1932

Abstract

While cellular proteins were initially thought to be stable, research over the last decades has firmly established that intracellular protein degradation is an active and highly regulated process: Lysosomal, proteasomal, and mitochondrial degradation systems were identified and found to be involved in a staggering number of biological functions. Here, we provide a global overview of the diverse roles of cellular protein degradation using seven categories: homeostasis, regulation, quality control, stoichiometry control, proteome remodeling, immune surveillance, and baseline turnover. Using selected examples, we outline how proteins are degraded and why this is functionally relevant.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cellbio-120420-091943
2022-10-06
2024-12-07
Loading full text...

Full text loading...

/deliver/fulltext/cellbio/38/1/annurev-cellbio-120420-091943.html?itemId=/content/journals/10.1146/annurev-cellbio-120420-091943&mimeType=html&fmt=ahah

Literature Cited

  1. Aebersold R, Mann M. 2016. Mass-spectrometric exploration of proteome structure and function. Nature 537:7620347–55
    [Google Scholar]
  2. Aebi M, Bernasconi R, Clerc S, Molinari M. 2010. N-glycan structures: recognition and processing in the ER. Trends Biochem. Sci. 35:274–82
    [Google Scholar]
  3. Alberts B, Johnson A, Lewis J, Morgan D, Raff M et al. 2015. Molecular Biology of the Cell New York: Garland Science. , 6th ed..
    [Google Scholar]
  4. An H, Harper JW. 2018. Systematic analysis of ribophagy in human cells reveals bystander flux during selective autophagy. Nat. Cell Biol. 20:2135–43
    [Google Scholar]
  5. An H, Ordureau A, Körner M, Paulo JA, Harper JW. 2020. Systematic quantitative analysis of ribosome inventory during nutrient stress. Nature 583:7815303–9
    [Google Scholar]
  6. An X, Schulz VP, Li J, Wu K, Liu J et al. 2014. Global transcriptome analyses of human and murine terminal erythroid differentiation. Blood 123:223466–77
    [Google Scholar]
  7. Antón LC, Yewdell JW. 2014. Translating DRiPs: MHC class I immunosurveillance of pathogens and tumors. J. Leukoc. Biol. 95:4551–62
    [Google Scholar]
  8. Babbitt BP, Allen PM, Matsueda G, Haber E, Unanue ER. 1985. Binding of immunogenic peptides to Ia histocompatibility molecules. Nature 317:6035359–61
    [Google Scholar]
  9. Ballabio A, Bonifacino JS. 2020. Lysosomes as dynamic regulators of cell and organismal homeostasis. Nat. Rev. Mol. Cell Biol. 21:2101–18
    [Google Scholar]
  10. Bard JAM, Goodall EA, Greene ER, Jonsson E, Dong KC, Martin A. 2018. Structure and function of the 26S proteasome. Annu. Rev. Biochem. 87:697–724
    [Google Scholar]
  11. Bassani-Sternberg M, Pletscher-Frankild S, Jensen LJ, Mann M. 2015. Mass spectrometry of human leukocyte antigen class I peptidomes reveals strong effects of protein abundance and turnover on antigen presentation. Mol. Cell. Proteom. 14:3658–73
    [Google Scholar]
  12. Battle A, Khan Z, Wang SH, Mitrano A, Ford MJ et al. 2015. Impact of regulatory variation from RNA to protein. Science 347:6222664–67
    [Google Scholar]
  13. Bingol B, Schuman EM. 2006. Activity-dependent dynamics and sequestration of proteasomes in dendritic spines. Nature 441:70971144–48
    [Google Scholar]
  14. Bischoff TLW, Voit C. 1860. Die Gesetze der Ernährung des Fleischfressers durch neue Untersuchungen festgestellt [The laws of the carnivore's diet established by recent investigations]. Leipzig, Ger.: C.F. Winter
    [Google Scholar]
  15. Blikstad I, Nelson WJ, Moon RT, Lazarides E. 1983. Synthesis and assembly of spectrin during avian erythropoiesis: stoichiometric assembly but unequal synthesis of α and β spectrin. Cell 32:41081–91
    [Google Scholar]
