1932

Abstract

The movement of lipids within and between membranes in bacteria is essential for building and maintaining the bacterial cell envelope. Moving lipids to their final destination is often energetically unfavorable and does not readily occur spontaneously. Bacteria have evolved several protein-mediated transport systems that bind specific lipid substrates and catalyze the transport of lipids across membranes and from one membrane to another. Specific protein flippases act in translocating lipids across the plasma membrane, overcoming the obstacle of moving relatively large and chemically diverse lipids between leaflets of the bilayer. Active transporters found in double-membraned bacteria have evolved sophisticated mechanisms to traffic lipids between the two membranes, including assembling to form large, multiprotein complexes that resemble bridges, shuttles, and tunnels, shielding lipids from the hydrophilic environment of the periplasm during transport. In this review, we explore our current understanding of the mechanisms thought to drive bacterial lipid transport.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cellbio-120420-022914
2022-10-06
2024-06-25
Loading full text...

Full text loading...

/deliver/fulltext/cellbio/38/1/annurev-cellbio-120420-022914.html?itemId=/content/journals/10.1146/annurev-cellbio-120420-022914&mimeType=html&fmt=ahah

Literature Cited

  1. Abellón-Ruiz J, Kaptan SS, Baslé A, Claudi B, Bumann D et al. 2017. Structural basis for maintenance of bacterial outer membrane lipid asymmetry. Nat Microbiol 2:121616–23
    [Google Scholar]
  2. Arruda S, Bomfim G, Knights R, Huima-Byron T, Riley L 1993. Cloning of an M. tuberculosis DNA fragment associated with entry and survival inside cells. Science 261:51271454–57
    [Google Scholar]
  3. Ashraf KU, Nygaard R, Vickery ON, Erramilli SK, Herrera CM et al. 2022. Structural basis of lipopolysaccharide maturation by the O-antigen ligase. Nature 604:371–76
    [Google Scholar]
  4. Azizan A, Sherin D, DiRusso CC, Black PN. 1999. Energetics underlying the process of long-chain fatty acid transport. Arch. Biochem. Biophys. 365:2299–306
    [Google Scholar]
  5. Barsukov LI, Kulikov VI, Bergelson LD. 1976. Lipid transfer proteins as a tool in the study of membrane structure. Inside-outside distribution of the phospholipids in the protoplasmic membrane of Micrococcus lysodeikticus. Biochem. Biophys. Res. Commun. 71:3704–11
    [Google Scholar]
  6. Belin BJ, Busset N, Giraud E, Molinaro A, Silipo A, Newman DK 2018. Hopanoid lipids: from membranes to plant-bacteria interactions. Nat. Rev. Microbiol. 16:5304–15
    [Google Scholar]
  7. Benn G, Mikheyeva IV, Inns PG, Forster JC, Ojkic N et al. 2021. Phase separation in the outer membrane of Escherichia coli. PNAS 118:44e211237118
    [Google Scholar]
  8. Bertani B, Ruiz N. 2018. Function and biogenesis of lipopolysaccharides. EcoSal Plus 8:1ESP-0001-2018
    [Google Scholar]
  9. Bi Y, Mann E, Whitfield C, Zimmer J. 2018. Architecture of a channel-forming O-antigen polysaccharide ABC transporter. Nature 553:7688361–65
    [Google Scholar]
  10. Bi Y, Zimmer J. 2020. Structure and ligand-binding properties of the O antigen ABC transporter carbohydrate-binding domain. Structure 28:2252–58.e2
    [Google Scholar]
  11. Black PN, DiRusso CC. 2003. Transmembrane movement of exogenous long-chain fatty acids: proteins, enzymes, and vectorial esterification. Microbiol. Mol. Biol. Rev. 67:3454–72
    [Google Scholar]
  12. Black PN, Kianian SF, DiRusso CC, Nunn WD. 1985. Long-chain fatty acid transport in Escherichia coli. Cloning, mapping, and expression of the fadL gene. J. Biol. Chem. 260:31780–89
    [Google Scholar]
  13. Black PN, Said B, Ghosn CR, Beach JV, Nunn WD. 1987. Purification and characterization of an outer membrane-bound protein involved in long-chain fatty acid transport in Escherichia coli. J. Biol. Chem. 262:31412–19
    [Google Scholar]
  14. Bogdanov M, Pyrshev K, Yesylevskyy S, Ryabichko S, Boiko V et al. 2020. Phospholipid distribution in the cytoplasmic membrane of gram-negative bacteria is highly asymmetric, dynamic, and cell shape-dependent. Sci Adv 6:23eaaz6333
    [Google Scholar]
  15. Bos MP, Tefsen B, Geurtsen J, Tommassen J. 2004. Identification of an outer membrane protein required for the transport of lipopolysaccharide to the bacterial cell surface. PNAS 101:259417–22
    [Google Scholar]
  16. Breukink E, de Kruijff B. 2006. Lipid II as a target for antibiotics. Nat. Rev. 5:321–23
