1932

Abstract

Dorsal closure is a key process during morphogenesis that models cell sheet movements in chordates, including neural tube closure, palate formation, and wound healing. Closure occurs midway through embryogenesis and entails circumferential elongation of lateral epidermal cell sheets that close a dorsal hole filled with amnioserosa cells. Signaling pathways regulate the function of cellular structures and processes, including Actomyosin and microtubule cytoskeletons, cell-cell/cell-matrix adhesion complexes, and endocytosis/vesicle trafficking. These orchestrate complex shape changes and movements that entail interactions between five distinct cell types. Genetic and laser perturbation studies establish that closure is robust, resilient, and the consequence of redundancy that contributes to four distinct biophysical processes: contraction of the amnioserosa, contraction of supracellular Actomyosin cables, elongation (stretching?) of the lateral epidermis, and zipping together of two converging cell sheets. What triggers closure and what the emergent properties are that give rise to its extraordinary resilience and fidelity remain key, extant questions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cellbio-111315-125357
2017-10-06
2024-10-09
Loading full text...

Full text loading...

/deliver/fulltext/cellbio/33/1/annurev-cellbio-111315-125357.html?itemId=/content/journals/10.1146/annurev-cellbio-111315-125357&mimeType=html&fmt=ahah

Literature Cited

  1. Adachi-Yamada T, Fujimura-Kamada K, Nishida Y, Matsumoto K. 1999. Distortion of proximodistal information causes JNK-dependent apoptosis in Drosophila wing. Nature 400:166–69 [Google Scholar]
  2. Almeida L, Bagnerini P, Habbal A, Noselli S, Serman F. 2011. A mathematical model for dorsal closure. J. Theor. Biol. 268:105–19 [Google Scholar]
  3. Attrill H, Falls K, Goodman JL, Millburn GH, Antonazzo G. et al. 2016. FlyBase: establishing a Gene Group resource for Drosophila melanogaster. Nucleic Acids Res 44:D786–92 [Google Scholar]
  4. Azevedo D, Antunes M, Prag S, Ma X, Hacker U. et al. 2011. DRhoGEF2 regulates cellular tension and cell pulsations in the Amnioserosa during Drosophila dorsal closure. PLOS ONE 6:e23964 [Google Scholar]
  5. Bahri S, Wang S, Conder R, Choy J, Vlachos S. et al. 2010. The leading edge during dorsal closure as a model for epithelial plasticity: Pak is required for recruitment of the Scribble complex and septate junction formation. Development 137:2023–32 [Google Scholar]
  6. Barbier de Reuille P, Routier-Kierzkowska AL, Kierzkowski D, Bassel GW, Schupbach T. et al. 2015. MorphoGraphX: a platform for quantifying morphogenesis in 4D. eLife 4:05864 [Google Scholar]
  7. Begnaud S, Chen T, Delacour D, Mege RM, Ladoux B. 2016. Mechanics of epithelial tissues during gap closure. Curr. Opin. Cell Biol. 42:52–62 [Google Scholar]
  8. Beira JV, Springhorn A, Gunther S, Hufnagel L, Pyrowolakis G, Vincent JP. 2014. The Dpp/TGFβ-dependent corepressor Schnurri protects epithelial cells from JNK-induced apoptosis in Drosophila embryos. Dev. Cell 31:240–47 [Google Scholar]
  9. Belacortu Y, Paricio N. 2011. Drosophila as a model of wound healing and tissue regeneration in vertebrates. Dev. Dyn. 240:2379–404 [Google Scholar]
  10. Bhuin T, Roy HK. 2012. Rab11 is required for maintenance of cell shape via βPS integrin mediated cell adhesion in Drosophila. Int. J. Mol. Cell. Med. 1:185–90 [Google Scholar]
  11. Blanchard GB, Kabla A, Schultz NL, Butler LC, Sanson B. et al. 2009. Tissue tectonics: morphogenetic strain rates, cell shape change and intercalation. Nat. Methods 6:458–64 [Google Scholar]
  12. Blanchard GB, Murugesu S, Adams RJ, Martinez-Arias A, Gorfinkiel N. 2010. Cytoskeletal dynamics and supracellular organisation of cell shape fluctuations during dorsal closure. Development 137:2743–52 [Google Scholar]
  13. Cai D, Dai W, Prasad M, Luo J, Gov NS, Montell DJ. 2016. Modeling and analysis of collective cell migration in an in vivo three-dimensional environment. PNAS 113:E2134–41 [Google Scholar]
  14. Campos I, Geiger JA, Santos AC, Carlos V, Jacinto A. 2010. Genetic screen in Drosophila melanogaster uncovers a novel set of genes required for embryonic epithelial repair. Genetics 184:129–40 [Google Scholar]
  15. Campos-Ortega JA, Hartenstein V. 1997. The Embryonic Development of Drosophila melanogaster New York: Springer [Google Scholar]
  16. Caussinus E, Kanca O, Affolter M. 2012. Fluorescent fusion protein knockout mediated by anti-GFP nanobody. Nat. Struct. Mol. Biol. 19:117–21 [Google Scholar]
  17. Chen BC, Legant WR, Wang K, Shao L, Milkie DE. et al. 2014. Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution. Science 346:1257998 [Google Scholar]