  16. Bogenhagen DF, Haley JD. 2020. Pulse-chase SILAC-based analyses reveal selective over-synthesis and rapid turnover of mitochondrial protein components of respiratory complexes. J. Biol. Chem. 295:92544–54
    [Google Scholar]
  17. Bonam SR, Wang F, Muller S. 2019. Lysosomes as a therapeutic target. Nat. Rev. Drug Discov. 18:12923–48
    [Google Scholar]
  18. Bourdetsky D, Schmelzer CEH, Admon A. 2014. The nature and extent of contributions by defective ribosome products to the HLA peptidome. PNAS 111:16E1591–99
    [Google Scholar]
  19. Brennan CM, Vaites LP, Wells JN, Santaguida S, Paulo JA et al. 2019. Protein aggregation mediates stoichiometry of protein complexes in aneuploid cells. Genes Dev 33:1031–47
    [Google Scholar]
  20. Brown MG, Driscoll J, Monaco JJ. 1991. Structural and serological similarity of MHC-linked LMP and proteasome (multicatalytic proteinase) complexes. Nature 353:6342355–57
    [Google Scholar]
  21. Buccitelli C, Selbach M. 2020. mRNAs, proteins and the emerging principles of gene expression control. Nat. Rev. Genet. 21:10630–44
    [Google Scholar]
  22. Buchberger A, Bukau B, Sommer T. 2010. Protein quality control in the cytosol and the endoplasmic reticulum: brothers in arms. Mol. Cell 40:2238–52
    [Google Scholar]
  23. Burslem GM, Crews CM. 2020. Proteolysis-targeting chimeras as therapeutics and tools for biological discovery. Cell 181:1102–14
    [Google Scholar]
  24. Cabrera M, Boronat S, Marte L, Vega M, Pérez P et al. 2020. Chaperone-facilitated aggregation of thermo-sensitive proteins shields them from degradation during heat stress. Cell Rep 30:72430–43.e4
    [Google Scholar]
  25. Cambridge SB, Gnad F, Nguyen C, Bermejo JL, Krüger M, Mann M. 2011. Systems-wide proteomic analysis in mammalian cells reveals conserved, functional protein turnover. J. Proteome Res. 10:125275–84
    [Google Scholar]
  26. Chen G, Kroemer G, Kepp O. 2020. Mitophagy: an emerging role in aging and age-associated diseases. Front. Cell Dev. Biol. 8:200
    [Google Scholar]
  27. Cheng SH, Gregory RJ, Marshall J, Paul S, Souza DW et al. 1990. Defective intracellular transport and processing of CFTR is the molecular basis of most cystic fibrosis. Cell 63:4827–34
    [Google Scholar]
  28. Chick JM, Munger SC, Simecek P, Huttlin EL, Choi K et al. 2016. Defining the consequences of genetic variation on a proteome-wide scale. Nature 534:7608500–5
    [Google Scholar]
  29. Dang F, Nie L, Wei W. 2021. Ubiquitin signaling in cell cycle control and tumorigenesis. Cell Death Differ 28:2427–38
    [Google Scholar]
  30. Dephoure N, Hwang S, O'Sullivan C, Dodgson SE, Gygi SP et al. 2014. Quantitative proteomic analysis reveals posttranslational responses to aneuploidy in yeast. eLife 3:e03023
    [Google Scholar]
  31. Desautels M, Goldberg AL. 1982. Liver mitochondria contain an ATP-dependent, vanadate-sensitive pathway for the degradation of proteins. PNAS 79:61869–73
    [Google Scholar]
  32. Deshwal S, Fiedler KU, Langer T. 2020. Mitochondrial proteases: multifaceted regulators of mitochondrial plasticity. Annu. Rev. Biochem. 89:501–28
    [Google Scholar]
  33. Dieterich DC, Link AJ, Graumann J, Tirrell DA, Schuman EM. 2006. Selective identification of newly synthesized proteins in mammalian cells using bioorthogonal noncanonical amino acid tagging (BONCAT). PNAS 103:259482–87
    [Google Scholar]
  34. Dikic I. 2017. Proteasomal and autophagic degradation systems. Annu. Rev. Biochem. 86:193–224
    [Google Scholar]
  35. Dikic I, Elazar Z. 2018. Mechanism and medical implications of mammalian autophagy. Nat. Rev. Mol. Cell Biol. 19:349–64
    [Google Scholar]
  36. Doherty MK, Hammond DE, Clague MJ, Gaskell SJ, Beynon RJ. 2009. Turnover of the human proteome: determination of protein intracellular stability by dynamic SILAC. J. Proteome Res. 8:1104–12
    [Google Scholar]
  37. Donaldson JG, Williams DB. 2009. Intracellular assembly and trafficking of MHC class I molecules. Traffic 10:121745–52
