1932

Abstract

Successful immune responses depend on the spatiotemporal coordination of immune cell migration, interactions, and effector functions in lymphoid and parenchymal tissues. Real-time intravital microscopy has revolutionized our understanding of the dynamic behavior of many immune cell types in the living tissues of several species. Observing immune cells in their native environment has revealed many unanticipated facets of their biology, which were not expected from experiments outside a living organism. Here we highlight both classic and more recent examples of surprising discoveries that critically relied on the use of live in vivo imaging. In particular, we focus on five major cell types of the innate immune response (macrophages, microglia, neutrophils, dendritic cells, and mast cells), and how studying their dynamics in mouse tissues has helped us advance our current knowledge of immune cell–mediated tissue homeostasis, host defense, and inflammation.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cellbio-120420-112849
2022-10-06
2024-04-21
Loading full text...

Full text loading...

/deliver/fulltext/cellbio/38/1/annurev-cellbio-120420-112849.html?itemId=/content/journals/10.1146/annurev-cellbio-120420-112849&mimeType=html&fmt=ahah

Literature Cited

  1. Abtin A, Jain R, Mitchell AJ, Roediger B, Brzoska AJ et al. 2014. Perivascular macrophages mediate neutrophil recruitment during bacterial skin infection. Nat. Immunol. 15:45–53
    [Google Scholar]
  2. Akira S, Uematsu S, Takeuchi O. 2006. Pathogen recognition and innate immunity. Cell 124:783–801
    [Google Scholar]
  3. Andoh M, Koyama R. 2021. Assessing microglial dynamics by live imaging. Front. Immunol. 12:617564
    [Google Scholar]
  4. Arasa J, Collado-Diaz V, Kritikos I, Medina-Sanchez JD, Friess MC et al. 2021. Upregulation of VCAM-1 in lymphatic collectors supports dendritic cell entry and rapid migration to lymph nodes in inflammation. J. Exp. Med. 218:e20201413
    [Google Scholar]
  5. Askew K, Li K, Olmos-Alonso A, Garcia-Moreno F, Liang Y et al. 2017. Coupled proliferation and apoptosis maintain the rapid turnover of microglia in the adult brain. Cell Rep 18:391–405
    [Google Scholar]
  6. Auffray C, Fogg D, Garfa M, Elain G, Join-Lambert O et al. 2007. Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science 317:666–70
    [Google Scholar]
  7. Badimon A, Strasburger HJ, Ayata P, Chen X, Nair A et al. 2020. Negative feedback control of neuronal activity by microglia. Nature 586:417–23
    [Google Scholar]
  8. Barkaway A, Rolas L, Joulia R, Bodkin J, Lenn T et al. 2021. Age-related changes in the local milieu of inflamed tissues cause aberrant neutrophil trafficking and subsequent remote organ damage. Immunity 54:1494–510.e7
    [Google Scholar]
  9. Barreiro O, Cibrian D, Clemente C, Alvarez D, Moreno V et al. 2016. Pivotal role for skin transendothelial radio-resistant anti-inflammatory macrophages in tissue repair. eLife 5:e15251
    [Google Scholar]
  10. Bischoff SC. 2007. Role of mast cells in allergic and non-allergic immune responses: comparison of human and murine data. Nat. Rev. Immunol. 7:93–104
    [Google Scholar]
  11. Bleriot C, Chakarov S, Ginhoux F. 2020. Determinants of resident tissue macrophage identity and function. Immunity 52:957–70
    [Google Scholar]
  12. Bogoslowski A, Wijeyesinghe S, Lee W-Y, Chen C-S, Alanani S et al. 2020. Neutrophils recirculate through lymph nodes to survey tissues for pathogens. J. Immunol. 204:2552–61
    [Google Scholar]
  13. Bose O, Baluk P, Looney MR, Cheng LE, McDonald DM et al. 2015. Mast cells present protrusions into blood vessels upon tracheal allergen challenge in mice. PLOS ONE 10:e0118513
    [Google Scholar]
  14. Bosnjak B, Do KTH, Forster R, Hammerschmidt SI. 2022. Imaging dendritic cell functions. Immunol. Rev. 306:137–63
    [Google Scholar]
  15. Brawek B, Liang Y, Savitska D, Li K, Fomin-Thunemann N et al. 2017. A new approach for ratiometric in vivo calcium imaging of microglia. Sci. Rep. 7:6030
    [Google Scholar]
  16. Brewitz A, Eickhoff S, Dahling S, Quast T, Bedoui S et al. 2017. CD8+ T cells orchestrate pDC-XCR1+ dendritic cell spatial and functional cooperativity to optimize priming. Immunity 46:205–19
    [Google Scholar]
  17. Bruns S, Kniemeyer O, Hasenberg M, Aimanianda V, Nietzsche S et al. 2010. Production of extracellular traps against Aspergillus fumigatus in vitro and in infected lung tissue is dependent on invading neutrophils and influenced by hydrophobin RodA. PLOS Pathog 6:e1000873
    [Google Scholar]