  18. Christiaen L, Davidson B, Kawashima T, Powell W, Nolla H. et al. 2008. The transcription/migration interface in heart precursors of Ciona intestinalis. Science 320:1349–52 [Google Scholar]
  19. Coravos JS, Mason FM, Martin AC. 2017. Actomyosin pulsing in tissue integrity maintenance during morphogenesis. Trends Cell Biol 27:276–83 [Google Scholar]
  20. Cordeiro JV, Jacinto A. 2013. The role of transcription-independent damage signals in the initiation of epithelial wound healing. Nat. Rev. Mol. Cell Biol. 14:249–62 [Google Scholar]
  21. David DJ, Tishkina A, Harris TJ. 2010. The PAR complex regulates pulsed actomyosin contractions during amnioserosa apical constriction in Drosophila. Development 137:1645–55 [Google Scholar]
  22. Dierkes K, Sumi A, Solon J, Salbreux G. 2014. Spontaneous oscillations of elastic contractile materials with turnover. Phys. Rev. Lett. 113:148102 [Google Scholar]
  23. Ducuing A, Keeley C, Mollereau B, Vincent S. 2015. A DPP-mediated feed-forward loop canalizes morphogenesis during Drosophila dorsal closure. J. Cell Biol. 208:239–48 [Google Scholar]
  24. Ducuing A, Vincent S. 2016. The actin cable is dispensable in directing dorsal closure dynamics but neutralizes mechanical stress to prevent scarring in the Drosophila embryo. Nat. Cell Biol. 18:1149–60 [Google Scholar]
  25. Duque J, Gorfinkiel N. 2016. Integration of actomyosin contractility with cell-cell adhesion during dorsal closure. Development 143:4676–86 [Google Scholar]
  26. Edwards KA, Chang XJ, Kiehart DP. 1995. Essential light chain of Drosophila nonmuscle myosion II. J. Musc. Res. Cell Motil. 16:491–98 [Google Scholar]
  27. Edwards KA, Demsky M, Montague RA, Weymouth N, Kiehart DP. 1997. GFP-moesin illuminates actin cytoskeleton dynamics in living tissue and demonstrates cell shape changes during morphogenesis in Drosophila. Dev. Biol. 191:103–17 [Google Scholar]
  28. Eltsov M, Dube N, Yu Z, Pasakarnis L, Haselmann-Weiss U. et al. 2015. Quantitative analysis of cytoskeletal reorganization during epithelial tissue sealing by large-volume electron tomography. Nat. Cell Biol. 17:605–14 [Google Scholar]
  29. Enya S, Ameku T, Igarashi F, Iga M, Kataoka H. et al. 2014. A Halloween gene noppera-bo encodes a glutathione S-transferase essential for ecdysteroid biosynthesis via regulating the behaviour of cholesterol in Drosophila. Sci. Rep. 4:6586 [Google Scholar]
  30. Fernandez BG, Arias AM, Jacinto A. 2007. Dpp signalling orchestrates dorsal closure by regulating cell shape changes both in the amnioserosa and in the epidermis. Mech. Dev. 124:884–97 [Google Scholar]
  31. Fischer SC, Blanchard GB, Duque J, Adams RJ, Arias AM. et al. 2014. Contractile and mechanical properties of epithelia with perturbed actomyosin dynamics. PLOS ONE 9:e95695 [Google Scholar]
  32. Flores-Benitez D, Knust E. 2015. Crumbs is an essential regulator of cytoskeletal dynamics and cell-cell adhesion during dorsal closure in Drosophila. eLife 4:e07398 [Google Scholar]
  33. Foe VE. 1989. Mitotic domains reveal early commitment of cells in Drosophila embryos. Development 107:1–22 [Google Scholar]
  34. Frank LH, Rushlow C. 1996. A group of genes required for maintenance of the amnioserosa tissue in Drosophila. Development 122:1343–52 [Google Scholar]
  35. Franke JD, Montague RA, Kiehart DP. 2005. Nonmuscle myosin II generates forces that transmit tension and drive contraction in multiple tissues during dorsal closure. Curr. Biol. 15:2208–21 [Google Scholar]
  36. Fyrberg EA, Mahaffey JW, Bond BJ, Davidson N. 1983. Transcripts of the six Drosophila actin genes accumulate in a stage- and tissue-specific manner. Cell 33:115–123 [Google Scholar]
  37. Garlena RA, Lennox AL, Baker LR, Parsons TE, Weinberg SM, Stronach BE. 2015. Pvr receptor tyrosine kinase promotes tissue closure by coordinating corpse removal and epidermal zippering. Development 142:3403–15 [Google Scholar]
  38. Gates J, Mahaffey JP, Rogers SL, Emerson M, Rogers EM. et al. 2007. Enabled plays key roles in embryonic epithelial morphogenesis in Drosophila. Development 134:2027–39 [Google Scholar]
  39. Gettings M, Noselli S. 2011. Mixer cell formation during dorsal closure: a new developmental model of JNK-dependent natural cell reprogramming in Drosophila. Fly 5:327–32 [Google Scholar]
  40. Gettings M, Serman F, Rousset R, Bagnerini P, Almeida L, Noselli S. 2010. JNK signalling controls remodelling of the segment boundary through cell reprogramming during Drosophila morphogenesis. PLOS Biol 8:e1000390 [Google Scholar]
  41. Gilbert LI. 2004. Halloween genes encode P450 enzymes that mediate steroid hormone biosynthesis in Drosophila melanogaster. Mol. Cell. Endocrinol. 215:1–10 [Google Scholar]