    [Google Scholar]
  38. Dörrbaum AR, Alvarez-Castelao B, Nassim-Assir B, Langer JD, Schuman EM. 2020. Proteome dynamics during homeostatic scaling in cultured neurons. eLife 9:e52939
    [Google Scholar]
  39. Duttler S, Pechmann S, Frydman J. 2013. Principles of cotranslational ubiquitination and quality control at the ribosome. Mol. Cell 50:3379–93
    [Google Scholar]
  40. Dzierzak E, Philipsen S. 2013. Erythropoiesis: development and differentiation. Cold Spring Harb. Perspect. Med. 3:4a011601
    [Google Scholar]
  41. Eichelbaum K, Krijgsveld J. 2014. Rapid temporal dynamics of transcription, protein synthesis, and secretion during macrophage activation. Mol. Cell. Proteom. 13:3792–810
    [Google Scholar]
  42. Engelhard VH. 2003. Structure of peptides associated with class I and class II MHC molecules. Annu. Rev. Immunol. 12:181–207
    [Google Scholar]
  43. Evans T, Rosenthal ET, Youngblom J, Distel D, Hunt T. 1983. Cyclin: a protein specified by maternal mRNA in sea urchin eggs that is destroyed at each cleavage division. Cell 33:2389–96
    [Google Scholar]
  44. Fiorese CJ, Schulz AM, Lin Y-F, Rosin N, Pellegrino MW, Haynes CM. 2016. The transcription factor ATF5 mediates a mammalian mitochondrial UPR. Curr. Biol. 26:152037–43
    [Google Scholar]
  45. Fleming JA, Lightcap ES, Sadis S, Thoroddsen V, Bulawa CE, Blackman RK. 2002. Complementary whole-genome technologies reveal the cellular response to proteasome inhibition by PS-341. PNAS 99:31461–66
    [Google Scholar]
  46. Folin OK. 1905. Laws governing the chemical composition of urine: approximately complete analyses of thirty “normal” urines. A theory of protein metabolism. Am. J. Physiol. 13:67–115
    [Google Scholar]
  47. Geiger T, Cox J, Mann M. 2010. Proteomic changes resulting from gene copy number variations in cancer cells. PLOS Genet 6:9e1001090
    [Google Scholar]
  48. Giandomenico SL, Alvarez-Castelao B, Schuman EM. 2022. Proteostatic regulation in neuronal compartments. Trends Neurosci 45:141–52
    [Google Scholar]
  49. Glynne R, Powis SH, Beck S, Kelly A, Kerr LA, Trowsdale J. 1991. A proteasome-related gene between the two ABC transporter loci in the class II region of the human MHC. Nature 353:6342357–60
    [Google Scholar]
  50. Goldberg AL. 1972. Degradation of abnormal proteins in Escherichia coli. PNAS 69:2422–26
    [Google Scholar]
  51. Goldberg AL. 2012. Development of proteasome inhibitors as research tools and cancer drugs. J. Cell Biol. 199:4583–88
    [Google Scholar]
  52. Goldberg AL, Dice JF. 1974. Intracellular protein degradation in mammalian and bacterial cells. Annu. Rev. Biochem. 43:835–69
    [Google Scholar]
  53. Gomez-Pastor R, Burchfiel ET, Thiele DJ. 2018. Regulation of heat shock transcription factors and their roles in physiology and disease. Nat. Rev. Mol. Cell Biol. 19:4–19
    [Google Scholar]
  54. Guggenheim KY. 1991. Rudolf Schoenheimer and the concept of the dynamic state of body constituents. J. Nutr. 121:111701–4
    [Google Scholar]
  55. Gunjan A, Verreault A. 2003. A Rad53 kinase-dependent surveillance mechanism that regulates histone protein levels in S. cerevisiae. Cell 115:5537–49
    [Google Scholar]
  56. Hara K, Yonezawa K, Weng Q-P, Kozlowski MT, Belham C, Avruch J. 1998. Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanism. J. Biol. Chem. 273:2314484–94
    [Google Scholar]
  57. Harper JW, Bennett EJ. 2016. Proteome complexity and the forces that drive proteome imbalance. Nature 537:7620328–38
    [Google Scholar]
  58. Harrigan JA, Jacq X, Martin NM, Jackson SP. 2018. Deubiquitylating enzymes and drug discovery: emerging opportunities. Nat. Rev. Drug Discov. 17:57–78
    [Google Scholar]
  59. Hartwell LH, Weinert TA. 1989. Checkpoints: controls that ensure the order of cell cycle events. Science 246:4930629–34