  18. Burn GL, Foti A, Marsman G, Patel DF, Zychlinsky A. 2021. The neutrophil. Immunity 54:1377–91
    [Google Scholar]
  19. Cabeza-Cabrerizo M, Cardoso A, Minutti CM, Pereira da Costa M, Reis e Sousa C. 2021. Dendritic cells revisited. Annu. Rev. Immunol. 39:131–66
    [Google Scholar]
  20. Carlin LM, Stamatiades EG, Auffray C, Hanna RN, Glover L et al. 2013. Nr4a1-dependent Ly6Clow monocytes monitor endothelial cells and orchestrate their disposal. Cell 153:362–75
    [Google Scholar]
  21. Carrasco YR, Batista FD. 2007. B cells acquire particulate antigen in a macrophage-rich area at the boundary between the follicle and the subcapsular sinus of the lymph node. Immunity 27:160–71
    [Google Scholar]
  22. Castanheira FVS, Kubes P. 2019. Neutrophils and NETs in modulating acute and chronic inflammation. Blood 133:2178–85
    [Google Scholar]
  23. Chan MF, Li J, Bertrand A, Casbon A-J, Lin JH et al. 2013. Protective effects of matrix metalloproteinase-12 following corneal injury. J. Cell Sci. 126:3948–60
    [Google Scholar]
  24. Chaves MM, Lee SH, Kamenyeva O, Ghosh K, Peters NC, Sacks D. 2020. The role of dermis resident macrophages and their interaction with neutrophils in the early establishment of Leishmania major infection transmitted by sand fly bite. PLOS Pathog 16:e1008674
    [Google Scholar]
  25. Cheng LE, Hartmann K, Roers A, Krummel MF, Locksley RM. 2013. Perivascular mast cells dynamically probe cutaneous blood vessels to capture immunoglobulin E. Immunity 38:166–75
    [Google Scholar]
  26. Choi HW, Suwanpradid J, Kim IH, Staats HF, Haniffa M et al. 2018. Perivascular dendritic cells elicit anaphylaxis by relaying allergens to mast cells via microvesicles. Science 362:eaao0666
    [Google Scholar]
  27. Chong SZ, Evrard M, Goh CC, Ng LG. 2018. Illuminating the covert mission of mononuclear phagocytes in their regional niches. Curr. Opin. Immunol. 50:94–101
    [Google Scholar]
  28. Chtanova T, Schaeffer M, Han SJ, van Dooren GG, Nollmann M et al. 2008. Dynamics of neutrophil migration in lymph nodes during infection. Immunity 29:487–96
    [Google Scholar]
  29. Cox N, Pokrovskii M, Vicario R, Geissmann F. 2021. Origins, biology, and diseases of tissue macrophages. Annu. Rev. Immunol. 39:313–44
    [Google Scholar]
  30. Crainiciuc G, Palomino-Segura M, Molina-Moreno M, Sicilia J, Aragones DG et al. 2022. Behavioural immune landscapes of inflammation. Nature 601:415–21
    [Google Scholar]
  31. d'Errico P, Ziegler-Waldkirch S, Aires V, Hoffmann P, Mezö C et al. 2022. Microglia contribute to the propagation of Aβ into unaffected brain tissue. Nat. Neurosci. 25:20–25
    [Google Scholar]
  32. Damisah EC, Hill RA, Rai A, Chen F, Rothlin CV et al. 2020. Astrocytes and microglia play orchestrated roles and respect phagocytic territories during neuronal corpse removal in vivo. Sci. Adv. 6:eaba3239
    [Google Scholar]
  33. Davalos D, Akassoglou K. 2012. In vivo imaging of the mouse spinal cord using two-photon microscopy. J. Vis. Exp. 59:e2760
    [Google Scholar]
  34. Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y et al. 2005. ATP mediates rapid microglial response to local brain injury in vivo. Nat. Neurosci. 8:752–58
    [Google Scholar]
  35. Davalos D, Kyu Ryu J, Merlini M, Baeten KM, Le Moan N et al. 2012. Fibrinogen-induced perivascular microglial clustering is required for the development of axonal damage in neuroinflammation. Nat. Commun. 3:1227
    [Google Scholar]
  36. Dawson CA, Pal B, Vaillant F, Gandolfo LC, Liu Z et al. 2020. Tissue-resident ductal macrophages survey the mammary epithelium and facilitate tissue remodelling. Nat. Cell Biol. 22:546–58
    [Google Scholar]
  37. De Filippo K, Rankin SM. 2020. The secretive life of neutrophils revealed by intravital microscopy. Front. Cell Dev. Biol. 8:603230
    [Google Scholar]
  38. De Giovanni M, Tam H, Valet C, Xu Y, Looney MR, Cyster JG. 2022. GPR35 promotes neutrophil recruitment in response to serotonin metabolite 5-HIAA. Cell 185:815–30.e19
    [Google Scholar]
  39. Deniset JF, Surewaard BG, Lee WY, Kubes P. 2017. Splenic Ly6Ghigh mature and Ly6Gint immature neutrophils contribute to eradication of S. pneumoniae. J. Exp. Med. 214:1333–50
    [Google Scholar]
  40. Deppermann C, Kubes P. 2018. Start a fire, kill the bug: the role of platelets in inflammation and infection. Innate Immun 24:335–48
    [Google Scholar]
  41. Devi S, Wang Y, Chew WK, Lima R, A-González N et al. 2013. Neutrophil mobilization via plerixafor-mediated CXCR4 inhibition arises from lung demargination and blockade of neutrophil homing to the bone marrow. J. Exp. Med. 210:2321–36