    [Google Scholar]
  17. Brown S, Santa Maria JP Jr., Walker S 2013. Wall teichoic acids of gram-positive bacteria. Annu. Rev. Microbiol. 67:313–36
    [Google Scholar]
  18. Brown S, Zhang Y-H, Walker S 2008. A revised pathway proposed for Staphylococcus aureus wall teichoic acid biosynthesis based on in vitro reconstitution of the intracellular steps. Chem. Biol. 15:112–21
    [Google Scholar]
  19. Caboni M, Pédron T, Rossi O, Goulding D, Pickard D et al. 2015. An O antigen capsule modulates bacterial pathogenesis in Shigella sonnei. PLOS Pathog. 11:3e1004749
    [Google Scholar]
  20. Caffalette CA, Corey RA, Sansom MSP, Stansfeld PJ, Zimmer J. 2019. A lipid gating mechanism for the channel-forming O antigen ABC transporter. Nat. Commun. 10:1824
    [Google Scholar]
  21. Caffalette CA, Kuklewicz J, Spellmon N, Zimmer J. 2020. Biosynthesis and export of bacterial glycolipids. Annu. Rev. Biochem. 89:741–68
    [Google Scholar]
  22. Caffalette CA, Zimmer J. 2021. Cryo-EM structure of the full-length WzmWzt ABC transporter required for lipid-linked O antigen transport. PNAS 118:1e2016144118
    [Google Scholar]
  23. Chen L, Hou W-T, Fan T, Liu B, Pan T et al. 2020. Cryo-electron microscopy structure and transport mechanism of a wall teichoic acid ABC transporter. mBio 11:2e02749
    [Google Scholar]
  24. Chi X, Fan Q, Zhang Y, Liang K, Wan L et al. 2020. Structural mechanism of phospholipids translocation by MlaFEDB complex. Cell Res 30:121127–35
    [Google Scholar]
  25. Chng S-S, Ruiz N, Chimalakonda G, Silhavy TJ, Kahne D. 2010. Characterization of the two-protein complex in Escherichia coli responsible for lipopolysaccharide assembly at the outer membrane. PNAS 107:125363–68
    [Google Scholar]
  26. Chong Z-S, Woo W-F, Chng S-S. 2015. Osmoporin OmpC forms a complex with MlaA to maintain outer membrane lipid asymmetry in Escherichia coli. Mol. Microbiol. 98:61133–46
    [Google Scholar]
  27. Chugunov A, Pyrkova D, Nolde D, Polyansky A, Pentkovsky V, Efremov R. 2013. Lipid-II forms potential “landing terrain” for lantibiotics in simulated bacterial membrane. Sci. Rep. 3:1678
    [Google Scholar]
  28. Clay CD, Soni S, Gunn JS, Schlesinger LS. 2008. Evasion of complement-mediated lysis and complement C3 deposition are regulated by Francisella tularensis lipopolysaccharide O antigen. J. Immunol. 181:85568–78
    [Google Scholar]
  29. Clejan S, Krulwich TA, Mondrus KR, Seto-Young D. 1986. Membrane lipid composition of obligately and facultatively alkalophilic strains of Bacillus spp. J. Bacteriol. 168:1334–40
    [Google Scholar]
  30. Coudray N, Isom GL, MacRae MR, Saiduddin MN, Bhabha G, Ekiert DC. 2020. Structure of bacterial phospholipid transporter MlaFEDB with substrate bound. eLife 9:e62518
    [Google Scholar]
  31. Cuthbertson L, Powers J, Whitfield C. 2005. The C-terminal domain of the nucleotide-binding domain protein Wzt determines substrate specificity in the ATP-binding cassette transporter for the lipopolysaccharide O-antigens in Escherichia coli serotypes O8 and O9a. J. Biol. Chem. 289:34P30310–19
    [Google Scholar]
  32. Daligault HE, Davenport KW, Minogue TD, Bishop-Lilly KA, Broomall SM et al. 2014. Whole-genome assemblies of 56 Burkholderia species. Genome Announc 2:6e01106
    [Google Scholar]
  33. den Kamp JA, Redai I, van Deenen LL. 1969. Phospholipid composition of Bacillus subtilis. J. Bacteriol. 99:1298–303
    [Google Scholar]
  34. Doerrler WT, Gibbons HS, Raetz CRH. 2004. MsbA-dependent translocation of lipids across the inner membrane of Escherichia coli. J. Biol. Chem. 279:4345102–9
    [Google Scholar]
  35. Dong H, Xiang Q, Gu Y, Wang Z, Paterson NG et al. 2014. Structural basis for outer membrane lipopolysaccharide insertion. Nature 511:750752–56
    [Google Scholar]
  36. Dong H, Zhang Z, Tang X, Paterson NG, Dong C. 2017. Structural and functional insights into the lipopolysaccharide ABC transporter LptBFG. Nat. Commun. 8:1222
    [Google Scholar]
  37. Dong J, Yang G, McHaourab HS 2005. Structural basis of energy transduction in the transport cycle of MsbA. Science 308:57241023–28
    [Google Scholar]
  38. Doughty DM, Coleman ML, Hunter RC, Sessions AL, Summons RE, Newman DK. 2011. The RND-family transporter, HpnN, is required for hopanoid localization to the outer membrane of Rhodopseudomonas palustris TIE-1. PNAS 108:45E1045–51
    [Google Scholar]
  39. Douglass MV, McLean AB, Trent MS 2022. Absence of YhdP, TamB, and YdbH leads to defects in glycerophospholipid transport and cell morphology in Gram-negative bacteria. PLOS Genet 18:2e1010096