  42. Glise B, Bourbon H, Noselli S. 1995. hemipterous encodes a novel Drosophila MAP kinase kinase, required for epithelial cell sheet movement. Cell 83:451–61 [Google Scholar]
  43. Glise B, Noselli S. 1997. Coupling of Jun amino-terminal kinase and Decapentaplegic signaling pathways in Drosophila morphogenesis. Genes Dev 11:1738–47 [Google Scholar]
  44. Goodwin K, Ellis SJ, Lostchuck E, Zulueta-Coarasa T, Fernandez-Gonzalez R, Tanentzapf G. 2016. Basal cell–extracellular matrix adhesion regulates force transmission during tissue morphogenesis. Dev. Cell 39:611–25 [Google Scholar]
  45. Goodwin K, Lostchuck EE, Cramb KM, Zulueta-Coarasa T, Fernandez-Gonzalez R, Tanentzapf G. 2017. Cell-cell and cell-ECM adhesions cooperate to organize actomyosin networks and maintain force transmission during dorsal closure. Mol. Biol. Cell 28:1301–10 [Google Scholar]
  46. Gorfinkiel N. 2016. From actomyosin oscillations to tissue-level deformations. Dev. Dyn. 245:268–75 [Google Scholar]
  47. Gorfinkiel N, Blanchard GB. 2011. Dynamics of actomyosin contractile activity during epithelial morphogenesis. Curr. Opin. Cell Biol. 23:531–39 [Google Scholar]
  48. Gorfinkiel N, Blanchard GB, Adams RJ, Martinez Arias A. 2009. Mechanical control of global cell behaviour during dorsal closure in Drosophila. Development 136:1889–98 [Google Scholar]
  49. Gorfinkiel N, Martinez-Arias A. 2007. Requirements for adherens junction components in the interaction between epithelial tissues during dorsal closure in Drosophila. J. Cell Sci. 120:3289–98 [Google Scholar]
  50. Gorfinkiel N, Schamberg S, Blanchard GB. 2011. Integrative approaches to morphogenesis: lessons from dorsal closure. Genesis 49:522–33 [Google Scholar]
  51. Grima DP, Sullivan M, Zabolotskaya MV, Browne C, Seago J. et al. 2008. The 5′-3′ exoribonuclease pacman is required for epithelial sheet sealing in Drosophila and genetically interacts with the phosphatase puckered. Biol. Cell 100:687–701 [Google Scholar]
  52. Hall S, Ward RE IV. 2016. Septate junction proteins play essential roles in morphogenesis throughout embryonic development in Drosophila. G3 6:2375–84 [Google Scholar]
  53. Hara Y, Shagirov M, Toyama Y. 2016. Cell boundary elongation by non-autonomous contractility in cell oscillation. Curr. Biol. 26:2388–96 [Google Scholar]
  54. Harden N. 2002. Signaling pathways directing the movement and fusion of epithelial sheets: lessons from dorsal closure in Drosophila. Differentiation 70:181–203 [Google Scholar]
  55. Harris TJ. 2012. Adherens junction assembly and function in the Drosophila embryo. Int. Rev. Cell Mol. Biol. 293:45–83 [Google Scholar]
  56. Harris TJ, Sawyer JK, Peifer M. 2009. How the cytoskeleton helps build the embryonic body plan: models of morphogenesis from Drosophila. Curr. Top. Dev. Biol. 89:55–85 [Google Scholar]
  57. Hashimoto H, Robin FB, Sherrard KM, Munro EM. 2015. Sequential contraction and exchange of apical junctions drives zippering and neural tube closure in a simple chordate. Dev. Cell 32:241–55 [Google Scholar]
  58. Hayes P, Solon J. 2017. Drosophila dorsal closure: an orchestra of forces to zip shut the embryo. Mech. Dev. 144:2–10 [Google Scholar]
  59. Heckman CA, 3rd Plummer HK. 2013. Filopodia as sensors. Cell Signal 25:2298–311 [Google Scholar]
  60. Heemskerk I, Streichan SJ. 2015. Tissue cartography: compressing bio-image data by dimensional reduction. Nat. Methods 12:1139–42 [Google Scholar]
  61. Heisenberg CP. 2009. Dorsal closure in Drosophila: Cells cannot get out of the tight spot. BioEssays 31:1284–87 [Google Scholar]
  62. Heisenberg CP, Bellaiche Y. 2013. Forces in tissue morphogenesis and patterning. Cell 153:948–62 [Google Scholar]
  63. Heissler SM, Chinthalapudi K, Sellers JR. 2015. Kinetic characterization of the sole nonmuscle myosin-2 from the model organism Drosophila melanogaster. FASEB J 29:1456–66 [Google Scholar]
  64. Homsy JG, Jasper H, Peralta XG, Wu H, Kiehart DP, Bohmann D. 2005. JNK signaling coordinates integrin and actin functions during Drosophila embryogenesis. Dev. Dyn. 235:427–34 [Google Scholar]
  65. Houssin E, Tepass U, Laprise P. 2015. Girdin-mediated interactions between cadherin and the actin cytoskeleton are required for epithelial morphogenesis in Drosophila. Development 142:1777–84 [Google Scholar]
  66. Huang AJ, Silverstein SC, Malawista SE. 1991. Cryopreserved cytoplasts from human neutrophils migrate across monolayers of human endothelial cells in response to a chemoattractant gradient. J. Leukoc. Biol. 50:624–27 [Google Scholar]
  67. Hunter GL, Crawford JM, Genkins JZ, Kiehart DP. 2014. Ion channels contribute to the regulation of cell sheet forces during Drosophila dorsal closure. Development 141:325–34 [Google Scholar]