    [Google Scholar]
  42. Dudeck A, Dudeck J, Scholten J, Petzold A, Surianarayanan S et al. 2011. Mast cells are key promoters of contact allergy that mediate the adjuvant effects of haptens. Immunity 34:973–84
    [Google Scholar]
  43. Dudeck J, Froebel J, Kotrba J, Lehmann CHK, Dudziak D et al. 2019. Engulfment of mast cell secretory granules on skin inflammation boosts dendritic cell migration and priming efficiency. J. Allergy Clin. Immunol. 143:1849–64.e4
    [Google Scholar]
  44. Dudeck J, Kotrba J, Immler R, Hoffmann A, Voss M et al. 2021. Directional mast cell degranulation of tumor necrosis factor into blood vessels primes neutrophil extravasation. Immunity 54:468–83.e5
    [Google Scholar]
  45. Dudeck J, Medyukhina A, Frobel J, Svensson CM, Kotrba J et al. 2017. Mast cells acquire MHCII from dendritic cells during skin inflammation. J. Exp. Med. 214:3791–811
    [Google Scholar]
  46. Egen JG, Rothfuchs AG, Feng CG, Horwitz MA, Sher A, Germain RN 2011. Intravital imaging reveals limited antigen presentation and T cell effector function in mycobacterial granulomas. Immunity 34:807–19
    [Google Scholar]
  47. Eickhoff S, Brewitz A, Gerner MY, Klauschen F, Komander K et al. 2015. Robust anti-viral immunity requires multiple distinct T cell-dendritic cell interactions. Cell 162:1322–37
    [Google Scholar]
  48. Eyo UB, Haruwaka K, Mo M, Campos-Salazar AB, Wang L et al. 2021. Microglia provide structural resolution to injured dendrites after severe seizures. Cell Rep 35:109080
    [Google Scholar]
  49. Farache J, Koren I, Milo I, Gurevich I, Kim K-W et al. 2013. Luminal bacteria recruit CD103+ dendritic cells into the intestinal epithelium to sample bacterial antigens for presentation. Immunity 38:581–95
    [Google Scholar]
  50. Finsterbusch M, Hall P, Li A, Devi S, Westhorpe CL et al. 2016. Patrolling monocytes promote intravascular neutrophil activation and glomerular injury in the acutely inflamed glomerulus. PNAS 113:E5172–81
    [Google Scholar]
  51. Fiole D, Deman P, Trescos Y, Mayol JF, Mathieu J et al. 2014. Two-photon intravital imaging of lungs during anthrax infection reveals long-lasting macrophage-dendritic cell contacts. Infect. Immun. 82:864–72
    [Google Scholar]
  52. Füger P, Hefendehl JK, Veeraraghavalu K, Wendeln A-C, Schlosser C et al. 2017. Microglia turnover with aging and in an Alzheimer's model via long-term in vivo single-cell imaging. Nat. Neurosci. 20:1371–76
    [Google Scholar]
  53. Furuya M, Kikuta J, Fujimori S, Seno S, Maeda H et al. 2018. Direct cell–cell contact between mature osteoblasts and osteoclasts dynamically controls their functions in vivo. Nat. Commun. 9:300
    [Google Scholar]
  54. Galli SJ, Tsai M. 2010. Mast cells in allergy and infection: versatile effector and regulatory cells in innate and adaptive immunity. Eur. J. Immunol. 40:1843–51
    [Google Scholar]
  55. Gaudenzio N, Marichal T, Galli SJ, Reber LL. 2018. Genetic and imaging approaches reveal pro-inflammatory and immunoregulatory roles of mast cells in contact hypersensitivity. Front. Immunol. 9:1275
    [Google Scholar]
  56. Germain RN. 2022. Imaging the immune system redux. Immunol. Rev. 306:5–7
    [Google Scholar]
  57. Germain RN, Robey EA, Cahalan MD. 2012. A decade of imaging cellular motility and interaction dynamics in the immune system. Science 336:1676–81
    [Google Scholar]
  58. Ginhoux F, Prinz M. 2015. Origin of microglia: current concepts and past controversies. Cold Spring Harb. Perspect. Biol. 7:a020537
    [Google Scholar]
  59. Girbl T, Lenn T, Perez L, Rolas L, Barkaway A et al. 2018. Distinct compartmentalization of the chemokines CXCL1 and CXCL2 and the atypical receptor ACKR1 determine discrete stages of neutrophil diapedesis. Immunity 49:1062–76.e6
    [Google Scholar]
  60. Girgis NM, Gundra UM, Ward LN, Cabrera M, Frevert U, Loke P. 2014. Ly6Chigh monocytes become alternatively activated macrophages in schistosome granulomas with help from CD4+ cells. PLOS Pathog 10:e1004080
    [Google Scholar]
  61. Glaser KM, Mihlan M, Lämmermann T. 2021. Positive feedback amplification in swarming immune cell populations. Curr. Opin. Cell Biol. 72:156–62
    [Google Scholar]
  62. Grandjean CL, Garcia Z, Lemaître F, Bréart B, Bousso P. 2021. Imaging the mechanisms of anti-CD20 therapy in vivo uncovers spatiotemporal bottlenecks in antibody-dependent phagocytosis. Sci. Adv. 7:abd6167
    [Google Scholar]