    [Google Scholar]
  40. Drew D, North RA, Nagarathinam K, Tanabe M. 2021. Structures and general transport mechanisms by the major facilitator superfamily (MFS). Chem. Rev. 121:95289–335
    [Google Scholar]
  41. Dulberger CL, Rubin EJ, Boutte CC. 2020. The mycobacterial cell envelope—a moving target. Nat. Rev. Microbiol. 18:147–59
    [Google Scholar]
  42. Ekiert DC, Bhabha G, Isom GL, Greenan G, Ovchinnikov S et al. 2017. Architectures of lipid transport systems for the bacterial outer membrane. Cell 169:2273–85.e17
    [Google Scholar]
  43. Ellwood DC. 1970. The wall content and composition of Bacillus subtilis var. niger grown in a chemostat. Biochem. J. 118:3367–73
    [Google Scholar]
  44. Endl J, Seidl HP, Fiedler F, Schleifer KH. 1983. Chemical composition and structure of cell wall teichoic acids of staphylococci. Arch. Microbiol. 135:3215–23
    [Google Scholar]
  45. Ercan B, Low W-Y, Liu X, Chng S-S. 2019. Characterization of interactions and phospholipid transfer between substrate binding proteins of the OmpC-Mla system. Biochemistry 58:2114–19
    [Google Scholar]
  46. Ernst CM, Kuhn S, Slavetinsky CJ, Krismer B, Heilbronner S et al. 2015. The lipid-modifying multiple peptide resistance factor is an oligomer consisting of distinct interacting synthase and flippase subunits. mBio 6:1e02340
    [Google Scholar]
  47. Ernst CM, Staubitz P, Mishra NN, Yang S-J, Hornig G et al. 2009. The bacterial defensin resistance protein MprF consists of separable domains for lipid lysinylation and antimicrobial peptide repulsion. PLOS Pathog 5:11e1000660
    [Google Scholar]
  48. Forrest LR, Krämer R, Ziegler C. 2011. The structural basis of secondary active transport mechanisms. Biochim. Biophys. Acta 1807:2167–88
    [Google Scholar]
  49. Freinkman E, Okuda S, Ruiz N, Kahne D. 2012. Regulated assembly of the transenvelope protein complex required for lipopolysaccharide export. Biochemistry 51:244800–6
    [Google Scholar]
  50. Ginsburgh CL, Black PN, Nunn WD. 1984. Transport of long chain fatty acids in Escherichia coli. Identification of a membrane protein associated with the fadL gene. J. Biol. Chem. 259:138437–43
    [Google Scholar]
  51. Goebel EM, Wolfe DN, Elder K, Stibitz S, Harvill ET. 2008. O antigen protects Bordetella parapertussis from complement. Infect. Immun. 76:41774–80
    [Google Scholar]
  52. Grimm J, Shi H, Wang W, Mitchell AM, Wingreen NS et al. 2020. The inner membrane protein YhdP modulates the rate of anterograde phospholipid flow in Escherichia coli. PNAS 117:4326907–14
    [Google Scholar]
  53. Gründling A, Schneewind O. 2007. Genes required for glycolipid synthesis and lipoteichoic acid anchoring in Staphylococcus aureus. J. Bacteriol. 189:62521–30
    [Google Scholar]
  54. Gu Y, Stansfeld PJ, Zeng Y, Dong H, Wang W, Dong C 2015. Lipopolysaccharide is inserted into the outer membrane through an intramembrane hole, a lumen gate, and the lateral opening of LptD. Structure 23:3496–504
    [Google Scholar]
  55. Hamilton JA. 2003. Fast flip-flop of cholesterol and fatty acids in membranes: implications for membrane transport proteins. Curr. Opin. Lipidol. 14:3263–71
    [Google Scholar]
  56. Hearn EM, Patel DR, Lepore BW, Indic M, van den Berg B. 2009. Transmembrane passage of hydrophobic compounds through a protein channel wall. Nature 458:7236367–70
    [Google Scholar]
  57. Ho H, Miu A, Alexander MK, Garcia NK, Oh A et al. 2018. Structural basis for dual-mode inhibition of the ABC transporter MsbA. Nature 557:7704196–201
    [Google Scholar]
  58. Holland IB, Blight MA. 1999. ABC-ATPases, adaptable energy generators fuelling transmembrane movement of a variety of molecules in organisms from bacteria to humans. J. Mol. Biol. 293:2381–99
    [Google Scholar]
  59. Hughes GW, Hall SCL, Laxton CS, Sridhar P, Mahadi AH et al. 2019. Evidence for phospholipid export from the bacterial inner membrane by the Mla ABC transport system. Nat Microbiol 4:101692–705
    [Google Scholar]
  60. Inoue A, Murata Y, Takahashi H, Tsuji N, Fujisaki S, Kato J-I. 2008. Involvement of an essential gene, mviN, in murein synthesis in Escherichia coli. J. Bacteriol. 190:21e00551
    [Google Scholar]
  61. Isom GL, Coudray N, MacRae MR, McManus CT, Ekiert DC, Bhabha G. 2020. LetB structure reveals a tunnel for lipid transport across the bacterial envelope. Cell 181:3653–64.e19
    [Google Scholar]
  62. Jardetzky O. 1966. Simple allosteric model for membrane pumps. Nature 211:5052969–70
    [Google Scholar]