    [Google Scholar]
  60. Hershko A. 2005. Brief history of protein degradation and the ubiquitin system. Protein Degradation: Ubiquitin and the Chemistry of Life, Vol. 1 RJ Mayer, A Ciechanover, M Rechsteiner 1–9 Weinheim, Ger: Wiley-VCH
    [Google Scholar]
  61. Hershko A, Ciechanover A. 1998. The ubiquitin system. Annu. Rev. Biochem. 67:425–79
    [Google Scholar]
  62. Hogness DS, Cohn M, Monod J. 1955. Studies on the induced synthesis of beta-galactosidase in Escherichia coli: the kinetics and mechanism of sulfur incorporation. Biochim. Biophys. Acta. 16:199–116
    [Google Scholar]
  63. Isaac RS, McShane E, Churchman LS. 2018. The multiple levels of mitonuclear coregulation. Annu. Rev. Genet. 52:511–33
    [Google Scholar]
  64. Ivan M, Kaelin WG Jr. 2001. The von Hippel–Lindau tumor suppressor protein. Curr. Opin. Genet. Dev. 11:127–34
    [Google Scholar]
  65. Jensen TJ, Loo MA, Pind S, Williams DB, Goldberg AL, Riordan JR. 1995. Multiple proteolytic systems, including the proteasome, contribute to CFTR processing. Cell 83:1129–35
    [Google Scholar]
  66. Jewell UR, Kvietikova I, Scheid A, Bauer C, Wenger RH, Gassmann M. 2001. Induction of HIF-1α in response to hypoxia is instantaneous. FASEB J 15:71312–14
    [Google Scholar]
  67. Joazeiro CAP. 2019. Mechanisms and functions of ribosome-associated protein quality control. Nat. Rev. Mol. Cell Biol. 20:6368–83
    [Google Scholar]
  68. Jung CH, Jun CB, Ro S-H, Kim Y-M, Otto NM et al. 2009. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol. Biol. Cell 20:71992–2003
    [Google Scholar]
  69. Juszkiewicz S, Hegde RS. 2018. Quality control of orphaned proteins. Mol. Cell 71:3443–57
    [Google Scholar]
  70. Kaneko M, Ishiguro M, Niinuma Y, Uesugi M, Nomura Y. 2002. Human HRD1 protects against ER stress-induced apoptosis through ER-associated degradation. FEBS Lett 532:1–2147–52
    [Google Scholar]
  71. Kawabe H, Stegmüller J. 2021. The role of E3 ubiquitin ligases in synapse function in the healthy and diseased brain. Mol. Cell. Neurosci. 112:103602
    [Google Scholar]
  72. Keele GR, Zhang T, Pham DT, Vincent M, Bell TA et al. 2021. Regulation of protein abundance in genetically diverse mouse populations. Cell Genom 1:1100003
    [Google Scholar]
  73. Kelly A, Powis SH, Glynne R, Radley E, Beck S, Trowsdale J. 1991. Second proteasome-related gene in the human MHC class II region. Nature 353:6345667–68
    [Google Scholar]
  74. Kim J, Kundu M, Viollet B, Guan K-L. 2011. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol. 13:2132–41
    [Google Scholar]
  75. Klein T, Eckhard U, Dufour A, Solis N, Overall CM. 2018. Proteolytic cleavage-mechanisms, function, and “omic” approaches for a near-ubiquitous posttranslational modification. Chem. Rev. 118:31137–68
    [Google Scholar]
  76. Kloetzel PM. 2004. Generation of major histocompatibility complex class I antigens: functional interplay between proteasomes and TPPII. Nat. Immunol. 5:7661–69
    [Google Scholar]
  77. Knecht E, Hernández-Yago J, Martinez-Ramón A, Grisolía S. 1980. Fate of proteins synthesized in mitochondria of cultured mammalian cells revealed by electron microscope radioautography. Exp. Cell Res. 125:1191–99
    [Google Scholar]
  78. Kraft C, Deplazes A, Sohrmann M, Peter M. 2008. Mature ribosomes are selectively degraded upon starvation by an autophagy pathway requiring the Ubp3p/Bre5p ubiquitin protease. Nat. Cell Biol. 10:5602–10
    [Google Scholar]
  79. Lam YW, Lamond AI, Mann M, Andersen JS. 2007. Analysis of nucleolar protein dynamics reveals the nuclear degradation of ribosomal proteins. Curr. Biol. 17:9749–60
    [Google Scholar]
  80. Lane DP. 1992. p53, guardian of the genome. Nature 358:15–16
    [Google Scholar]