  63. Gurevich I, Feferman T, Milo I, Tal O, Golani O et al. 2017. Active dissemination of cellular antigens by DCs facilitates CD8+ T-cell priming in lymph nodes. Eur. J. Immunol. 47:1802–18
    [Google Scholar]
  64. Hampton HR, Bailey J, Tomura M, Brink R, Chtanova T. 2015. Microbe-dependent lymphatic migration of neutrophils modulates lymphocyte proliferation in lymph nodes. Nat. Commun. 6:7139
    [Google Scholar]
  65. Haynes SE, Hollopeter G, Yang G, Kurpius D, Dailey ME et al. 2006. The P2Y12 receptor regulates microglial activation by extracellular nucleotides. Nat. Neurosci. 9:1512–19
    [Google Scholar]
  66. Hill RA, Li AM, Grutzendler J. 2018. Lifelong cortical myelin plasticity and age-related degeneration in the live mammalian brain. Nat. Neurosci. 21:683–95
    [Google Scholar]
  67. Honda M, Surewaard BGJ, Watanabe M, Hedrick CC, Lee WY et al. 2020. Perivascular localization of macrophages in the intestinal mucosa is regulated by Nr4a1 and the microbiome. Nat. Commun. 11:1329
    [Google Scholar]
  68. Hor JL, Germain RN. 2022. Intravital and high-content multiplex imaging of the immune system. Trends Cell Biol 32:406–20
    [Google Scholar]
  69. Hor JL, Whitney PG, Zaid A, Brooks AG, Heath WR, Mueller SN. 2015. Spatiotemporally distinct interactions with dendritic cell subsets facilitates CD4+ and CD8+ T cell activation to localized viral infection. Immunity 43:554–65
    [Google Scholar]
  70. Huang JY, Lyons-Cohen MR, Gerner MY 2022. Information flow in the spatiotemporal organization of immune responses. Immunol. Rev. 306:93–107
    [Google Scholar]
  71. Hunter MC, Teijeira A, Montecchi R, Russo E, Runge P et al. 2019. Dendritic cells and T cells interact within murine afferent lymphatic capillaries. Front. Immunol. 10:520
    [Google Scholar]
  72. Ivanov S, Scallan JP, Kim KW, Werth K, Johnson MW et al. 2016. CCR7 and IRF4-dependent dendritic cells regulate lymphatic collecting vessel permeability. J. Clin. Invest. 126:1581–91
    [Google Scholar]
  73. Jafari M, Schumacher AM, Snaidero N, Ullrich Gavilanes EM, Neziraj T et al. 2021. Phagocyte-mediated synapse removal in cortical neuroinflammation is promoted by local calcium accumulation. Nat. Neurosci. 24:355–67
    [Google Scholar]
  74. Jain P, Coisne C, Enzmann G, Rottapel R, Engelhardt B. 2010. α4β1 integrin mediates the recruitment of immature dendritic cells across the blood-brain barrier during experimental autoimmune encephalomyelitis. J. Immunol. 184:7196–206
    [Google Scholar]
  75. Jamali A, Seyed-Razavi Y, Chao C, Ortiz G, Kenyon B et al. 2020. Intravital multiphoton microscopy of the ocular surface: alterations in conventional dendritic cell morphology and kinetics in dry eye disease. Front. Immunol. 11:742
    [Google Scholar]
  76. Jang JE, Hajdu CH, Liot C, Miller G, Dustin ML, Bar-Sagi D. 2017. Crosstalk between regulatory T cells and tumor-associated dendritic cells negates anti-tumor immunity in pancreatic cancer. Cell Rep 20:558–71
    [Google Scholar]
  77. Jiao H, Jiang D, Hu X, Du W, Ji L et al. 2021. Mitocytosis, a migrasome-mediated mitochondrial quality-control process. Cell 184:2896–910.e13
    [Google Scholar]
  78. Junt T, Moseman EA, Iannacone M, Massberg S, Lang PA et al. 2007. Subcapsular sinus macrophages in lymph nodes clear lymph-borne viruses and present them to antiviral B cells. Nature 450:110–14
    [Google Scholar]
  79. Juzenaite G, Secklehner J, Vuononvirta J, Helbawi Y, Mackey JBG et al. 2021. Lung marginated and splenic murine resident neutrophils constitute pioneers in tissue-defense during systemic E. coli challenge. Front. Immunol. 12:597595
    [Google Scholar]
  80. Karhausen J, Choi HW, Maddipati KR, Mathew JP, Ma Q et al. 2020. Platelets trigger perivascular mast cell degranulation to cause inflammatory responses and tissue injury. Sci. Adv. 6:eaay6314
    [Google Scholar]
  81. Kienle K, Glaser KM, Eickhoff S, Mihlan M, Knopper K et al. 2021. Neutrophils self-limit swarming to contain bacterial growth in vivo. Science 372:abe7729
    [Google Scholar]
  82. Kienle K, Lämmermann T. 2016. Neutrophil swarming: an essential process of the neutrophil tissue response. Immunol. Rev. 273:76–93
    [Google Scholar]
  83. Kim JV, Kang SS, Dustin ML, McGavern DB. 2009. Myelomonocytic cell recruitment causes fatal CNS vascular injury during acute viral meningitis. Nature 457:191–95
    [Google Scholar]
  84. Kissenpfennig A, Henri S, Dubois B, Laplace-Builhé C, Perrin P et al. 2005. Dynamics and function of Langerhans cells in vivo: dermal dendritic cells colonize lymph node areas distinct from slower migrating Langerhans cells. Immunity 22:643–54