  68. Hunter MV, Lee DM, Harris TJ, Fernandez-Gonzalez R. 2015. Polarized E-cadherin endocytosis directs actomyosin remodeling during embryonic wound repair. J. Cell Biol. 210:801–16 [Google Scholar]
  69. Hutson MS, Tokutake Y, Chang MS, Bloor JW, Venakides S. et al. 2003. Forces for morphogenesis investigated with laser microsurgery and quantitative modeling. Science 300:145–49 [Google Scholar]
  70. Igaki T, Pagliarini RA, Xu T. 2006. Loss of cell polarity drives tumor growth and invasion through JNK activation in Drosophila. Curr. Biol. 16:1139–46 [Google Scholar]
  71. Jacinto A, Wood W, Balayo T, Turmaine M, Martinez-Arias A, Martin P. 2000. Dynamic actin-based epithelial adhesion and cell matching during Drosophila dorsal closure. Curr. Biol. 10:1420–26 [Google Scholar]
  72. Jacinto A, Wood W, Woolner S, Hiley C, Turner L. et al. 2002a. Dynamic analysis of actin cable function during Drosophila dorsal closure. Curr. Biol. 12:1245–50 [Google Scholar]
  73. Jacinto A, Woolner S, Martin P. 2002b. Dynamic analysis of dorsal closure in Drosophila: from genetics to cell biology. Dev. Cell 3:9–19 [Google Scholar]
  74. Jankovics F, Brunner D. 2006. Transiently reorganized microtubules are essential for zippering during dorsal closure in Drosophila melanogaster. Dev. Cell 11:375–85 [Google Scholar]
  75. Jankovics F, Henn L, Bujna A, Vilmos P, Kiss N, Erdelyi M. 2011. A functional genomic screen combined with time-lapse microscopy uncovers a novel set of genes involved in dorsal closure of Drosophila embryos. PLOS ONE 6:e22229 [Google Scholar]
  76. Jasper H, Benes V, Schwager C, Sauer S, Clauder-Munster S. et al. 2001. The genomic response of the Drosophila embryo to JNK signaling. Dev. Cell 1:579–86 [Google Scholar]
  77. Jayasinghe AK, Crews SM, Mashburn DN, Hutson MS. 2013. Apical oscillations in amnioserosa cells: basolateral coupling and mechanical autonomy. Biophys. J. 105:255–65 [Google Scholar]
  78. Jodoin JN, Coravos JS, Chanet S, Vasquez CG, Tworoger M. et al. 2015. Stable force balance between epithelial cells arises from F-actin turnover. Dev. Cell 35:685–97 [Google Scholar]
  79. Jordan P, Karess R. 1997. Myosin light chain–activating phosphorylation sites are required for oogenesis in Drosophila. J. Cell Biol. 139:1805–19 [Google Scholar]
  80. Jurado J, de Navascues J, Gorfinkiel N. 2016. α-Catenin stabilises cadherin-catenin complexes and modulates actomyosin dynamics to allow pulsatile apical contraction. J. Cell Sci. 129:4496–508 [Google Scholar]
  81. Jürgens G, Wieschaus E, Nüsslein-Volhard C, Kluding H. 1984. Mutations affecting the pattern of the larval cuticle in Drosophila melanogaster. II. Zygotic loci on the third chromosome. Roux's Arch. Dev. Biol. 193:283–94 [Google Scholar]
  82. Kaltschmidt JA, Lawrence N, Morel V, Balayo T, Fernandez BG. et al. 2002. Planar polarity and actin dynamics in the epidermis of Drosophila. Nat. Cell Biol. 4:937–44 [Google Scholar]
  83. Karess RE, Chang XJ, Edwards KA, Kulkarni S, Aguilera I. et al. 1991. The regulatory light chain of nonmuscle myosin is encoded by spaghetti-squash, a gene required for cytokinesis in Drosophila. Cell 65:1177–89 [Google Scholar]
  84. Keller PJ. 2013. Imaging morphogenesis: technological advances and biological insights. Science 340:1234168 [Google Scholar]
  85. Keller R, Davidson LA, Shook DR. 2003. How we are shaped: the biomechanics of gastrulation. Differentiation 71:171–205 [Google Scholar]
  86. Kiehart DP, Feghali R. 1986. Cytoplasmic myosin from Drosophila melanogaster. J. Cell Biol. 103:1517–25 [Google Scholar]
  87. Kiehart DP, Lutz MS, Chan D, Ketchum AS, Laymon RA. et al. 1989. Identification of the gene for fly non-muscle myosin heavy chain: Drosophila myosin heavy chains are encoded by a gene family. EMBO J 8:913–22 [Google Scholar]
  88. Kiehart DP, Galbraith CG, Edwards KA, Rickoll WL, Montague RA. 2000. Multiple forces contribute to cell sheet morphogenesis for dorsal closure in Drosophila. J. Cell Biol. 149:471–90 [Google Scholar]
  89. Kiehart DP, Tokutake Y, Chang M-S, Hutson MS, Wiemann J. et al. 2006. Ultraviolet laser microbeam for dissection of Drosophila embryos. Cell Biology: A Laboratory Handbook JE Celis 87–103 San Diego, CA: Elsevier Acad. , 3rd ed.. [Google Scholar]
  90. Kong D, Wolf F, Grosshans J. 2017. Forces directing germ-band extension in Drosophila embryos. Mech. Dev. 144:11–22 [Google Scholar]
  91. Koride S, He L, Xiong LP, Lan G, Montell DJ, Sun SX. 2014. Mechanochemical regulation of oscillatory follicle cell dynamics in the developing Drosophila egg chamber. Mol. Biol. Cell 25:3709–16 [Google Scholar]
  92. Kornberg TB, Roy S. 2014. Cytonemes as specialized signaling filopodia. Development 141:729–36 [Google Scholar]
