Proper localization of membrane proteins is essential for the function of biological membranes and for the establishment of organelle identity within a cell. Molecular machineries that mediate membrane protein biogenesis need to not only achieve a high degree of efficiency and accuracy, but also prevent off-pathway aggregation events that can be detrimental to cells. The posttranslational targeting of tail-anchored proteins (TAs) provides tractable model systems to probe these fundamental issues. Recent advances in understanding TA-targeting pathways reveal sophisticated molecular machineries that drive and regulate these processes. These findings also suggest how an interconnected network of targeting factors, cochaperones, and quality control machineries together ensures robust membrane protein biogenesis.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Abell BM, Rabu C, Leznicki P, Young JC, High S. 2007. Post-translational integration of tail-anchored proteins is facilitated by defined molecular chaperones. J. Cell Sci. 120:1743–51 [Google Scholar]
  2. Akopian D, Shen K, Zhang X, Shan SO. 2013. Signal recognition particle: an essential protein-targeting machine. Annu. Rev. Biochem. 82:693–721 [Google Scholar]
  3. Aviram N, Ast T, Costa EA, Arakel EC, Chuartzman SG. et al. 2016. The SND proteins constitute an alternative targeting route to the endoplasmic reticulum. Nature 540:134–38 [Google Scholar]
  4. Bae W, Lee YJ, Kim DH, Lee J, Kim S. et al. 2008. AKR2A-mediated import of chloroplast outer membrane proteins is essential for chloroplast biogenesis. Nat. Cell Biol. 10:220–27 [Google Scholar]
  5. Beilharz T, Egan B, Silver PA, Hofmann K, Lithgow T. 2003. Bipartite signals mediate subcellular targeting of tail-anchored membrane proteins in Saccharomyces cerevisiae. J. Biol. Chem. 278:8219–23 [Google Scholar]
  6. Bozkurt G, Stjepanovic G, Vilardi F, Amlacher S, Wild K. et al. 2009. Structural insights into tail-anchored protein binding and membrane insertion by Get3. PNAS 106:21131–36 [Google Scholar]
  7. Bozkurt G, Wild K, Amlacher S, Hurt E, Dobberstein B, Sinning I. 2010. The structure of Get4 reveals an alpha-solenoid fold adapted for multiple interactions in tail-anchored protein biogenesis. FEBS Lett 584:1509–14 [Google Scholar]
  8. Brambillasca S, Yabal M, Makarow M, Borgese N. 2006. Unassisted translocation of large polypeptide domains across phospholipid bilayers. J. Cell Biol. 175:767–77 [Google Scholar]
  9. Brambillasca S, Yabal M, Soffientini P, Stefanovic S, Makarow M. et al. 2005. Transmembrane topogenesis of a tail-anchored protein is modulated by membrane lipid composition. EMBO J 24:2533–42 [Google Scholar]
  10. Byers JT, Guzzo RM, Salih M, Tuana BS. 2009. Hydrophobic profiles of the tail anchors in SLMAP dictate subcellular targeting. BMC Cell Biol 10:48 [Google Scholar]
  11. Chang YW, Chuang YC, Ho YC, Cheng MY, Sun YJ. et al. 2010. Crystal structure of Get4-Get5 complex and its interactions with Sgt2, Get3, and Ydj1. J. Biol. Chem. 285:9962–70 [Google Scholar]
  12. Chartron JW, Clemons WM Jr., Suloway CJ. 2012a. The complex process of GETting tail-anchored membrane proteins to the ER. Curr. Opin. Struct. Biol. 22:217–24 [Google Scholar]
  13. Chartron JW, Gonzalez GM, Clemons WM Jr. 2011. A structural model of the Sgt2 protein and its interactions with chaperones and the Get4/Get5 complex. J. Biol. Chem. 286:34325–34 [Google Scholar]