    [Google Scholar]
  85. Kitano M, Yamazaki C, Takumi A, Ikeno T, Hemmi H et al. 2016. Imaging of the cross-presenting dendritic cell subsets in the skin-draining lymph node. PNAS 113:1044–49
    [Google Scholar]
  86. Köhler A, Schmithorst V, Filippi MD, Ryan MA, Daria D et al. 2009. Altered cellular dynamics and endosteal location of aged early hematopoietic progenitor cells revealed by time-lapse intravital imaging in long bones. Blood 114:290–98
    [Google Scholar]
  87. Kolter J, Feuerstein R, Zeis P, Hagemeyer N, Paterson N et al. 2019. A subset of skin macrophages contributes to the surveillance and regeneration of local nerves. Immunity 50:1482–97.e7
    [Google Scholar]
  88. Lämmermann T, Afonso PV, Angermann BR, Wang JM, Kastenmüller W et al. 2013. Neutrophil swarms require LTB4 and integrins at sites of cell death in vivo. Nature 498:371–75
    [Google Scholar]
  89. Lämmermann T, Bader BL, Monkley SJ, Worbs T, Wedlich-Soldner R et al. 2008. Rapid leukocyte migration by integrin-independent flowing and squeezing. Nature 453:51–55
    [Google Scholar]
  90. Lefrançais E, Mallavia B, Zhuo H, Calfee CS, Looney MR. 2018. Maladaptive role of neutrophil extracellular traps in pathogen-induced lung injury. JCI Insight 3:e98178
    [Google Scholar]
  91. Lelouard H, Fallet M, de Bovis B, Meresse S, Gorvel JP. 2012. Peyer's patch dendritic cells sample antigens by extending dendrites through M cell-specific transcellular pores. Gastroenterology 142:592–601.e3
    [Google Scholar]
  92. Lim K, Hyun YM, Lambert-Emo K, Capece T, Bae S et al. 2015. Neutrophil trails guide influenza-specific CD8+ T cells in the airways. Science 349:aaa4352
    [Google Scholar]
  93. Lim K, Kim T-H, Trzeciak A, Amitrano AM, Reilly EC et al. 2020. In situ neutrophil efferocytosis shapes T cell immunity to influenza infection. Nat. Immunol. 21:1046–57
    [Google Scholar]
  94. Lindquist RL, Shakhar G, Dudziak D, Wardemann H, Eisenreich T et al. 2004. Visualizing dendritic cell networks in vivo. Nat. Immunol. 5:1243–50
    [Google Scholar]
  95. Lok LSC, Clatworthy MR. 2021. Neutrophils in secondary lymphoid organs. Immunology 164:677–88
    [Google Scholar]
  96. Margraf A, Ley K, Zarbock A. 2019. Neutrophil recruitment: from model systems to tissue-specific patterns. Trends Immunol 40:613–34
    [Google Scholar]
  97. Martin CJ, Peters KN, Behar SM. 2014. Macrophages clean up: efferocytosis and microbial control. Curr. Opin. Microbiol. 17:17–23
    [Google Scholar]
  98. Masuda T, Croom D, Hida H, Kirov SA. 2011. Capillary blood flow around microglial somata determines dynamics of microglial processes in ischemic conditions. Glia 59:1744–53
    [Google Scholar]
  99. McArdle S, Mikulski Z, Ley K. 2016. Live cell imaging to understand monocyte, macrophage, and dendritic cell function in atherosclerosis. J. Exp. Med. 213:1117–31
    [Google Scholar]
  100. McDonald B, Pittman K, Menezes GB, Hirota SA, Slaba I et al. 2010. Intravascular danger signals guide neutrophils to sites of sterile inflammation. Science 330:362–66
    [Google Scholar]
  101. Medzhitov R. 2008. Origin and physiological roles of inflammation. Nature 454:428–35
    [Google Scholar]
  102. Mempel TR, Henrickson SE, Von Andrian UH. 2004. T-cell priming by dendritic cells in lymph nodes occurs in three distinct phases. Nature 427:154–59
    [Google Scholar]
  103. Mihlan M, Glaser KM, Epple MW, Lämmerman T. 2022. Neutrophils: ameoboid migration and swarming dynamics in tissues. Front. Cell Dev. Biol. 10:871789
    [Google Scholar]
  104. Milo I, Sapoznikov A, Kalchenko V, Tal O, Krauthgamer R et al. 2013. Dynamic imaging reveals promiscuous crosspresentation of blood-borne antigens to naive CD8+ T cells in the bone marrow. Blood 122:193–208
    [Google Scholar]
  105. Miyamoto A, Wake H, Ishikawa AW, Eto K, Shibata K et al. 2016. Microglia contact induces synapse formation in developing somatosensory cortex. Nat. Commun. 7:12540
    [Google Scholar]
  106. Mohan JF, Kohler RH, Hill JA, Weissleder R, Mathis D, Benoist C. 2017. Imaging the emergence and natural progression of spontaneous autoimmune diabetes. PNAS 114:E7776–85
    [Google Scholar]
  107. Mukai K, Tsai M, Starkl P, Marichal T, Galli SJ. 2016. IgE and mast cells in host defense against parasites and venoms. Semin. Immunopathol. 38:581–603
    [Google Scholar]
  108. Nayak D, Johnson KR, Heydari S, Roth TL, Zinselmeyer BH, McGavern DB. 2013. Type I interferon programs innate myeloid dynamics and gene expression in the virally infected nervous system. PLOS Pathog 9:e1003395