  81. Larsson AJM, Johnsson P, Hagemann-Jensen M, Hartmanis L, Faridani OR et al. 2019. Genomic encoding of transcriptional burst kinetics. Nature 565:7738251–54
    [Google Scholar]
  82. Lecker SH, Solomon V, Mitch WE, Goldberg AL 1999. Muscle protein breakdown and the critical role of the ubiquitin-proteasome pathway in normal and disease states. J. Nutr. 129:1S Suppl.227S–37S
    [Google Scholar]
  83. Levine AJ. 2020. p53: 800 million years of evolution and 40 years of discovery. Nat. Rev. Cancer 20:8471–80
    [Google Scholar]
  84. Li L, Freudenberg J, Cui K, Dale R, Song S-H et al. 2013. Ldb1-nucleated transcription complexes function as primary mediators of global erythroid gene activation. Blood 121:224575–85
    [Google Scholar]
  85. Li W, Bengtson MH, Ulbrich A, Matsuda A, Reddy VA et al. 2008. Genome-wide and functional annotation of human E3 ubiquitin ligases identifies MULAN, a mitochondrial E3 that regulates the organelle's dynamics and signaling. PLOS ONE 3:1e1487
    [Google Scholar]
  86. Liu GY, Sabatini DM. 2020. mTOR at the nexus of nutrition, growth, ageing and disease. Nat. Rev. Mol. Cell Biol. 21:4183–203
    [Google Scholar]
  87. Mann M. 2006. Functional and quantitative proteomics using SILAC. Nat. Rev. 7:952–58
    [Google Scholar]
  88. McShane E, Sin C, Zauber H, Wells JN, Donnelly N et al. 2016. Kinetic analysis of protein stability reveals age-dependent degradation. Cell 167:3803–15.e21
    [Google Scholar]
  89. Minami Y, Weissman AM, Samelson LE, Klausner RD. 1987. Building a multichain receptor: synthesis, degradation, and assembly of the T-cell antigen receptor. PNAS 84:92688–92
    [Google Scholar]
  90. Mirauta BA, Seaton DD, Bensaddek D, Brenes A, Bonder MJ et al. 2020. Population-scale proteome variation in human induced pluripotent stem cells. eLife 9:e57390
    [Google Scholar]
  91. Morgenstern M, Peikert CD, Lübbert P, Suppanz I, Klemm C et al. 2021. Quantitative high-confidence human mitochondrial proteome and its dynamics in cellular context. Cell Metab 33:122464–83.e18
    [Google Scholar]
  92. Muller PAJ, Vousden KH. 2013. p53 mutations in cancer. Nat. Cell Biol. 15:2–8
    [Google Scholar]
  93. Murata S, Takahama Y, Kasahara M, Tanaka K. 2018. The immunoproteasome and thymoproteasome: functions, evolution and human disease. Nat. Immunol. 19:9923–31
    [Google Scholar]
  94. Musacchio A. 2015. The molecular biology of spindle assembly checkpoint signaling dynamics. Curr. Biol. 25:20R1002–18
    [Google Scholar]
  95. Narayanan S, Cai C-Y, Assaraf YG, Guo H-Q, Cui Q et al. 2020. Targeting the ubiquitin-proteasome pathway to overcome anti-cancer drug resistance. Drug Resist. Updat. 48:100663
    [Google Scholar]
  96. Nargund AM, Fiorese CJ, Pellegrino MW, Deng P, Haynes CM. 2015. Mitochondrial and nuclear accumulation of the transcription factor ATFS-1 promotes OXPHOS recovery during the UPRmt. Mol. Cell 58:1123–33
    [Google Scholar]
  97. Nargund AM, Pellegrino MW, Fiorese CJ, Baker BM, Haynes CM. 2012. Mitochondrial import efficiency of ATFS-1 regulates mitochondrial UPR activation. Science 337:6094587–90
    [Google Scholar]
  98. Nguyen AT, Prado MA, Schmidt PJ, Sendamarai AK, Wilson-Grady JT et al. 2017. UBE2O remodels the proteome during terminal erythroid differentiation. Science 357:6350aan0218
    [Google Scholar]
  99. Novak B, Tyson JJ, Gyorffy B, Csikasz-Nagy A. 2007. Irreversible cell-cycle transitions are due to systems-level feedback. Nat. Cell Biol. 9:7724–28
    [Google Scholar]
  100. Ordureau A, Kraus F, Zhang J, An H, Park S et al. 2021. Temporal proteomics during neurogenesis reveals large-scale proteome and organelle remodeling via selective autophagy. Mol. Cell 81:245082–98.e11
    [Google Scholar]
  101. Ortiz-Navarrete V, Seelig A, Gernold M, Frentzel S, Kloetzel PM, Hämmerling GJ. 1991. Subunit of the “20S” proteasome (multicatalytic proteinase) encoded by the major histocompatibility complex. Nature 353:6345662–64