  63. Jones T, Yeaman MR, Sakoulas G, Yang S-J, Proctor RA et al. 2008. Failures in clinical treatment of Staphylococcus aureus infection with daptomycin are associated with alterations in surface charge, membrane phospholipid asymmetry, and drug binding. Antimicrob. Agents Chemother. 52:1269–78
    [Google Scholar]
  64. Jorasch P, Wolter FP, Zähringer U, Heinz E 1998. A UDP glucosyltransferase from Bacillus subtilis successively transfers up to four glucose residues to 1,2-diacylglycerol: expression of ypfP in Escherichia coli and structural analysis of its reaction products. Mol. Microbiol. 29:2419–30
    [Google Scholar]
  65. Jumper J, Evans R, Pritzel A, Green T, Figurnov M et al. 2021. Highly accurate protein structure prediction with AlphaFold. Nature 596:7873583–89
    [Google Scholar]
  66. Kamio Y, Nikaido H. 1976. Outer membrane of Salmonella typhimurium: accessibility of phospholipid head groups to phospholipase C and cyanogen bromide activated dextran in the external medium. Biochemistry 15:122561–70
    [Google Scholar]
  67. Kamischke C, Fan J, Bergeron J, Kulasekara HD, Dalebroux ZD et al. 2019. The Acinetobacter baumanii Mla system and glycerophospholipid transport to the outer membrane. eLife 8:e40171
    [Google Scholar]
  68. Karow M, Georgopoulos C. 1993. The essential Escherichia coli msbA gene, a multicopy suppressor of null mutations in the htrB gene, is related to the universally conserved family of ATP-dependent translocators. Mol. Microbiol. 7:169–79
    [Google Scholar]
  69. Kilelee E, Pokorny A, Yeaman MR, Bayer AS. 2010. Lysyl-phosphatidylglycerol attenuates membrane perturbation rather than surface association of the cationic antimicrobial peptide 6W-RP-1 in a model membrane system: implications for daptomycin resistance. Antimicrob. Agents Chemother. 54:10e00191
    [Google Scholar]
  70. Kiriukhin MY, Debabov DV, Shinabarger DL, Neuhaus FC. 2001. Biosynthesis of the glycolipid anchor in lipoteichoic acid of Staphylococcus aureus RN4220: role of YpfP, the diglucosyldiacylglycerol synthase. J. Bacteriol. 183:113506–14
    [Google Scholar]
  71. Klein S, Lorenzo C, Hoffmann S, Walther JM, Storbeck S et al. 2009. Adaptation of Pseudomonas aeruginosa to various conditions includes tRNA-dependent formation of alanyl-phosphatidylglycerol. Mol. Microbiol. 71:3551–65
    [Google Scholar]
  72. Kolich LR, Chang Y-T, Coudray N, Giacometti SI, MacRae MR et al. 2020. Structure of MlaFB uncovers novel mechanisms of ABC transporter regulation. eLife 9:e60030
    [Google Scholar]
  73. Konovalova A, Kahne DE, Silhavy TJ. 2017. Outer membrane biogenesis. Annu. Rev. Microbiol. 71:539–56
    [Google Scholar]
  74. Kuk ACY, Hao A, Guan Z, Lee S-Y. 2019. Visualizing conformation transitions of the Lipid II flippase MurJ. Nat. Commun. 10:11736
    [Google Scholar]
  75. Kuk ACY, Mashalidis EH, Lee S-Y. 2017. Crystal structure of the MOP flippase MurJ in an inward-facing conformation. Nat. Struct. Mol. Biol. 24:171–76
    [Google Scholar]
  76. Kumar N, Leonzino M, Hancock-Cerutti W, Horenkamp FA, Li P et al. 2018. VPS13A and VPS13C are lipid transport proteins differentially localized at ER contact sites. J. Cell Biol. 217:103625–39
    [Google Scholar]
  77. Kumar N, Su C-C, Chou T-H, Radhakrishnan A, Delmar JA et al. 2017. Crystal structures of the hopanoid transporter HpnN. PNAS 114:256557–62
    [Google Scholar]
  78. Kumar S, Rubino FA, Mendoza AG, Ruiz N. 2019. The bacterial lipid II flippase MurJ functions by an alternating-access mechanism. J. Biol. Chem. 294:3981–90
    [Google Scholar]
  79. Lennarz WJ, Nesbitt JA 3rd, Reiss J. 1966. The participation of sRNA in the enzymatic synthesis of O-L-lysyl phosphatidylgylcerol in Staphylococcus aureus. PNAS 55:4934–41
    [Google Scholar]
  80. Lepore BW, Indic M, Pham H, Hearn EM, Patel DR, van den Berg B. 2011. Ligand-gated diffusion across the bacterial outer membrane. PNAS 108:2510121–26
    [Google Scholar]
  81. Levine TP. 2019. Remote homology searches identify bacterial homologues of eukaryotic lipid transfer proteins, including Chorein-N domains in TamB and AsmA and Mdm31p. BMC Mol. Cell Biol. 20:143
    [Google Scholar]
  82. Li P, Lees JA, Lusk CP, Reinisch KM. 2020. Cryo-EM reconstruction of a VPS13 fragment reveals a long groove to channel lipids between membranes. J. Cell Biol. 219:5e202001161
    [Google Scholar]
  83. Li X, Gu Y, Dong H, Wang W, Dong C 2015. Trapped lipopolysaccharide and LptD intermediates reveal lipopolysaccharide translocation steps across the Escherichia coli outer membrane. Sci. Rep. 5:11883