    [Google Scholar]
  109. Neumann H, Kotter MR, Franklin RJ. 2009. Debris clearance by microglia: an essential link between degeneration and regeneration. Brain 132:288–95
    [Google Scholar]
  110. Neupane AS, Kubes P. 2022. Imaging reveals novel innate immune responses in lung, liver, and beyond. Immunol. Rev. 306:244–57
    [Google Scholar]
  111. Neupane AS, Willson M, Chojnacki AK, Vargas E, Silva Castanheira F, Morehouse C et al. 2020. Patrolling alveolar macrophages conceal bacteria from the immune system to maintain homeostasis. Cell 183:110–25.e11
    [Google Scholar]
  112. Ng LG, Hsu A, Mandell MA, Roediger B, Hoeller C et al. 2008. Migratory dermal dendritic cells act as rapid sensors of protozoan parasites. PLOS Pathog 4:e1000222
    [Google Scholar]
  113. Ng LG, Qin JS, Roediger B, Wang Y, Jain R et al. 2011. Visualizing the neutrophil response to sterile tissue injury in mouse dermis reveals a three-phase cascade of events. J. Invest. Dermatol. 131:2058–68
    [Google Scholar]
  114. Nimmerjahn A, Kirchhoff F, Helmchen F. 2005. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308:1314–18
    [Google Scholar]
  115. Nishibu A, Ward BR, Jester JV, Ploegh HL, Boes M, Takashima A. 2006. Behavioral responses of epidermal Langerhans cells in situ to local pathological stimuli. J. Invest. Dermatol. 126:787–96
    [Google Scholar]
  116. Nitschke M, Aebischer D, Abadier M, Haener S, Lucic M et al. 2012. Differential requirement for ROCK in dendritic cell migration within lymphatic capillaries in steady-state and inflammation. Blood 120:2249–58
    [Google Scholar]
  117. Nolan E, Malanchi I. 2022. Connecting the dots: neutrophils at the interface of tissue regeneration and cancer. Semin. Immunol. 57:101598
    [Google Scholar]
  118. Nourshargh S, Alon R. 2014. Leukocyte migration into inflamed tissues. Immunity 41:694–707
    [Google Scholar]
  119. Nourshargh S, Renshaw SA, Imhof BA. 2016. Reverse migration of neutrophils: where, when, how, and why?. Trends Immunol 37:273–86
    [Google Scholar]
  120. Okabe Y, Medzhitov R. 2016. Tissue biology perspective on macrophages. Nat. Immunol. 17:9–17
    [Google Scholar]
  121. Owen-Woods C, Joulia R, Barkaway A, Rolas L, Ma B et al. 2020. Local microvascular leakage promotes trafficking of activated neutrophils to remote organs. J. Clin. Invest. 130:2301–18
    [Google Scholar]
  122. Park S, Matte-Martone C, Gonzalez DG, Lathrop EA, May DP et al. 2021. Skin-resident immune cells actively coordinate their distribution with epidermal cells during homeostasis. Nat. Cell Biol. 23:476–84
    [Google Scholar]
  123. Paterson N, Lämmermann T. 2022. Macrophage network dynamics depend on haptokinesis for optimal tissue surveillance. eLife 11e75354
  124. Peters NC, Egen JG, Secundino N, Debrabant A, Kimblin N et al. 2008. In vivo imaging reveals an essential role for neutrophils in leishmaniasis transmitted by sand flies. Science 321:970–74
    [Google Scholar]
  125. Phan TG, Grigorova I, Okada T, Cyster JG. 2007. Subcapsular encounter and complement-dependent transport of immune complexes by lymph node B cells. Nat. Immunol. 8:992–1000
    [Google Scholar]
  126. Pittet MJ, Garris CS, Arlauckas SP, Weissleder R. 2018. Recording the wild lives of immune cells. Sci. Immunol. 3:aag0491
    [Google Scholar]
  127. Poplimont H, Georgantzoglou A, Boulch M, Walker HA, Coombs C et al. 2020. Neutrophil swarming in damaged tissue is orchestrated by connexins and cooperative calcium alarm signals. Curr. Biol. 30:2761–76.e7
    [Google Scholar]
  128. Pozner A, Xu B, Palumbos S, Gee JM, Tvrdik P, Capecchi MR. 2015. Intracellular calcium dynamics in cortical microglia responding to focal laser injury in the PC::G5-tdT reporter mouse. Front. Mol. Neurosci. 8:12
    [Google Scholar]
  129. Prinz M, Jung S, Priller J 2019. Microglia biology: one century of evolving concepts. Cell 179:292–311
    [Google Scholar]
  130. Reber LL, Sibilano R, Starkl P, Roers A, Grimbaldeston MA et al. 2017. Imaging protective mast cells in living mice during severe contact hypersensitivity. JCI Insight 2:e92900
    [Google Scholar]
  131. Riester K, Brawek B, Savitska D, Fröhlich N, Zirdum E et al. 2020. In vivo characterization of functional states of cortical microglia during peripheral inflammation. Brain Behav. Immun. 87:243–55
    [Google Scholar]
  132. Roberts EW, Broz ML, Binnewies M, Headley MB, Nelson AE et al. 2016. Critical role for CD103+/CD141+ dendritic cells bearing CCR7 for tumor antigen trafficking and priming of T cell immunity in melanoma. Cancer Cell 30:324–36