  14. Chartron JW, Suloway CJ, Zaslaver M, Clemons WM Jr. 2010. Structural characterization of the Get4/Get5 complex and its interaction with Get3. PNAS 107:12127–32 [Google Scholar]
  15. Chartron JW, VanderVelde DG, Clemons WM Jr. 2012b. Structures of the Sgt2/SGTA dimerization domain with the Get5/UBL4A UBL domain reveal an interaction that forms a conserved dynamic interface. Cell Rep 2:1620–32 [Google Scholar]
  16. Chartron JW, VanderVelde DG, Rao M, Clemons WM Jr. 2012c. Get5 carboxyl-terminal domain is a novel dimerization motif that tethers an extended Get4/Get5 complex. J. Biol. Chem. 287:8310–17 [Google Scholar]
  17. Chen Y, Pieuchot L, Loh RA, Yang J, Kari TM. et al. 2014a. Hydrophobic handoff for direct delivery of peroxisome tail-anchored proteins. Nat. Commun. 5:5790 [Google Scholar]
  18. Chen YC, Umanah GK, Dephoure N, Andrabi SA, Gygi SP. et al. 2014b. Msp1/ATAD1 maintains mitochondrial function by facilitating the degradation of mislocalized tail-anchored proteins. EMBO J 33:1548–64 [Google Scholar]
  19. Colombo SF, Cardani S, Maroli A, Vitiello A, Soffientini P. et al. 2016. Tail-anchored protein insertion in mammals: function and reciprocal interactions of the two subunits of the TRC40 receptor. J. Biol. Chem. 291:15292–306 [Google Scholar]
  20. Colombo SF, Longhi R, Borgese N. 2009. The role of cytosolic proteins in the insertion of tail-anchored proteins into phospholipid bilayers. J. Cell Sci. 122:2383–92 [Google Scholar]
  21. Dalbey RE, Kuhn A. 2014. How YidC inserts and folds proteins across a membrane. Nat. Struct. Mol. Biol. 21:435–36 [Google Scholar]
  22. Darby JF, Krysztofinska EM, Simpson PJ, Simon AC, Leznicki P. et al. 2014. Solution structure of the SGTA dimerisation domain and investigation of its interactions with the ubiquitin-like domains of BAG6 and UBL4A. PLOS ONE 9:e113281 [Google Scholar]
  23. Dhanoa PK, Richardson LG, Smith MD, Gidda SK, Henderson MP. et al. 2010. Distinct pathways mediate the sorting of tail-anchored proteins to the plastid outer envelope. PLOS ONE 5:e10098 [Google Scholar]
  24. Egan B, Beilharz T, George R, Isenmann S, Gratzer S. et al. 1999. Targeting of tail-anchored proteins to yeast mitochondria in vivo. FEBS Lett 451:243–48 [Google Scholar]
  25. Fakieh MH, Drake PJ, Lacey J, Munck JM, Motley AM, Hettema EH. 2013. Intra-ER sorting of the peroxisomal membrane protein Pex3 relies on its luminal domain. Biol. Open 2:829–37 [Google Scholar]
  26. Favaloro V, Spasic M, Schwappach B, Dobberstein B. 2008. Distinct targeting pathways for the membrane insertion of tail-anchored (TA) proteins. J. Cell Sci. 121:1832–40 [Google Scholar]
  27. Favaloro V, Vilardi F, Schlecht R, Mayer MP, Dobberstein B. 2010. Asna1/TRC40-mediated membrane insertion of tail-anchored proteins. J. Cell Sci. 123:1522–30 [Google Scholar]
  28. Fleischer TC, Weaver CM, McAfee KJ, Jennings JL, Link AJ. 2006. Systematic identification and functional screens of uncharacterized proteins associated with eukaryotic ribosomal complexes. Genes Dev 20:1294–307 [Google Scholar]
  29. Gristick HB, Rao M, Chartron JW, Rome ME, Shan SO, Clemons WM Jr. 2014. Crystal structure of ATP-bound Get3-Get4-Get5 complex reveals regulation of Get3 by Get4. Nat. Struct. Mol. Biol. 21:437–42 [Google Scholar]