    [Google Scholar]
  102. Phillips BP, Gomez-Navarro N, Miller EA. 2020. Protein quality control in the endoplasmic reticulum. Curr. Opin. Cell Biol. 65:96–102
    [Google Scholar]
  103. Pine MJ. 1967. Response of intracellular proteolysis to alteration of bacterial protein and the implications in metabolic regulation. J. Bacteriol. 93:51527–33
    [Google Scholar]
  104. Prevosto C, Usmani MF, McDonald S, Gumienny AM, Key T et al. 2016. Allele-independent turnover of human leukocyte antigen (HLA) class Ia molecules. PLOS ONE 11:8e0161011
    [Google Scholar]
  105. Qi L, Tsai B, Arvan P. 2017. New insights into the physiological role of endoplasmic reticulum-associated degradation. Trends Cell Biol 27:6430–40
    [Google Scholar]
  106. Rabinovitz M, Fisher JM. 1964. Characteristics of the inhibition of hemoglobin synthesis in rabbit reticulocytes by threo-α-amino-β-chlorobutyric acid. Biochim. Biophys. Acta. 91:313–22
    [Google Scholar]
  107. Radzicka A, Wolfenden R. 1996. Rates of uncatalyzed peptide bond hydrolysis in neutral solution and the transition state affinities of proteases. J. Amer. Chem. Soc. 118:266105–9
    [Google Scholar]
  108. Ramachandran KV, Fu JM, Schaffer TB, Na CH, Delannoy M, Margolis SS. 2018. Activity-dependent degradation of the nascentome by the neuronal membrane proteasome. Mol. Cell 71:1169–77.e6
    [Google Scholar]
  109. Ramachandran KV, Margolis SS. 2017. A mammalian nervous-system-specific plasma membrane proteasome complex that modulates neuronal function. Nat. Struct. Mol. Biol. 24:4419–30
    [Google Scholar]
  110. Ramsey JJ, Harper ME, Weindruch R. 2000. Restriction of energy intake, energy expenditure, and aging. Free Radic. Biol. Med. 29:10946–68
    [Google Scholar]
  111. Roche PA, Furuta K. 2015. The ins and outs of MHC class II-mediated antigen processing and presentation. Nat. Rev. Immunol. 15:4203–16
    [Google Scholar]
  112. Rock KL, Farfán-Arribas DJ, Colbert JD, Goldberg AL. 2014. Re-examining class-I presentation and the DRiP hypothesis. Trends Immunol 35:4144–52
    [Google Scholar]
  113. Rock KL, Gramm C, Rothstein L, Clark K, Stein R et al. 1994. Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell 78:5761–71
    [Google Scholar]
  114. Rock KL, York IA, Goldberg AL. 2004. Post-proteasomal antigen processing for major histocompatibility complex class I presentation. Nat. Immunol. 5:7670–77
    [Google Scholar]
  115. Ross AB, Langer JD, Jovanovic M. 2020. Proteome turnover in the spotlight: approaches, applications, and perspectives. Mol. Cell. Proteom. 20:100016
    [Google Scholar]
  116. Roux-Dalvai F, Gonzalez de Peredo A, Simó C, Guerrier L, Bouyssié D et al. 2008. Extensive analysis of the cytoplasmic proteome of human erythrocytes using the peptide ligand library technology and advanced mass spectrometry. Mol. Cell. Proteom. 7:112254–69
    [Google Scholar]
  117. Ruben S, Kamen MD. 1941. Long-lived radioactive carbon: C14. Phys. Rev. 59:4349–54
    [Google Scholar]
  118. Sacramento EK, Kirkpatrick JM, Mazzetto M, Baumgart M, Bartolome A et al. 2020. Reduced proteasome activity in the aging brain results in ribosome stoichiometry loss and aggregation. Mol. Syst. Biol. 16:e9596
    [Google Scholar]
  119. Schimke RT. 1964. The importance of both synthesis and degradation in the control of arginase levels in rat liver. J. Biol. Chem. 239:3808–17
    [Google Scholar]
  120. Schoenheimer R, Ratner S, Rittenberg D, Heidelberger M. 1942. The interaction of antibody protein with dietary nitrogen in actively immunized animals. J. Biol. Chem. 144:2545–54
    [Google Scholar]
  121. Schoenheimer R, Rittenberg D. 1935. Deuterium as an indicator in the study of intermediary metabolism. Science 82:2120156–57
    [Google Scholar]
