104. Sparkes IA, White RR, Coles B, Botchway SW, Ward A. 2018. Using optical tweezers combined with total internal reflection microscopy to study interactions between the ER and Golgi in plant cells. Methods Mol. Biol. 1691:167–78
    [Google Scholar]
  105. Spits M, Heesterbeek IT, Voortman LM, Akkermans JJ, Wijdeven RH et al. 2021. Mobile late endosomes modulate peripheral endoplasmic reticulum network architecture. EMBO Rep 22:3e50815
    [Google Scholar]
  106. Stefano G, Renna L, Brandizzi F 2014. The endoplasmic reticulum exerts control over organelle streaming during cell expansion. J. Cell Sci. 127:5947–53
    [Google Scholar]
  107. Steinberg G. 2007. Hyphal growth: a tale of motors, lipids, and the spitzenkörper. Eukaryot. Cell 6:3351–60
    [Google Scholar]
  108. Sudbery P, Gow N, Berman J. 2004. The distinct morphogenic states of Candida albicans. Trends Microbiol 12:7317–24
    [Google Scholar]
  109. Suetsugu N, Dolja VV, Wada M. 2010. Why have chloroplasts developed a unique motility system?. Plant Signal. Behav. 5:101190–96
    [Google Scholar]
  110. Takizawa PA, Vale RD. 2000. The myosin motor, Myo4p, binds Ash1 mRNA via the adapter protein, She3p. PNAS 97:105273–78
    [Google Scholar]
  111. Tan X, Li K, Wang Z, Zhu K, Tan X, Cao J. 2019. A review of plant vacuoles: formation, located proteins, and functions. Plants 8:9327
    [Google Scholar]
  112. Tian L, Chou H-L, Fukuda M, Kumamaru T, Okita TW. 2020. mRNA localization in plant cells. Plant Physiol 182:197–109
    [Google Scholar]
  113. Tian L, Chou H-L, Zhang L, Hwang S-K, Starkenburg SR et al. 2018. RNA-binding protein RBP-P is required for glutelin and prolamine mRNA localization in rice endosperm cells. Plant Cell 30:102529–52
    [Google Scholar]
  114. Tian L, Chou H-L, Zhang L, Okita TW. 2019. Targeted endoplasmic reticulum localization of storage protein mRNAs requires the RNA-binding protein RBP-L. Plant Physiol 179:31111–31
    [Google Scholar]
  115. Titus MA. 2018. Myosin-driven intracellular transport. Cold Spring Harb. Perspect. Biol. 10:3a021972
    [Google Scholar]
  116. Trautwein M, Dengjel J, Schirle M, Spang A. 2004. Arf1p provides an unexpected link between COPI vesicles and mRNA in Saccharomyces cerevisiae. Mol. Biol. Cell 15:115021–37
    [Google Scholar]
  117. Ueda H, Yokota E, Kutsuna N, Shimada T, Tamura K et al. 2010. Myosin-dependent endoplasmic reticulum motility and F-actin organization in plant cells. PNAS 107:156894–99
    [Google Scholar]
  118. Valm AM, Cohen S, Legant WR, Melunis J, Hershberg U et al. 2017. Applying systems-level spectral imaging and analysis to reveal the organelle interactome. Nature 546:7656162–67
    [Google Scholar]
  119. Welz T, Kerkhoff E. 2019. Exploring the iceberg: prospects of coordinated myosin V and actin assembly functions in transport processes. Small GTPases 10:2111–21
    [Google Scholar]
  120. Wilhelm JE, Buszczak M, Sayles S. 2005. Efficient protein trafficking requires trailer hitch, a component of a ribonucleoprotein complex localized to the ER in Drosophila. Dev. Cell 9:5675–85
    [Google Scholar]
  121. Wilson EL, Metzakopian E. 2021. ER-mitochondria contact sites in neurodegeneration: genetic screening approaches to investigate novel disease mechanisms. Cell Death Differ 28:61804–21
    [Google Scholar]
  122. Yao X, Wang X, Xiang X. 2014. FHIP and FTS proteins are critical for dynein-mediated transport of early endosomes in Aspergillus. Mol. Biol. Cell 25:142181–89
    [Google Scholar]
  123. Zajac AL, Goldman YE, Holzbaur ELF, Ostap EM. 2013. Local cytoskeletal and organelle interactions impact molecular-motor-driven early endosomal trafficking. Curr. Biol. 23:131173–80
    [Google Scholar]
  124. Zander S, Baumann S, Weidtkamp-Peters S, Feldbrügge M. 2016. Endosomal assembly and transport of heteromeric septin complexes promote septin cytoskeleton formation. J. Cell Sci. 129:142778–92
    [Google Scholar]
  125. Zhang J, Qiu R, Arst HN, Peñalva MA, Xiang X. 2014. HookA is a novel dynein–early endosome linker critical for cargo movement in vivo. J. Cell Biol. 204:61009–26
    [Google Scholar]
/content/journals/10.1146/annurev-cellbio-120420-104341
Loading
/content/journals/10.1146/annurev-cellbio-120420-104341
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error