  30. Gristick HB, Rome ME, Chartron JW, Rao M, Hess S. et al. 2015. Mechanism of assembly of a substrate transfer complex during tail-anchored protein targeting. J. Biol. Chem. 290:30006–17 [Google Scholar]
  31. Halbach A, Landgraf C, Lorenzen S, Rosenkranz K, Volkmer-Engert R. et al. 2006. Targeting of the tail-anchored peroxisomal membrane proteins PEX26 and PEX15 occurs through C-terminal PEX19-binding sites. J. Cell Sci. 119:2508–17 [Google Scholar]
  32. Hattula K, Hirschberg D, Kalkkinen N, Butcher SJ, Ora A. 2014. Association between the intrinsically disordered protein PEX19 and PEX3. PLOS ONE 9:e103101 [Google Scholar]
  33. Hegde RS, Keenan RJ. 2011. Tail-anchored membrane protein insertion into the endoplasmic reticulum. Nat. Rev. Mol. Cell Biol. 12:787–98 [Google Scholar]
  34. Hessa T, Sharma A, Mariappan M, Eshleman HD, Gutierrez E, Hegde RS. 2011. Protein targeting and degradation are coupled for elimination of mislocalized proteins. Nature 475:394–97 [Google Scholar]
  35. Honsho M, Mitoma JY, Ito A. 1998. Retention of cytochrome b5 in the endoplasmic reticulum is transmembrane and luminal domain-dependent. J. Biol. Chem. 273:20860–66 [Google Scholar]
  36. Horie C, Suzuki H, Sakaguchi M, Mihara K. 2002. Characterization of signal that directs C-tail-anchored proteins to mammalian mitochondrial outer membrane. Mol. Biol. Cell 13:1615–25 [Google Scholar]
  37. Hu J, Li J, Qian X, Denic V, Sha B. 2009. The crystal structures of yeast Get3 suggest a mechanism for tail-anchored protein membrane insertion. PLOS ONE 4:e8061 [Google Scholar]
  38. Hwang YT, Pelitire SM, Henderson MP, Andrews DW, Dyer JM, Mullen RT. 2004. Novel targeting signals mediate the sorting of different isoforms of the tail-anchored membrane protein cytochrome b5 to either endoplasmic reticulum or mitochondria. Plant Cell 16:3002–19 [Google Scholar]
  39. Jonikas MC, Collins SR, Denic V, Oh E, Quan EM. et al. 2009. Comprehensive characterization of genes required for protein folding in the endoplasmic reticulum. Science 323:1693–97 [Google Scholar]
  40. Kemper C, Habib SJ, Engl G, Heckmeyer P, Dimmer KS, Rapaport D. 2008. Integration of tail-anchored proteins into the mitochondrial outer membrane does not require any known import components. J. Cell Sci. 121:1990–98 [Google Scholar]
  41. Kubota K, Yamagata A, Sato Y, Goto-Ito S, Fukai S. 2012. Get1 stabilizes an open dimer conformation of Get3 ATPase by binding two distinct interfaces. J. Mol. Biol. 422:366–75 [Google Scholar]
  42. Kuroda R, Ikenoue T, Honsho M, Tsujimoto S, Mitoma JY, Ito A. 1998. Charged amino acids at the carboxyl-terminal portions determine the intracellular locations of two isoforms of cytochrome b5. J. Biol. Chem. 273:31097–102 [Google Scholar]
  43. Kutay U, Ahnert-Hilger G, Hartmann E, Wiedenmann B, Rapoport TA. 1995. Transport route for synaptobrevin via a novel pathway of insertion into the endoplasmic reticulum membrane. EMBO J 14:217–23 [Google Scholar]
  44. Kutay U, Hartmann E, Rapoport TA. 1993. A class of membrane proteins with a C-terminal anchor. Trends Cell Biol 3:72–75 [Google Scholar]
  45. Lam SK, Yoda N, Schekman R. 2010. A vesicle carrier that mediates peroxisome protein traffic from the endoplasmic reticulum. PNAS 107:21523–28 [Google Scholar]
  46. Lee J, Kim DH, Hwang I. 2014. Specific targeting of proteins to outer envelope membranes of endosymbiotic organelles, chloroplasts, and mitochondria. Front. Plant Sci. 5:173 [Google Scholar]