  122. Schoenheimer R, Rittenberg D. 1938. The application of isotopes to the study of intermediary metabolism. Science 87:2254221–26
    [Google Scholar]
  123. Schubert U, Antón LC, Gibbs J, Norbury CC, Yewdell JW, Bennink JR. 2000. Rapid degradation of a large fraction of newly synthesized proteins by proteasomes. Nature 404:6779770–74
    [Google Scholar]
  124. Schwanhäusser B, Busse D, Li N, Dittmar G, Schuchhardt J et al. 2011. Global quantification of mammalian gene expression control. Nature 473:7347337–42
    [Google Scholar]
  125. Schwanhäusser B, Wolf J, Selbach M, Busse D. 2013. Synthesis and degradation jointly determine the responsiveness of the cellular proteome. Bioessays 35:7597–601
    [Google Scholar]
  126. Schwarz A, Beck M. 2019. The benefits of cotranslational assembly: a structural perspective. Trends Cell Biol. 29:10791–803
    [Google Scholar]
  127. Schweers RL, Zhang J, Randall MS, Loyd MR, Li W et al. 2007. NIX is required for programmed mitochondrial clearance during reticulocyte maturation. PNAS 104:4919500–5
    [Google Scholar]
  128. Semenza GL, Wang GL. 1992. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol. Cell. Biol. 12:125447–54
    [Google Scholar]
  129. Senger G, Schaefer MH. 2021. Protein complex organization imposes constraints on proteome dysregulation in cancer. Front. Bioinform 1:33
    [Google Scholar]
  130. Shah AM, Wondisford FE. 2020. Tracking the carbons supplying gluconeogenesis. J. Biol. Chem. 295:4214419–29
    [Google Scholar]
  131. Shemorry A, Hwang C-S, Varshavsky A. 2013. Control of protein quality and stoichiometries by N-terminal acetylation and the N-end rule pathway. Mol. Cell 50:4540–51
    [Google Scholar]
  132. Shpilka T, Haynes CM. 2018. The mitochondrial UPR: mechanisms, physiological functions and implications in ageing. Nat. Rev. Mol. Cell Biol. 19:2109–20
    [Google Scholar]
  133. Song J, Herrmann JM, Becker T. 2021. Quality control of the mitochondrial proteome. Nat. Rev. Mol. Cell Biol. 22:54–70
    [Google Scholar]
  134. Soto I, Couvillion M, McShane E, Hansen KG, Conor Moran J et al. 2021. Balanced mitochondrial and cytosolic translatomes underlie the biogenesis of human respiratory complexes. bioRxiv 446345. https://doi.org/10.1101/2021.05.31.446345
    [Crossref]
  135. Stiburek L, Cesnekova J, Kostkova O, Fornuskova D, Vinsova K et al. 2012. YME1L controls the accumulation of respiratory chain subunits and is required for apoptotic resistance, cristae morphogenesis, and cell proliferation. Mol. Biol. Cell 23:61010–23
    [Google Scholar]
  136. Sung M-K, Porras-Yakushi TR, Reitsma JM, Huber FM, Sweredoski MJ et al. 2016. A conserved quality-control pathway that mediates degradation of unassembled ribosomal proteins. eLife 5:e19105
    [Google Scholar]
  137. Suraweera A, Münch C, Hanssum A, Bertolotti A. 2012. Failure of amino acid homeostasis causes cell death following proteasome inhibition. Mol. Cell 48:2242–53
    [Google Scholar]
  138. Swatek KN, Komander D. 2016. Ubiquitin modifications. Cell Res 26:4399–422
    [Google Scholar]
  139. Swovick K, Welle KA, Hryhorenko JR, Seluanov A, Gorbunova V, Ghaemmaghami S. 2018. Cross-species comparison of proteome turnover kinetics. Mol. Cell. Proteom. 17:4580–91
    [Google Scholar]
  140. Taggart JC, Li G-W. 2018. Production of protein-complex components is stoichiometric and lacks general feedback regulation in eukaryotes. Cell Syst 7:6580–89.e4
    [Google Scholar]
  141. Taggart JC, Zauber H, Selbach M, Li G-W, McShane E. 2020. Keeping the proportions of protein complex components in check. Cell Syst 10:2125–32
    [Google Scholar]
  142. Tai H-C, Schuman EM. 2008. Ubiquitin, the proteasome and protein degradation in neuronal function and dysfunction. Nat. Rev. Neurosci. 9:826–38
    [Google Scholar]