    [Google Scholar]
  84. Li Y, Orlando BJ, Liao M. 2019. Structural basis of lipopolysaccharide extraction by the LptBFGC complex. Nature 567:7749486–90
    [Google Scholar]
  85. Liston SD, Willis LM. 2021. Racing to build a wall: glycoconjugate assembly in gram-positive and gram-negative bacteria. Curr. Opin. Struct. Biol. 68:55–65
    [Google Scholar]
  86. Liu C, Ma J, Wang J, Wang H, Zhang L. 2020. Cryo-EM structure of a bacterial lipid transporter YebT. J. Mol. Biol. 432:41008–19
    [Google Scholar]
  87. Locher KP. 2016. Mechanistic diversity in ATP-binding cassette (ABC) transporters. Nat. Struct. Mol. Biol. 23:6487–93
    [Google Scholar]
  88. Low W-Y, Thong S, Chng S-S. 2021. ATP disrupts lipid-binding equilibrium to drive retrograde transport critical for bacterial outer membrane asymmetry. PNAS 118:50e2110055118
    [Google Scholar]
  89. Lundquist KP, Gumbart JC. 2020. Presence of substrate aids lateral gate separation in LptD. Biochim. Biophys. Acta Biomembr. 1862:1183025
    [Google Scholar]
  90. Lundstedt EA, Simpson BW, Ruiz N. 2020. LptB-LptF coupling mediates the closure of the substrate-binding cavity in the LptB FGC transporter through a rigid-body mechanism to extract LPS. Mol. Microbiol. 114:2200–213
    [Google Scholar]
  91. Luo Q, Yang X, Yu S, Shi H, Wang K et al. 2017. Structural basis for lipopolysaccharide extraction by ABC transporter LptB2FG. Nat. Struct. Mol. Biol. 24:469–74
    [Google Scholar]
  92. Ma S, Huang Y, Xie F, Gong Z, Zhang Y et al. 2020. Transport mechanism of Mycobacterium tuberculosis MmpL/S family proteins and implications in pharmaceutical targeting. Biol. Chem. 401:3331–48
    [Google Scholar]
  93. Mahato SB, Sen S. 1997. Advances in triterpenoid research, 1990–1994. Phytochemistry 44:71185–236
    [Google Scholar]
  94. Malinverni JC, Silhavy TJ. 2009. An ABC transport system that maintains lipid asymmetry in the Gram-negative outer membrane. PNAS 106:198009–14
    [Google Scholar]
  95. Malott RJ, Steen-Kinnaird BR, Lee TD, Speert DP. 2012. Identification of hopanoid biosynthesis genes involved in polymyxin resistance in Burkholderia multivorans. Antimicrob. Agents Chemother. 56:1464–71
    [Google Scholar]
  96. Malott RJ, Wu C-H, Lee TD, Hird TJ, Dalleska NF et al. 2014. Fosmidomycin decreases membrane hopanoids and potentiates the effects of colistin on Burkholderia multivorans clinical isolates. Antimicrob. Agents Chemother. 58:95211–19
    [Google Scholar]
  97. Mangroo D, Gerber GE. 1993. Fatty acid uptake in Escherichia coli: regulation by recruitment of fatty acyl-CoA synthetase to the plasma membrane. Biochem. Cell Biol. 71:1–251–56
    [Google Scholar]
  98. Mann D, Fan J, Somboon K, Farrell DP, Muenks A et al. 2021. Structure and lipid dynamics in the maintenance of lipid asymmetry inner membrane complex of A. baumannii. Commun. Biol. 4:817
    [Google Scholar]
  99. Mann E, Kelly SD, Al-Abdul-Wahid MS, Clarke BR, Ovchinnikova OG et al. 2019. Substrate recognition by a carbohydrate-binding module in the prototypical ABC transporter for lipopolysaccharide O-antigen from Escherichia coli O9a. J. Biol. Chem. 294:41P14978–90
    [Google Scholar]
  100. Matias VR, Al-Amoudi A, Dubochet J, Beveridge TJ. 2003. Cryo-transmission electron microscopy of frozen-hydrated sections of Escherichia coli and Pseudomonas aeruginosa. J. Bacteriol. 185:206112–18
    [Google Scholar]
  101. Mi W, Li Y, Yoon SH, Ernst RK, Walz T, Liao M. 2017. Structural basis of MsbA-mediated lipopolysaccharide transport. Nature 549:7671233–37
    [Google Scholar]
  102. Mitchell AM, Wang W, Silhavy TJ. 2017. Novel RpoS-dependent mechanisms strengthen the envelope permeability barrier during stationary phase. J. Bacteriol. 199:2e00708
    [Google Scholar]
  103. Murray GL, Attridge SR, Morona R. 2006. Altering the length of the lipopolysaccharide O antigen has an impact on the interaction of Salmonella enterica serovar Typhimurium with macrophages and complement. J. Bacteriol. 188:72735–39
    [Google Scholar]
  104. Nakayama T, Zhang-Akiyama Q-M. 2017. pqiABC and yebST, putative mce operons of Escherichia coli, encode transport pathways and contribute to membrane integrity. J. Bacteriol. 199:1e00606
    [Google Scholar]
  105. Neuhaus FC, Baddiley J. 2003. A continuum of anionic charge: structures and functions of d-alanyl-teichoic acids in gram-positive bacteria. Microbiol. Mol. Biol. Rev. 67:4686–723
    [Google Scholar]