  47. Leznicki P, High S. 2012. SGTA antagonizes BAG6-mediated protein triage. PNAS 109:19214–19 [Google Scholar]
  48. Leznicki P, Korac-Prlic J, Kliza K, Husnjak K, Nyathi Y. et al. 2015. Binding of SGTA to Rpn13 selectively modulates protein quality control. J. Cell Sci. 128:3187–96 [Google Scholar]
  49. Leznicki P, Roebuck QP, Wunderley L, Clancy A, Krysztofinska EM. et al. 2013. The association of BAG6 with SGTA and tail-anchored proteins. PLOS ONE 8:e59590 [Google Scholar]
  50. Liou ST, Cheng MY, Wang C. 2007. SGT2 and MDY2 interact with molecular chaperone YDJ1 in Saccharomyces cerevisiae. Cell Stress Chaperones 12:59–70 [Google Scholar]
  51. Lisenbee CS, Heinze M, Trelease RN. 2003. Peroxisomal ascorbate peroxidase resides within a subdomain of rough endoplasmic reticulum in wild-type Arabidopsis cells. Plant Physiol 132:870–82 [Google Scholar]
  52. Mariappan M, Li X, Stefanovic S, Sharma A, Mateja A. et al. 2010. A ribosome-associating factor chaperones tail-anchored membrane proteins. Nature 466:1120–24 [Google Scholar]
  53. Mariappan M, Mateja A, Dobosz M, Bove E, Hegde RS, Keenan RJ. 2011. The mechanism of membrane-associated steps in tail-anchored protein insertion. Nature 477:61–66 [Google Scholar]
  54. Marty NJ, Teresinski HJ, Hwang YT, Clendening EA, Gidda SK. et al. 2014. New insights into the targeting of a subset of tail-anchored proteins to the outer mitochondrial membrane. Front. Plant Sci. 5:426 [Google Scholar]
  55. Masaki R, Kameyama K, Yamamoto A. 2003. Post-translational targeting of a tail-anchored green fluorescent protein to the endolpasmic reticulum. J. Biochem. 134:415–26 [Google Scholar]
  56. Mateja A, Paduch M, Chang HY, Szydlowska A, Kossiakoff AA. et al. 2015. Protein targeting. Structure of the Get3 targeting factor in complex with its membrane protein cargo. Science 347:1152–55 [Google Scholar]
  57. Mateja A, Szlachcic A, Downing ME, Dobosz M, Mariappan M. et al. 2009. The structural basis of tail-anchored membrane protein recognition by Get3. Nature 461:361–66 [Google Scholar]
  58. Mock J-Y, Chartron JW, Zaslaver MA, Xu Y, Ye Y, Clemons WM. 2015. Bag6 complex contains a minimal tail-anchor–targeting module and a mock BAG domain. PNAS 112:106–11 [Google Scholar]
  59. Mullen RT, Trelease RN. 2000. The sorting signals for peroxisomal membrane-bound ascorbate peroxidase are within its C-terminal tail. J. Biol. Chem. 275:16337–44 [Google Scholar]
  60. Okreglak V, Walter P. 2014. The conserved AAA-ATPase Msp1 confers organelle specificity to tail-anchored proteins. PNAS 111:8019–24 [Google Scholar]
  61. Pedrazzini E, Villa A, Borgese N. 1996. A mutant cytochrome b5 with a lengthened membrane anchor escapes from the endoplasmic reticulum and reaches the plasma membrane. PNAS 93:4207–12 [Google Scholar]
  62. Rabu C, Wipf P, Brodsky JL, High S. 2008. A precursor-specific role for Hsp40/Hsc70 during tail-anchored protein integration at the endoplasmic reticulum. J. Biol. Chem. 283:27504–13 [Google Scholar]
  63. Rao M, Okreglak V, Chio US, Cho H, Walter P, Shan SO. 2016. Multiple selection filters ensure accurate tail-anchored membrane protein targeting. eLife 5:e21301 [Google Scholar]
  64. Rapoport TA. 2007. Protein translocation across the eukaryotic endoplasmic reticulum and bacterial plasma membranes. Nature 450:663–69 [Google Scholar]