  93. Kushida N, Kabuyama Y, Yamaguchi O, Homma Y. 2001. Essential role for extracellular Ca2+ in JNK activation by mechanical stretch in bladder smooth muscle cells. Am. J. Physiol. Cell Physiol. 281:C1165–72 [Google Scholar]
  94. Lacy ME, Hutson MS. 2016. Amnioserosa development and function in Drosophila embryogenesis: critical mechanical roles for an extraembryonic tissue. Dev. Dyn. 245:558–68 [Google Scholar]
  95. Lada K, Gorfinkiel N, Martinez Arias A. 2012. Interactions between the amnioserosa and the epidermis revealed by the function of the u-shaped gene. Biol. Open 1:353–61 [Google Scholar]
  96. Laplante C, Nilson LA. 2006. Differential expression of the adhesion molecule Echinoid drives epithelial morphogenesis in Drosophila. Development 133:3255–64 [Google Scholar]
  97. Laplante C, Nilson LA. 2011. Asymmetric distribution of Echinoid defines the epidermal leading edge during Drosophila dorsal closure. J. Cell Biol. 192:335–48 [Google Scholar]
  98. Layton AT, Toyama Y, Yang GQ, Edwards GS, Kiehart DP, Venakides S. 2009. Drosophila morphogenesis: tissue force laws and the modeling of dorsal closure. HFSP J 3:441–60 [Google Scholar]
  99. Lennox AL, Stronach B. 2010. POSH misexpression induces caspase-dependent cell death in Drosophila. Dev. Dyn. 239:651–64 [Google Scholar]
  100. Levayer R, Lecuit T. 2013. Oscillation and polarity of E-cadherin asymmetries control actomyosin flow patterns during morphogenesis. Dev. Cell 26:162–75 [Google Scholar]
  101. Lin HP, Chen HM, Wei SY, Chen LY, Chang LH. et al. 2007. Cell adhesion molecule Echinoid associates with unconventional myosin VI/Jaguar motor to regulate cell morphology during dorsal closure in Drosophila. Dev. Biol. 311:423–33 [Google Scholar]
  102. Liu R, Woolner S, Johndrow JE, Metzger D, Flores A, Parkhurst SM. 2008. Sisyphus, the Drosophila myosin XV homolog, traffics within filopodia transporting key sensory and adhesion cargos. Development 135:53–63 [Google Scholar]
  103. Liu SL, Fewkes N, Ricketson D, Penkert RR, Prehoda KE. 2008. Filament-dependent and -independent localization modes of Drosophila non-muscle myosin II. J. Biol. Chem. 283:380–87 [Google Scholar]
  104. Llense F, Martin-Blanco E. 2008. JNK signaling controls border cell cluster integrity and collective cell migration. Curr. Biol. 18:538–44 [Google Scholar]
  105. Lu H, Sokolow A, Kiehart DP, Edwards GS. 2015. Remodeling tissue interfaces and the thermodynamics of zipping during dorsal closure in Drosophila. Biophys. J. 109:2406–17 [Google Scholar]
  106. Lu H, Sokolow A, Kiehart DP, Edwards GS. 2016. Quantifying dorsal closure in three dimensions. Mol. Biol. Cell 27:3948–55 [Google Scholar]
  107. Lynch HE, Crews SM, Rosenthal B, Kim E, Gish R. et al. 2013. Cellular mechanics of germ band retraction in Drosophila. Dev. Biol. 384:205–13 [Google Scholar]
  108. Ma X, Lynch HE, Scully PC, Hutson MS. 2009. Probing embryonic tissue mechanics with laser hole drilling. Phys. Biol. 6:036004 [Google Scholar]
  109. Machado PF, Duque J, Etienne J, Martinez-Arias A, Blanchard GB, Gorfinkiel N. 2015. Emergent material properties of developing epithelial tissues. BMC Biol 13:98 [Google Scholar]
  110. Mallo M, Alonso CR. 2013. The regulation of Hox gene expression during animal development. Development 140:3951–63 [Google Scholar]
  111. Manning G, Krasnow MA. 1993. Development of the Drosophila tracheal system. The Development of Drosophila melanogaster M Bate, A Martinez Arias 609–86 Cold Spring Harbor, NY: Cold Spring Harb. Lab. Press [Google Scholar]
  112. Mansfield SG, al-Shirawi DY, Ketchum AS, Newbern EC, Kiehart DP. 1996. Molecular organization and alternative splicing in zipper, the gene that encodes the. Drosophila non-muscle myosin II heavy chain. J. Mol. Biol. 255:98–109 [Google Scholar]
  113. Martin AC. 2010. Pulsation and stabilization: contractile forces that underlie morphogenesis. Dev. Biol. 341:114–25 [Google Scholar]
  114. Martin AC, Gelbart M, Fernandez-Gonzalez R, Kaschube M, Wieschaus EF. 2010. Integration of contractile forces during tissue invagination. J. Cell Biol. 188:735–49 [Google Scholar]
  115. Martin AC, Goldstein B. 2014. Apical constriction: themes and variations on a cellular mechanism driving morphogenesis. Development 141:1987–98 [Google Scholar]
  116. Martin P, Lewis J. 1992. Actin cables and epidermal movement in embryonic wound healing. Nature 360:179–83 [Google Scholar]
  117. Martin P, Wood W. 2002. Epithelial fusions in the embryo. Curr. Opin. Cell Biol. 14:569–74 [Google Scholar]
  118. Martin-Blanco E, Gampel A, Ring J, Virdee K, Kirov N. et al. 1998. puckered encodes a phosphatase that mediates a feedback loop regulating JNK activity during dorsal closure in Drosophila. Genes Dev. 12:557–70 [Google Scholar]