  106. Nickels JD, Chatterjee S, Mostofian B, Stanley CB, Ohl M et al. 2017. Bacillus subtilis lipid extract, a branched-chain fatty acid model membrane. J. Phys. Chem. Lett. 8:174214–17
    [Google Scholar]
  107. Nikaido H. 1994. Prevention of drug access to bacterial targets: permeability barriers and active efflux. Science 264:5157382–88
    [Google Scholar]
  108. Nikaido H. 2003. Molecular basis of bacterial outer membrane permeability revisited. Microbiol. Mol. Biol. Rev. 67:4593–656
    [Google Scholar]
  109. Nunn WD, Colburn RW, Black PN. 1986. Transport of long-chain fatty acids in Escherichia coli. Evidence for role of fadL gene product as long-chain fatty acid receptor. J. Biol. Chem. 261:1167–71
    [Google Scholar]
  110. Oku Y, Kurokawa K, Ichihashi N, Sekimizu K. 2004. Characterization of the Staphylococcus aureus mprF gene, involved in lysinylation of phosphatidylglycerol. Microbiology 150:Part 145–51
    [Google Scholar]
  111. Okuda S, Freinkman E, Kahne D. 2012. Cytoplasmic ATP hydrolysis powers transport of lipopolysaccharide across the periplasm in E. coli. Science 338:61111214–17
    [Google Scholar]
  112. Okuda S, Sherman DJ, Silhavy TJ, Ruiz N, Kahne D. 2016. Lipopolysaccharide transport and assembly at the outer membrane: the PEZ model. Nat. Rev. Microbiol. 14:6337–45
    [Google Scholar]
  113. Ourisson G, Rohmer M, Poralla K. 1987. Prokaryotic hopanoids and other polyterpenoid sterol surrogates. Annu. Rev. Microbiol. 41:301–33
    [Google Scholar]
  114. Owens TW, Taylor RJ, Pahil KS, Bertani BR, Ruiz N et al. 2019. Structural basis of unidirectional export of lipopolysaccharide to the cell surface. Nature 567:7749550–53
    [Google Scholar]
  115. Padayatti PS, Lee SC, Stanfield RL, Wen P-C, Tajkhorshid E et al. 2019. Structural insights into the lipid A transport pathway in MsbA. Structure 27:71114–23.e3
    [Google Scholar]
  116. Percy MG, Gründling A. 2014. Lipoteichoic acid synthesis and function in gram-positive bacteria. Annu. Rev. Microbiol. 68:81–100
    [Google Scholar]
  117. Perez C, Gerber S, Boilevin J, Bucher M, Darbre T et al. 2015. Structure and mechanism of an active lipid-linked oligosaccharide flippase. Nature 524:7566433–38
    [Google Scholar]
  118. Perrin E, Fondi M, Papaleo MC, Maida I, Emiliani G et al. 2013. A census of RND superfamily proteins in the Burkholderia genus. Future Microbiol 8:7923–37
    [Google Scholar]
  119. Peschel A, Jack RW, Otto M, Collins LV, Staubitz P et al. 2001. Staphylococcus aureus resistance to human defensins and evasion of neutrophil killing via the novel virulence factor MprF is based on modification of membrane lipids with l-lysine. J. Exp. Med. 193:91067–76
    [Google Scholar]
  120. Powers MJ, Simpson BW, Trent MS. 2020. The Mla pathway in Acinetobacter baumannii has no demonstrable role in anterograde lipid transport. eLife 9:e56571
    [Google Scholar]
  121. Puffal J, Sparks IL, Brenner JR, Li X, Leszyk JD et al. 2022. Compartmentalized cell envelope biosynthesis in Mycobacterium tuberculosis. bioRxiv 475471. https://doi.org/10.1101/2022.01.07.475471
    [Crossref]
  122. Qiao S, Luo Q, Zhao Y, Zhang XC, Huang Y. 2014. Structural basis for lipopolysaccharide insertion in the bacterial outer membrane. Nature 511:7507108–11
    [Google Scholar]
  123. Raetz CRH, Reynolds CM, Trent MS, Bishop RE. 2007. Lipid A modification systems in gram-negative bacteria. Annu. Rev. Biochem. 76:295–329
    [Google Scholar]
  124. Rajagopal M, Walker S. 2017. Envelope structures of gram-positive bacteria. Curr. Top. Microbiol. Immunol. 404:1–44
    [Google Scholar]
  125. Rietschel ET, Kirikae T, Schade FU, Mamat U, Schmidt G et al. 1994. Bacterial endotoxin: molecular relationships of structure to activity and function. FASEB J. 8:2217–25
    [Google Scholar]
  126. Rokicki CAZ, Brenner JR, Dills AH, Judd JJ, Kester JC et al. 2021. Fluorescence imaging-based discovery of membrane domain-associated proteins in Mycobacterium smegmatis. J. Bacteriol. 203:22e0041921
    [Google Scholar]
  127. Rothman JE, Kennedy EP. 1977. Asymmetrical distribution of phospholipids in the membrane of Bacillus megaterium. J. Mol. Biol. 110:3603–18
    [Google Scholar]
  128. Rubino FA, Kumar S, Ruiz N, Walker S, Kahne DE. 2018. Membrane potential is required for MurJ function. J. Am. Chem. Soc. 140:134481–84
    [Google Scholar]
  129. Rubino FA, Mollo A, Kumar S, Butler EK, Ruiz N et al. 2020. Detection of transport intermediates in the peptidoglycan flippase MurJ identifies residues essential for conformational cycling. J. Am. Chem. Soc. 142:125482–86