    [Google Scholar]
  133. Robertson TF, Huttenlocher A. 2022. Real-time imaging of inflammation and its resolution: It's apparent because it's transparent. Immunol. Rev. 306:258–70
    [Google Scholar]
  134. Rocha-Gregg B, Huttenlocher A. 2021. Signal integration in forward and reverse neutrophil migration: fundamentals and emerging mechanisms. Curr. Opin. Cell Biol. 72:124–30
    [Google Scholar]
  135. Roediger B, Kyle R, Yip KH, Sumaria N, Guy TV et al. 2013. Cutaneous immunosurveillance and regulation of inflammation by group 2 innate lymphoid cells. Nat. Immunol. 14:564–73
    [Google Scholar]
  136. Roth TL, Nayak D, Atanasijevic T, Koretsky AP, Latour LL, McGavern DB. 2014. Transcranial amelioration of inflammation and cell death after brain injury. Nature 505:223–28
    [Google Scholar]
  137. Rua R, Lee JY, Silva AB, Swafford IS, Maric D et al. 2019. Infection drives meningeal engraftment by inflammatory monocytes that impairs CNS immunity. Nat. Immunol. 20:407–19
    [Google Scholar]
  138. Rua R, McGavern DB. 2015. Elucidation of monocyte/macrophage dynamics and function by intravital imaging. J. Leukoc. Biol. 98:319–32
    [Google Scholar]
  139. Ruhland MK, Roberts EW, Cai E, Mujal AM, Marchuk K et al. 2020. Visualizing synaptic transfer of tumor antigens among dendritic cells. Cancer Cell 37:786–99.e5
    [Google Scholar]
  140. Russo E, Teijeira A, Vaahtomeri K, Willrodt AH, Bloch JS et al. 2016. Intralymphatic CCL21 promotes tissue egress of dendritic cells through afferent lymphatic vessels. Cell Rep 14:1723–34
    [Google Scholar]
  141. Sagoo P, Garcia Z, Breart B, Lemaître F, Michonneau D et al. 2016. In vivo imaging of inflammasome activation reveals a subcapsular macrophage burst response that mobilizes innate and adaptive immunity. Nat. Med. 22:64–71
    [Google Scholar]
  142. Savina A, Amigorena S. 2007. Phagocytosis and antigen presentation in dendritic cells. Immunol. Rev. 219:143–56
    [Google Scholar]
  143. Sedin J, Giraud A, Steiner SE, Ahl D, Persson AEG et al. 2019. High resolution intravital imaging of the renal immune response to injury and infection in mice. Front. Immunol. 10:2744
    [Google Scholar]
  144. Serhan N, Basso L, Sibilano R, Petitfils C, Meixiong J et al. 2019. House dust mites activate nociceptor-mast cell clusters to drive type 2 skin inflammation. Nat. Immunol. 20:1435–43
    [Google Scholar]
  145. Shelburne CP, Abraham SN. 2011. The mast cell in innate and adaptive immunity. Adv. Exp. Med. Biol. 716:162–85
    [Google Scholar]
  146. Sierro F, Evrard M, Rizzetto S, Melino M, Mitchell AJ et al. 2017. A liver capsular network of monocyte-derived macrophages restricts hepatic dissemination of intraperitoneal bacteria by neutrophil recruitment. Immunity 47:374–88.e6
    [Google Scholar]
  147. Soos TJ, Sims TN, Barisoni L, Lin K, Littman DR et al. 2006. CX3CR1+ interstitial dendritic cells form a contiguous network throughout the entire kidney. Kidney Int 70:591–96
    [Google Scholar]
  148. Starkl P, Gaudenzio N, Marichal T, Reber LL, Sibilano R et al. 2022. IgE antibodies increase honeybee venom responsiveness and detoxification efficiency of mast cells. Allergy 77:499–512
    [Google Scholar]
  149. Steinman RM. 2006. Linking innate to adaptive immunity through dendritic cells. Novartis Found. Symp. 279:216–19
    [Google Scholar]
  150. Stolp B, Thelen F, Ficht X, Altenburger LM, Ruef N et al. 2020. Salivary gland macrophages and tissue-resident CD8+ T cells cooperate for homeostatic organ surveillance. Sci. Immunol. 5:aaz4371
    [Google Scholar]
  151. Stowell RD, Sipe GO, Dawes RP, Batchelor HN, Lordy KA et al. 2019. Noradrenergic signaling in the wakeful state inhibits microglial surveillance and synaptic plasticity in the mouse visual cortex. Nat. Neurosci. 22:1782–92
    [Google Scholar]
  152. Stremmel C, Schuchert R, Wagner F, Thaler R, Weinberger T et al. 2018. Yolk sac macrophage progenitors traffic to the embryo during defined stages of development. Nat. Commun. 9:75
    [Google Scholar]
  153. Sun H, Huo Y, Fan Z 2021. Editorial: Imaging and mechanism of leukocyte recruitment and function in inflammation and infections. Front. Cell Dev. Biol. 9:690003
    [Google Scholar]
  154. Sundd P, Gutierrez E, Koltsova EK, Kuwano Y, Fukuda S et al. 2012. ‘Slings’ enable neutrophil rolling at high shear. Nature 488:399–403
    [Google Scholar]
  155. Tal O, Lim HY, Gurevich I, Milo I, Shipony Z et al. 2011. DC mobilization from the skin requires docking to immobilized CCL21 on lymphatic endothelium and intralymphatic crawling. J. Exp. Med. 208:2141–53