  119. Mason FM, Martin AC. 2011. Tuning cell shape change with contractile ratchets. Curr. Opin. Genet. Dev. 21:671–79 [Google Scholar]
  120. Mateus AM, Martinez Arias A. 2011. Patterned cell adhesion associated with tissue deformations during dorsal closure in Drosophila. PLOS ONE 6:e27159 [Google Scholar]
  121. McEwen DG, Cox RT, Peifer M. 2000. The canonical Wg and JNK signaling cascades collaborate to promote both dorsal closure and ventral patterning. Development 127:3607–17 [Google Scholar]
  122. McEwen DG, Peifer M. 2000. Wnt signaling: moving in a new direction. Curr. Biol. 10:R562–64 [Google Scholar]
  123. Meghana C, Ramdas N, Hameed FM, Rao M, Shivashankar GV, Narasimha M. 2011. Integrin adhesion drives the emergent polarization of active cytoskeletal stresses to pattern cell delamination. PNAS 108:9107–12 [Google Scholar]
  124. Millard TH, Martin P. 2008. Dynamic analysis of filopodial interactions during the zippering phase of Drosophila dorsal closure. Development 135:621–26 [Google Scholar]
  125. Morel V, Martinez Arias A. 2004. Armadillo/beta-catenin-dependent Wnt signalling is required for the polarisation of epidermal cells during dorsal closure in Drosophila. Development 131:3273–83 [Google Scholar]
  126. Muliyil S, Krishnakumar P, Narasimha M. 2011. Spatial, temporal and molecular hierarchies in the link between death, delamination and dorsal closure. Development 138:3043–54 [Google Scholar]
  127. Muliyil S, Narasimha M. 2014. Mitochondrial ROS regulates cytoskeletal and mitochondrial remodeling to tune cell and tissue dynamics in a model for wound healing. Dev. Cell 28:239–52 [Google Scholar]
  128. Munjal A, Philippe JM, Munro E, Lecuit T. 2015. A self-organized biomechanical network drives shape changes during tissue morphogenesis. Nature 524:351–55 [Google Scholar]
  129. Munoz-Soriano V, Belacortu Y, Paricio N. 2012. Planar cell polarity signaling in collective cell movements during morphogenesis and disease. Curr. Genom. 13:609–22 [Google Scholar]
  130. Narasimha M, Brown NH. 2004. Novel functions for integrins in epithelial morphogenesis. Curr. Biol. 14:381–85 [Google Scholar]
  131. Nowotarski SH, McKeon N, Moser RJ, Peifer M. 2014. The actin regulators Enabled and Diaphanous direct distinct protrusive behaviors in different tissues during Drosophila development. Mol. Biol. Cell 25:3147–65 [Google Scholar]
  132. Nüsslein-Volhard C, Wieschaus E, Kluding H. 1984. Mutations affecting the pattern of the larval cuticle in Drosophila melanogaster. I. Zygotic loci on the second chromosome. Roux's Arch. Dev. Biol. 193:267–82 [Google Scholar]
  133. Oda H, Tsukita S. 2001. Real-time imaging of cell-cell adherens junctions reveals that Drosophila mesoderm invagination begins with two phases of apical constriction of cells. J. Cell Sci. 114:493–501 [Google Scholar]
  134. Pasakarnis L, Frei E, Caussinus E, Affolter M, Brunner D. 2016. Amnioserosa cell constriction but not epidermal actin cable tension autonomously drives dorsal closure. Nat. Cell Biol. 18:1161–72 [Google Scholar]
  135. Peralta XG, Toyama Y, Hutson MS, Montague R, Venakides S. et al. 2007. Upregulation of forces and morphogenic asymmetries in dorsal closure during Drosophila development. Biophys. J. 92:2583–96 [Google Scholar]
  136. Peralta XG, Toyama Y, Kiehart DP, Edwards GS. 2008. Emergent properties during dorsal closure in Drosophila morphogenesis. Phys. Biol. 5:015004 [Google Scholar]
  137. Perrimon N, Desplan C. 1994. Signal transduction in the early Drosophila embryo: when genetics meets biochemistry. Trends Biochem. Sci. 19:509–13 [Google Scholar]
  138. Pickering K, Alves-Silva J, Goberdhan D, Millard TH. 2013. Par3/Bazooka and phosphoinositides regulate actin protrusion formation during Drosophila dorsal closure and wound healing. Development 140:800–9 [Google Scholar]
  139. Pocha SM, Montell DJ. 2014. Cellular and molecular mechanisms of single and collective cell migrations in Drosophila: themes and variations. Annu. Rev. Genet. 48:295–318 [Google Scholar]
  140. Pollard TD, Borisy GG. 2003. Cellular motility driven by assembly and disassembly of actin filaments. Cell 112:453–65 [Google Scholar]
  141. Pope KL, Harris TJ. 2008. Control of cell flattening and junctional remodeling during squamous epithelial morphogenesis in Drosophila. Development 135:2227–38 [Google Scholar]
  142. Ramet M, Lanot R, Zachary D, Manfruelli P. 2002. JNK signaling pathway is required for efficient wound healing in Drosophila. Dev. Biol. 241:145–56 [Google Scholar]
  143. Rauzi M, Lenne PF, Lecuit T. 2010. Planar polarized actomyosin contractile flows control epithelial junction remodelling. Nature 468:1110–14 [Google Scholar]