    [Google Scholar]
  130. Ruiz N. 2008. Bioinformatics identification of MurJ (MviN) as the peptidoglycan lipid II flippase in Escherichia coli. PNAS 105:4015553–57
    [Google Scholar]
  131. Ruiz N, Davis RM, Kumar S. 2021. YhdP, TamB, and YdbH are redundant but essential for growth and lipid homeostasis of the gram-negative outer membrane. mBio 12:6e0271421
    [Google Scholar]
  132. Ruiz N, Kahne D, Silhavy TJ. 2009. Transport of lipopolysaccharide across the cell envelope: the long road of discovery. Nat. Rev. 7:677–83
    [Google Scholar]
  133. Sáenz JP, Grosser D, Bradley AS, Lagny TJ, Lavrynenko O et al. 2015. Hopanoids as functional analogues of cholesterol in bacterial membranes. PNAS 112:3811971–76
    [Google Scholar]
  134. Salton MRJ, Kim K-S 1996. Chapter 2: Structure. Medical Microbiology S Baron Galveston: Univ. Texas Med. Branch
    [Google Scholar]
  135. Schirner K, Stone LK, Walker S. 2011. ABC transporters required for export of wall teichoic acids do not discriminate between different main chain polymers. ACS Chem. Biol. 6:5407–12
    [Google Scholar]
  136. Schmerk CL, Bernards MA, Valvano MA. 2011. Hopanoid production is required for low-pH tolerance, antimicrobial resistance, and motility in Burkholderia cenocepacia. J. Bacteriol. 193:236712–23
    [Google Scholar]
  137. Sham L-T, Butler EK, Lebar MD, Kahne D, Bernhardt TG, Ruiz N. 2014. Bacterial cell wall. MurJ is the flippase of lipid-linked precursors for peptidoglycan biogenesis. Science 345:6193220–22
    [Google Scholar]
  138. Silhavy TJ, Kahne D, Walker S 2010. The bacterial cell envelope. Cold Spring Harb. Perspect. Biol. 2:5a000414
    [Google Scholar]
  139. Simpson BW, Pahil KS, Owens TW, Lundstedt EA, Davis RM et al. 2019. Combining mutations that inhibit two distinct steps of the ATP hydrolysis cycle restores wild-type function in the lipopolysaccharide transporter and shows that ATP binding triggers transport. mBio 10:4e01931
    [Google Scholar]
  140. Slavetinsky C, Kuhn S, Peschel A. 2017. Bacterial aminoacyl phospholipids—biosynthesis and role in basic cellular processes and pathogenicity. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1862:111310–18
    [Google Scholar]
  141. Sohlenkamp C, Geiger O. 2016. Bacterial membrane lipids: diversity in structures and pathways. FEMS Microbiol. Rev. 40:1133–59
    [Google Scholar]
  142. Song D, Jiao H, Liu Z. 2021. Phospholipid translocation captured in a bifunctional membrane protein MprF. Nat. Commun. 12:12927
    [Google Scholar]
  143. Sperandeo P, Lau FK, Carpentieri A, De Castro C, Molinaro A et al. 2008. Functional analysis of the protein machinery required for transport of lipopolysaccharide to the outer membrane of Escherichia coli. J. Bacteriol. 190:134460–69
    [Google Scholar]
  144. Suits MDL, Sperandeo P, Dehò G, Polissi A, Jia Z. 2008. Novel structure of the conserved Gram-negative lipopolysaccharide transport protein A and mutagenesis analysis. J. Mol. Biol. 380:3476–88
    [Google Scholar]
  145. Sutterlin HA, Shi H, May KL, Miguel A, Khare S et al. 2016. Disruption of lipid homeostasis in the gram-negative cell envelope activates a novel cell death pathway. PNAS 113:11E1565–74
    [Google Scholar]
  146. Takatsuka Y, Nikaido H. 2006. Threonine-978 in the transmembrane segment of the multidrug efflux pump AcrB of Escherichia coli is crucial for drug transport as a probable component of the proton relay network. J. Bacteriol. 188:207284–89
    [Google Scholar]
  147. Tang X, Chang S, Luo Q, Zhang Z, Qiao W et al. 2019. Cryo-EM structures of lipopolysaccharide transporter LptB2FGC in lipopolysaccharide or AMP-PNP-bound states reveal its transport mechanism. Nat. Commun. 10:4175
    [Google Scholar]
  148. Tang X, Chang S, Qiao W, Luo Q, Chen Y et al. 2021. Structural insights into outer membrane asymmetry maintenance in gram-negative bacteria by MlaFEDB. Nat. Struct. Mol. Biol. 28:181–91
    [Google Scholar]
  149. Thomas C, Aller SG, Beis K, Carpenter EP, Chang G et al. 2020. Structural and functional diversity calls for a new classification of ABC transporters. FEBS Lett 594:233767–75
    [Google Scholar]
  150. Thong S, Ercan B, Torta F, Fong ZY, Wong HYA et al. 2016. Defining key roles for auxiliary proteins in an ABC transporter that maintains bacterial outer membrane lipid asymmetry. eLife 5:e19042
    [Google Scholar]
  151. Touchette MH, Seeliger JC. 2017. Transport of outer membrane lipids in mycobacteria. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1862:111340–54