  143. Taylor AM, Shih J, Ha G, Gao GF, Zhang X et al. 2018. Genomic and functional approaches to understanding cancer aneuploidy. Cancer Cell 33:4676–89.e3
    [Google Scholar]
  144. Thoreen CC, Chantranupong L, Keys HR, Wang T, Gray NS, Sabatini DM. 2012. A unifying model for mTORC1-mediated regulation of mRNA translation. Nature 485:7396109–13
    [Google Scholar]
  145. Townsend AR, Rothbard J, Gotch FM, Bahadur G, Wraith D, McMichael AJ. 1986. The epitopes of influenza nucleoprotein recognized by cytotoxic T lymphocytes can be defined with short synthetic peptides. Cell 44:6959–68
    [Google Scholar]
  146. Toyama BH, Hetzer MW. 2013. Protein homeostasis: live long, won't prosper. Nat. Rev. Mol. Cell Biol. 14:55–61
    [Google Scholar]
  147. Toyama BH, Savas JN, Park SK, Harris MS, Ingolia NT et al. 2013. Identification of long-lived proteins reveals exceptional stability of essential cellular structures. Cell 154:5971–82
    [Google Scholar]
  148. Trentini DB, Pecoraro M, Tiwary S, Cox J, Mann M et al. 2020. Role for ribosome-associated quality control in sampling proteins for MHC class I-mediated antigen presentation. PNAS 117:84099–108
    [Google Scholar]
  149. Tye BW, Commins N, Ryazanova LV, Wühr M, Springer M et al. 2019. Proteotoxicity from aberrant ribosome biogenesis compromises cell fitness. eLife 8:e43002
    [Google Scholar]
  150. Vodermaier HC. 2004. APC/C and SCF: controlling each other and the cell cycle. Curr. Biol. 14:18R787–96
    [Google Scholar]
  151. von Liebig JF. 1842. Die organische Chemie in ihrer Anwendung auf Physiologie und Pathologie [Organic chemistry in its application to physiology and pathology] Frankfurt am Main Ger.: F. Vieweg und Sohn
    [Google Scholar]
  152. Wang F, Durfee LA, Huibregtse JM. 2013. A cotranslational ubiquitination pathway for quality control of misfolded proteins. Mol. Cell 50:3368–78
    [Google Scholar]
  153. Ward CL, Kopito RR. 1994. Intracellular turnover of cystic fibrosis transmembrane conductance regulator. Inefficient processing and rapid degradation of wild-type and mutant proteins. J. Biol. Chem. 269:4125710–18
    [Google Scholar]
  154. Weidemann A, Johnson RS. 2008. Biology of HIF-1α. Cell Death Differ 15:4621–27
    [Google Scholar]
  155. Wiśniewski JR, Hein MY, Cox J, Mann M. 2014. A “proteomic ruler” for protein copy number and concentration estimation without spike-in standards. Mol. Cell. Proteom. 13:123497–506
    [Google Scholar]
  156. Wyant GA, Abu-Remaileh M, Frenkel EM, Laqtom NN, Dharamdasani V et al. 2018. NUFIP1 is a ribosome receptor for starvation-induced ribophagy. Science 360:6390751–58
    [Google Scholar]
  157. Yanagitani K, Juszkiewicz S, Hegde RS. 2017. UBE2O is a quality control factor for orphans of multiprotein complexes. Science 357:6350472–75
    [Google Scholar]
  158. Yau R, Rape M. 2016. The increasing complexity of the ubiquitin code. Nat. Cell Biol. 18:6579–86
    [Google Scholar]
  159. Yewdell JW, Antón LC, Bennink JR. 1996. Defective ribosomal products (DRiPs): a major source of antigenic peptides for MHC class I molecules?. J. Immunol. 157:51823–26
    [Google Scholar]
  160. Zhao J, Zhai B, Gygi SP, Goldberg AL. 2015. mTOR inhibition activates overall protein degradation by the ubiquitin proteasome system as well as by autophagy. PNAS 52:11215790–97
    [Google Scholar]
  161. Zhao Q, Wang J, Levichkin IV, Stasinopoulos S, Ryan MT, Hoogenraad NJ. 2002. A mitochondrial specific stress response in mammalian cells. EMBO J 21:174411–19
    [Google Scholar]
  162. Zheng N, Shabek N. 2017. Ubiquitin ligases: structure, function, and regulation. 2017. Annu. Rev. Biochem. 86:129–57
    [Google Scholar]
/content/journals/10.1146/annurev-cellbio-120420-091943
Loading
/content/journals/10.1146/annurev-cellbio-120420-091943
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error