    [Google Scholar]
  156. Tay SS, Roediger B, Tong PL, Tikoo S, Weninger W. 2014. The skin-resident immune network. Curr. Dermatol. Rep. 3:13–22
    [Google Scholar]
  157. Thornton EE, Looney MR, Bose O, Sen D, Sheppard D et al. 2012. Spatiotemporally separated antigen uptake by alveolar dendritic cells and airway presentation to T cells in the lung. J. Exp. Med. 209:1183–99
    [Google Scholar]
  158. Tong PL, Roediger B, Kolesnikoff N, Biro M, Tay SS et al. 2015. The skin immune atlas: three-dimensional analysis of cutaneous leukocyte subsets by multiphoton microscopy. J. Invest. Dermatol. 135:84–93
    [Google Scholar]
  159. Tremblay M, Lowery RL, Majewska AK. 2010. Microglial interactions with synapses are modulated by visual experience. PLOS Biol 8:e1000527
    [Google Scholar]
  160. Uderhardt S, Martins AJ, Tsang JS, Lämmermann T, Germain RN. 2019. Resident macrophages cloak tissue microlesions to prevent neutrophil-driven inflammatory damage. Cell 177:541–55.e17
    [Google Scholar]
  161. Voisin M-B, Nourshargh S. 2019. Neutrophil trafficking to lymphoid tissues: physiological and pathological implications. J. Pathol. 247:662–71
    [Google Scholar]
  162. Waite JC, Leiner I, Lauer P, Rae CS, Barbet G et al. 2011. Dynamic imaging of the effector immune response to Listeria infection in vivo. PLOS Pathog 7:e1001326
    [Google Scholar]
  163. Wake H, Moorhouse AJ, Jinno S, Kohsaka S, Nabekura J. 2009. Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J. Neurosci. 29:3974–80
    [Google Scholar]
  164. Wang J, Hossain M, Thanabalasuriar A, Gunzer M, Meininger C, Kubes P. 2017. Visualizing the function and fate of neutrophils in sterile injury and repair. Science 358:111–16
    [Google Scholar]
  165. Weitzmann A, Naumann R, Dudeck A, Zerjatke T, Gerbaulet A, Roers A. 2020. Mast cells occupy stable clonal territories in adult steady-state skin. J. Invest. Dermatol. 140:2433–41.e5
    [Google Scholar]
  166. Wernersson S, Pejler G. 2014. Mast cell secretory granules: armed for battle. Nat. Rev. Immunol. 14:478–94
    [Google Scholar]
  167. Wong CHY, Jenne CN, Kolaczkowska E. 2020. Editorial: intravital microscopy imaging of leukocytes. Front. Immunol. 11:2137
    [Google Scholar]
  168. Wong CHY, Jenne CN, Petri B, Chrobok NL, Kubes P. 2013. Nucleation of platelets with blood-borne pathogens on Kupffer cells precedes other innate immunity and contributes to bacterial clearance. Nat. Immunol. 14:785–92
    [Google Scholar]
  169. Wood W, Martin P. 2017. Macrophage functions in tissue patterning and disease: new insights from the fly. Dev. Cell 40:221–33
    [Google Scholar]
  170. Woodfin A, Voisin M-B, Beyrau M, Colom B, Caille D et al. 2011. The junctional adhesion molecule JAM-C regulates polarized transendothelial migration of neutrophils in vivo. Nat. Immunol. 12:761–69
    [Google Scholar]
  171. Worbs T, Hammerschmidt SI, Forster R. 2017. Dendritic cell migration in health and disease. Nat. Rev. Immunol. 17:30–48
    [Google Scholar]
  172. Wu J, Lu Z, Jiang D, Guo Y, Qiao H et al. 2021. Iterative tomography with digital adaptive optics permits hour-long intravital observation of 3D subcellular dynamics at millisecond scale. Cell 184:3318–32.e17
    [Google Scholar]
  173. Yipp BG, Petri B, Salina D, Jenne CN, Scott BNV et al. 2012. Infection-induced NETosis is a dynamic process involving neutrophil multitasking in vivo. Nat. Med. 18:1386–93
    [Google Scholar]
  174. Zhang N, Czepielewski RS, Jarjour NN, Erlich EC, Esaulova E et al. 2019. Expression of factor V by resident macrophages boosts host defense in the peritoneal cavity. J. Exp. Med. 216:1291–300
    [Google Scholar]
  175. Zhang S, Edwards TN, Chaudhri VK, Wu J, Cohen JA et al. 2021. Nonpeptidergic neurons suppress mast cells via glutamate to maintain skin homeostasis. Cell 184:2151–66.e16
    [Google Scholar]
  176. Zhang Y, Roth TL, Gray EE, Chen H, Rodda LB et al. 2016. Migratory and adhesive cues controlling innate-like lymphocyte surveillance of the pathogen-exposed surface of the lymph node. eLife 5:e18156
    [Google Scholar]
  177. Zinselmeyer BH, Vomund AN, Saunders BT, Johnson MW, Carrero JA, Unanue ER. 2018. The resident macrophages in murine pancreatic islets are constantly probing their local environment, capturing beta cell granules and blood particles. Diabetologia 61:1374–83
    [Google Scholar]
/content/journals/10.1146/annurev-cellbio-120420-112849
Loading
/content/journals/10.1146/annurev-cellbio-120420-112849
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error