  144. Rauzi M, Verant P, Lecuit T, Lenne PF. 2008. Nature and anisotropy of cortical forces orienting Drosophila tissue morphogenesis. Nat. Cell Biol. 10:1401–10 [Google Scholar]
  145. Ray HJ, Niswander L. 2012. Mechanisms of tissue fusion during development. Development 139:1701–11 [Google Scholar]
  146. Razzell W, Wood W, Martin P. 2014. Recapitulation of morphogenetic cell shape changes enables wound re-epithelialisation. Development 141:1814–20 [Google Scholar]
  147. Reed BH, Wilk R, Lipshitz HD. 2001. Downregulation of Jun kinase signaling in the amnioserosa is essential for dorsal closure of the Drosophila embryo. Curr. Biol. 11:1098–108 [Google Scholar]
  148. Reed BH, Wilk R, Schock F, Lipshitz HD. 2004. Integrin-dependent apposition of Drosophila extraembryonic membranes promotes morphogenesis and prevents anoikis. Curr. Biol. 14:372–80 [Google Scholar]
  149. Ricketson D, Johnston CA, Prehoda KE. 2010. Multiple tail domain interactions stabilize nonmuscle myosin II bipolar filaments. PNAS 107:20964–69 [Google Scholar]
  150. Rios-Barrera LD, Gutierrez-Perez I, Dominguez M, Riesgo-Escovar JR. 2015. acal is a long non-coding RNA in JNK signaling in epithelial shape changes during. Drosophila dorsal closure. PLOS Genet 11:e1004927 [Google Scholar]
  151. Rios-Barrera LD, Riesgo-Escovar JR. 2013. Regulating cell morphogenesis: the Drosophila Jun N-terminal kinase pathway. Genesis 51:147–62 [Google Scholar]
  152. Rodriguez-Diaz A, Toyama Y, Abravanel DL, Wiemann JM, Wells AR. et al. 2008. Actomyosin purse strings: renewable resources that make morphogenesis robust and resilient. HFSP J 2:220–37 [Google Scholar]
  153. Roeth JF, Sawyer JK, Wilner DA, Peifer M. 2009. Rab11 helps maintain apical crumbs and adherens junctions in the Drosophila embryonic ectoderm. PLOS ONE 4:e7634 [Google Scholar]
  154. Roh-Johnson M, Shemer G, Higgins CD, McClellan JH, Werts AD. et al. 2012. Triggering a cell shape change by exploiting preexisting actomyosin contractions. Science 335:1232–35 [Google Scholar]
  155. Roper K. 2015. Integration of cell-cell adhesion and contractile actomyosin activity during morphogenesis. Curr. Top. Dev. Biol. 112:103–27 [Google Scholar]
  156. Rousset R, Bono-Lauriol S, Gettings M, Suzanne M, Speder P, Noselli S. 2010. The Drosophila serine protease homologue Scarface regulates JNK signalling in a negative-feedback loop during epithelial morphogenesis. Development 137:2177–86 [Google Scholar]
  157. Rousset R, Carballes F, Parassol N, Schaub S, Cerezo D, Noselli S. 2017. Signalling crosstalk at the leading edge controls tissue closure dynamics in the Drosophila embryo. PLOS Genet 13:e1006640 [Google Scholar]
  158. Roy S, Huang H, Liu S, Kornberg TB. 2014. Cytoneme-mediated contact-dependent transport of the Drosophila decapentaplegic signaling protein. Science 343:1244624 [Google Scholar]
  159. Saias L, Swoger J, D'Angelo A, Hayes P, Colombelli J. et al. 2015. Decrease in cell volume generates contractile forces driving dorsal closure. Dev. Cell 33:611–21 [Google Scholar]
  160. Samarage C, White MD, Alvarez YD, Fierro-Gonzalez JC, Henon Y. et al. 2015. Cortical tension allocates the first inner cells of the mammalian embryo. Dev. Cell 34:435–47 [Google Scholar]
  161. Saravanan S, Meghana C, Narasimha M. 2013. Local, cell-nonautonomous feedback regulation of myosin dynamics patterns transitions in cell behavior: a role for tension and geometry?. Mol. Biol. Cell 24:2350–61 [Google Scholar]
  162. Schock F, Perrimon N. 2002. Cellular processes associated with germ band retraction in Drosophila. Dev. Biol. 248:29–39 [Google Scholar]
  163. Scita G, Confalonieri S, Lappalainen P, Suetsugu S. 2008. IRSp53: crossing the road of membrane and actin dynamics in the formation of membrane protrusions. Trends Cell Biol 18:52–60 [Google Scholar]
  164. Shen W, Chen X, Cormier O, Cheng DC, Reed B, Harden N. 2013. Modulation of morphogenesis by Egfr during dorsal closure in Drosophila. PLOS ONE 8:e60180 [Google Scholar]
  165. Sokolow A. 2011. Biophysical Investigation of Cell Oscillations and Ingression in Tissue Dynamics Durham, NC: Duke Univ. Press [Google Scholar]
  166. Sokolow A, Toyama Y, Kiehart DP, Edwards GS. 2012. Cell ingression and apical shape oscillations during dorsal closure in Drosophila. Biophys. J. 102:969–79 [Google Scholar]
  167. Solon J, Kaya-Copur A, Colombelli J, Brunner D. 2009. Pulsed forces timed by a ratchet-like mechanism drive directed tissue movement during dorsal closure. Cell 137:1331–42 [Google Scholar]
  168. Sorrosal G, Perez L, Herranz H, Milan M. 2010. Scarface, a secreted serine protease-like protein, regulates polarized localization of laminin A at the basement membrane of the Drosophila embryo. EMBO Rep 11:373–79 [Google Scholar]