  65. Roberts JD, Thapaliya A, Martinez-Lumbreras S, Krysztofinska EM, Isaacson RL. 2015. Structural and functional insights into small, glutamine-rich, tetratricopeptide repeat protein alpha. Front. Mol. Biosci. 2:71 [Google Scholar]
  66. Rodnina MV, Wintermeyer W. 2001. Ribosome fidelity: tRNA discrimination, proofreading and induced fit. Trends Biochem. Sci. 26:124–30 [Google Scholar]
  67. Rodrigo-Brenni MC, Gutierrez E, Hegde RS. 2014. Cytosolic quality control of mislocalized proteins requires RNF126 recruitment to Bag6. Mol. Cell 55:227–37 [Google Scholar]
  68. Rome ME, Chio US, Rao M, Gristick H, Shan SO. 2014. Differential gradients of interaction affinities drive efficient targeting and recycling in the GET pathway. PNAS 111:E4929–4935 [Google Scholar]
  69. Rome ME, Rao M, Clemons WM, Shan SO. 2013. Precise timing of ATPase activation drives targeting of tail-anchored proteins. PNAS 110:7666–71 [Google Scholar]
  70. Ronchi P, Colombo S, Francolini M, Borgese N. 2008. Transmembrane domain–dependent partitioning of membrane proteins within the endoplasmic reticulum. J. Cell Biol. 181:105–18 [Google Scholar]
  71. Ruberti C, Costa A, Pedrazzini E, Lo Schiavo F, Zottini M. 2014. FISSION1A, an Arabidopsis tail-anchored protein, is localized to three subcellular compartments. Mol. Plant 7:1393–96 [Google Scholar]
  72. Sakamoto Y, Miura M, Takeuchi F, Park SY, Tsubaki M. 2012. Interaction of modified tail-anchored proteins with liposomes: effect of extensions of hydrophilic segment at the COOH-terminus of holo-cytochromes b5. J. Biosci. Bioeng. 113:322–31 [Google Scholar]
  73. Sato Y, Shibata H, Nakatsu T, Nakano H, Kashiwayama Y. et al. 2010. Structural basis for docking of peroxisomal membrane protein carrier Pex19p onto its receptor Pex3p. EMBO J 29:4083–93 [Google Scholar]
  74. Scheufler C, Brinker A, Bourenkov G, Pegoraro S, Moroder L. et al. 2000. Structure of TPR domain-peptide complexes: critical elements in the assembly of the Hsp70-Hsp90 multichaperone machine. Cell 101:199–210 [Google Scholar]
  75. Schmidt F, Treiber N, Zocher G, Bjelic S, Steinmetz MO. et al. 2010. Insights into peroxisome function from the structure of PEX3 in complex with a soluble fragment of PEX19. J. Biol. Chem. 285:25410–17 [Google Scholar]
  76. Schueller N, Holton SJ, Fodor K, Milewski M, Konarev P. et al. 2010. The peroxisomal receptor Pex19p forms a helical mPTS recognition domain. EMBO J 29:2491–500 [Google Scholar]
  77. Schuldiner M, Collins R, Thompson NJ, Denic V, Bhamidipati A. et al. 2005. Exploration of the function and organization of the yeast early secretory pathway through an epistatic miniarray profile. Cell 123:507–19 [Google Scholar]
  78. Schuldiner M, Metz J, Schmid V, Denic V, Rakwalska M. et al. 2008. The GET complex mediates insertion of tail-anchored proteins into the ER membrane. Cell 134:634–45 [Google Scholar]
  79. Setoguchi K, Otera H, Mihara K. 2006. Cytosolic factor– and TOM-independent import of C-tail–anchored mitochondrial outer membrane proteins. EMBO J 25:5635–47 [Google Scholar]
  80. Shao S, Rodrigo-Brenni MC, Kivlen MH, Hegde RS. 2017. Mechanistic basis for a molecular triage reaction. Science 355:298–302 [Google Scholar]
  81. Simon AC, Simpson PJ, Goldstone RM, Krysztofinska EM, Murray JW. et al. 2013. Structure of the Sgt2/Get5 complex provides insights into GET-mediated targeting of tail-anchored membrane proteins. PNAS 110:1327–32 [Google Scholar]