    [Google Scholar]
  152. Tseng TT, Gratwick KS, Kollman J, Park D, Nies DH et al. 1999. The RND permease superfamily: an ancient, ubiquitous and diverse family that includes human disease and development proteins. J. Mol. Microbiol. Biotechnol. 1:1107–25
    [Google Scholar]
  153. Uttlová P, Pinkas D, Bechyňková O, Fišer R, Svobodová J, Seydlová G. 2016. Bacillus subtilis alters the proportion of major membrane phospholipids in response to surfactin exposure. Biochim. Biophys. Acta 1858:122965–71
    [Google Scholar]
  154. van den Berg B. 2005. The FadL family: unusual transporters for unusual substrates. Curr. Opin. Struct. Biol. 15:4401–7
    [Google Scholar]
  155. van den Berg B. 2010. Going forward laterally: transmembrane passage of hydrophobic molecules through protein channel walls. ChemBioChem 11:101339–43
    [Google Scholar]
  156. van den Berg B, Black PN, Clemons WM Jr., Rapoport TA. 2004. Crystal structure of the long-chain fatty acid transporter FadL. Science 304:56761506–9
    [Google Scholar]
  157. Vieni C, Coudray N, Isom GL, Bhabha G, Ekiert DC. 2022. Role of Ring6 in the function of the E. coli MCE protein LetB. J. Mol. Biol. 434:7167463
    [Google Scholar]
  158. Vollmer W, Blanot D, De Pedro MA. 2008. Peptidoglycan structure and architecture. FEMS Microbiol. Rev. 32:2149–67
    [Google Scholar]
  159. Vollmer W, Seligman SJ. 2010. Architecture of peptidoglycan: more data and more models. Trends Microbiol. 18:259–66
    [Google Scholar]
  160. Voss BJ, Trent MS. 2018. LPS transport: flipping out over MsbA. Curr. Biol. 28:1R30–33
    [Google Scholar]
  161. Wang SC, Davejan P, Hendargo KJ, Javadi-Razaz I, Chou A et al. 2020. Expansion of the Major Facilitator Superfamily (MFS) to include novel transporters as well as transmembrane-acting enzymes. Biochim. Biophys. Acta Biomembr. 1862:9183277
    [Google Scholar]
  162. Ward A, Reyes CL, Yu J, Roth CB, Chang G 2007. Flexibility in the ABC transporter MsbA: alternating access with a twist. PNAS 104:4819005–10
    [Google Scholar]
  163. Welander PV, Hunter RC, Zhang L, Sessions AL, Summons RE, Newman DK. 2009. Hopanoids play a role in membrane integrity and pH homeostasis in Rhodopseudomonas palustris TIE-1. J. Bacteriol. 191:196145–56
    [Google Scholar]
  164. Whitfield C, Trent MS. 2014. Biosynthesis and export of bacterial lipopolysaccharides. Annu. Rev. Biochem. 83:99–128
    [Google Scholar]
  165. Willdigg JR, Helmann JD. 2021. Mini review: bacterial membrane composition and its modulation in response to stress. Front. Mol. Biosci. 8:634438
    [Google Scholar]
  166. Xia G, Kohler T, Peschel A. 2010. The wall teichoic acid and lipoteichoic acid polymers of Staphylococcus aureus. Int. J. Med. Microbiol. 300:2–3148–54
    [Google Scholar]
  167. Yeow J, Tan KW, Holdbrook DA, Chong Z-S, Marzinek JK et al. 2018. The architecture of the OmpC-MlaA complex sheds light on the maintenance of outer membrane lipid asymmetry in Escherchia coli. J. Biol. Chem. 293:2911325–40
    [Google Scholar]
  168. Zhang B, Liu X, Lambert E, Mas G, Hiller S et al. 2020. Structure of a proton-dependent lipid transporter involved in lipoteichoic acids biosynthesis. Nat. Struct. Mol. Biol. 27:6561–69
    [Google Scholar]
  169. Zhang Y, Fan Q, Chi X, Zhou Q, Li Y 2020. Cryo-EM structures of Acinetobacter baumannii glycerophospholipid transporter. Cell Discov 6:186
    [Google Scholar]
  170. Zheng S, Sham L-T, Rubino FA, Brock KP, Robins WP et al. 2018. Structure and mutagenic analysis of the lipid II flippase MurJ from Escherichia coli. PNAS 115:266709–14
    [Google Scholar]
  171. Zhou C, Shi H, Zhang M, Zhou L, Xiao L et al. 2021. Structural insight into phospholipid transport by the MlaFEBD complex from P. aeruginosa. J. Mol. Biol. 433:13166986
    [Google Scholar]
  172. Zhou Z, White KA, Polissi A, Georgopoulos C, Raetz CR. 1998. Function of Escherichia coli MsbA, an essential ABC family transporter, in lipid A and phospholipid biosynthesis. J. Biol. Chem. 273:2012466–75
    [Google Scholar]
  173. Zhu J, Wolf ID, Dulberger CL, Won HI, Kester JC et al. 2021. Spatiotemporal localization of proteins in mycobacteria. Cell Rep 37:13110154
    [Google Scholar]
  174. Zou P, McHaourab HS. 2009. Alternating access of the putative substrate-binding chamber in the ABC transporter MsbA. J. Mol. Biol. 393:3574–85
    [Google Scholar]
/content/journals/10.1146/annurev-cellbio-120420-022914
Loading
/content/journals/10.1146/annurev-cellbio-120420-022914
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error