  82. Smith JJ, Aitchison JD. 2013. Peroxisomes take shape. Nat. Rev. Mol. Cell Biol. 14:803–17 [Google Scholar]
  83. Stefanovic S, Hegde RS. 2007. Identification of a targeting factor for posttranslational membrane protein insertion into the ER. Cell 128:1147–59 [Google Scholar]
  84. Stefer S, Reitz S, Wang F, Wild K, Pang YY. et al. 2011. Structural basis for tail-anchored membrane protein biogenesis by the Get3-receptor complex. Science 333:758–62 [Google Scholar]
  85. Suloway CJ, Chartron JW, Zaslaver M, Clemons WM Jr. 2009. Model for eukaryotic tail-anchored protein binding based on the structure of Get3. PNAS 106:14849–54 [Google Scholar]
  86. Thapaliya A, Nyathi Y, Martinez-Lumbreras S, Krysztofinska EM, Evans NJ. et al. 2016. SGTA interacts with the proteasomal ubiquitin receptor Rpn13 via a carboxylate clamp mechanism. Sci. Rep. 6:36622 [Google Scholar]
  87. Tung JY, Li YC, Lin TW, Hsiao CD. 2013. Structure of the Sgt2 dimerization domain complexed with the Get5 UBL domain involved in the targeting of tail-anchored membrane proteins to the endoplasmic reticulum. Acta Crystallogr. D Biol. Crystallogr. 69:2081–90 [Google Scholar]
  88. van der Zand A, Braakman I, Tabak HF. 2010. Peroxisomal membrane proteins insert into the endoplasmic reticulum. Mol. Biol. Cell 21:2057–65 [Google Scholar]
  89. Vilardi F, Lorenz H, Dobberstein B. 2011. WRB is the receptor for TRC40/Asna1-mediated insertion of tail-anchored proteins into the ER membrane. J. Cell Sci. 124:1301–7 [Google Scholar]
  90. Vilardi F, Stephan M, Clancy A, Janshoff A, Schwappach B. 2014. WRB and CAML are necessary and sufficient to mediate tail-anchored protein targeting to the ER membrane. PLOS ONE 9:e85033 [Google Scholar]
  91. Wang F, Brown EC, Mak G, Zhuang J, Denic V. 2010. A chaperone cascade sorts proteins for posttranslational membrane insertion into the endoplasmic reticulum. Mol. Cell 40:159–71 [Google Scholar]
  92. Wang F, Chan C, Weir NR, Denic V. 2014. The Get1/2 transmembrane complex is an endoplasmic-reticulum membrane protein insertase. Nature 512:441–44 [Google Scholar]
  93. Wang F, Whynot A, Tung M, Denic V. 2011. The mechanism of tail-anchored protein insertion into the ER membrane. Mol. Cell 43:738–50 [Google Scholar]
  94. Wang Q, Liu Y, Soetandyo N, Baek K, Hegde R, Ye Y. 2011. A ubiquitin ligase–associated chaperone holdase maintains polypeptides in soluble states for proteasome degradation. Mol. Cell 42:758–70 [Google Scholar]
  95. Wereszczynski J, McCammon JA. 2012. Nucleotide-dependent mechanism of Get3 as elucidated from free energy calculations. PNAS 109:7759–64 [Google Scholar]
  96. Wunderley L, Leznicki P, Payapilly A, High S. 2014. SGTA regulates the cytosolic quality control of hydrophobic substrates. J. Cell Sci. 127:4728–39 [Google Scholar]
  97. Xu Y, Cai M, Yang Y, Huang L, Ye Y. 2012. SGTA recognizes a noncanonical ubiquitin-like domain in the Bag6-Ubl4A-Trc35 complex to promote endoplasmic reticulum–associated degradation. Cell Rep 2:1633–44 [Google Scholar]
  98. Yagita Y, Hiromasa T, Fujiki Y. 2013. Tail-anchored PEX26 targets peroxisomes via a PEX19-dependent and TRC40-independent class I pathway. J. Cell Biol. 200:651–66 [Google Scholar]
  99. Yamamoto Y, Sakisaka T. 2012. Molecular machinery for insertion of tail-anchored membrane proteins into the endoplasmic reticulum membrane in mammalian cells. Mol. Cell 48:387–97 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error