  169. Stegmaier J, Amat F, Lemon WC, McDole K, Wan Y. et al. 2016. Real-time three-dimensional cell segmentation in large-scale microscopy data of developing embryos. Dev. Cell 36:225–40 [Google Scholar]
  170. Stevens TL, Rogers EM, Koontz LM, Fox DT, Homem CC. et al. 2008. Using Bcr-Abl to examine mechanisms by which Abl kinase regulates morphogenesis in Drosophila. Mol. Biol. Cell 19:378–93 [Google Scholar]
  171. Takacs Z, Jankovics F, Vilmos P, Lenart P, Roper K, Erdelyi M. 2017. The spectraplakin Short stop is an essential microtubule regulator involved in epithelial closure in Drosophila. J. Cell Sci. 130:712–24 [Google Scholar]
  172. Tateno M, Nishida Y, Adachi-Yamada T. 2000. Regulation of JNK by Src during Drosophila development. Science 287:324–27 [Google Scholar]
  173. Thomas C, Rousset R, Noselli S. 2009. JNK signalling influences intracellular trafficking during Drosophila morphogenesis through regulation of the novel target gene Rab30. Dev. Biol. 331:250–60 [Google Scholar]
  174. Tomer R, Khairy K, Amat F, Keller PJ. 2012. Quantitative high-speed imaging of entire developing embryos with simultaneous multiview light-sheet microscopy. Nat. Methods 9:755–63 [Google Scholar]
  175. Toyama Y, Peralta XG, Wells AR, Kiehart DP, Edwards GS. 2008. Apoptotic force and tissue dynamics during Drosophila embryogenesis. Science 321:1683–86 [Google Scholar]
  176. Turner FR, Mahowald AP. 1979. Scanning electron microscopy of Drosophila melanogaster embryogenesis. Development 68:96–109 [Google Scholar]
  177. VanHook A, Letsou A. 2008. Head involution in Drosophila: genetic and morphogenetic connections to dorsal closure. Dev. Dyn. 237:28–38 [Google Scholar]
  178. Vasquez CG, Heissler SM, Billington N, Sellers JR, Martin AC. 2016. Drosophila non-muscle myosin II motor activity determines the rate of tissue folding. eLife 5:e20828 [Google Scholar]
  179. Wada A, Kato K, Uwo MF, Yonemura S, Hayashi S. 2007. Specialized extraembryonic cells connect embryonic and extraembryonic epidermis in response to Dpp during dorsal closure in Drosophila. Dev. Biol. 301:340–49 [Google Scholar]
  180. Wang Q, Feng JJ, Pismen LM. 2012. A cell-level biomechanical model of Drosophila dorsal closure. Biophys. J. 103:2265–74 [Google Scholar]
  181. Wei Z, Li Y, Ye F, Zhang M. 2015. Structural basis for the phosphorylation-regulated interaction between the cytoplasmic tail of cell polarity protein crumbs and the actin-binding protein moesin. J. Biol. Chem. 290:11384–92 [Google Scholar]
  182. Wells AR, Zou RS, Tulu US, Sokolow AC, Crawford JM. et al. 2014. Complete canthi removal reveals that forces from the amnioserosa alone are sufficient to drive dorsal closure in Drosophila. Mol. Biol. Cell 25:3552–68 [Google Scholar]
  183. West JJ, Harris TJ. 2016. Cadherin trafficking for tissue morphogenesis: control and consequences. Traffic 17:1233–43 [Google Scholar]
  184. Wieschaus E, Nüsslein-Volhard C. 1998. Looking at embryos. Drosophila: A Practical Approach DB Roberts 179–214 New York, NY: IRL Press [Google Scholar]
  185. Wieschaus E, Nüsslein-Volhard C, Jürgens G. 1984. Mutations affecting the pattern of the larval cuticle in Drosophila melanogaster. III. Zygotic loci on the X-chromosome and fourth chromosome. Roux's Arch. Dev. Biol. 193:296–307 [Google Scholar]
  186. Wieschaus E, Sweeton D. 1988. Requirements for X-linked zygotic gene activity during cellularization of early Drosophila embryos. Development 104:483–93 [Google Scholar]
  187. Wood W, Jacinto A, Grose R, Woolner S, Gale J. et al. 2002. Wound healing recapitulates morphogenesis in Drosophila embryos. Nat. Cell Biol. 4:907–12 [Google Scholar]
  188. Woolner S, Jacinto A, Martin P. 2005. The small GTPase Rac plays multiple roles in epithelial sheet fusion—dynamic studies of Drosophila dorsal closure. Dev. Biol. 282:163–73 [Google Scholar]
  189. Young PE, Richman AM, Ketchum AS, Kiehart DP. 1993. Morphogenesis in Drosophila requires nonmuscle myosin heavy chain function. Genes Dev 7:29–41 [Google Scholar]
  190. Yu JC, Fernandez-Gonzalez R. 2017. Quantitative modelling of epithelial morphogenesis: integrating cell mechanics and molecular dynamics. Semin. Cell Dev. Biol. 67:153–60 [Google Scholar]
  191. Zahedi B, Shen W, Xu X, Chen X, Mahey M, Harden N. 2008. Leading edge–secreted Dpp cooperates with ACK-dependent signaling from the amnioserosa to regulate myosin levels during dorsal closure. Dev. Dyn. 237:2936–46 [Google Scholar]
  192. Zhang M, Zhang Y, Xu Z. 2010. POSH is involved in Eiger-Basket (TNF-JNK) signaling and embryogenesis in Drosophila. J. Genet. Genom. 37:605–19 [Google Scholar]
  193. Zou RS, Tomasi C. 2016. Deformable graph model for tracking epithelial cell sheets in fluorescence microscopy. IEEE Trans. Med. Imaging 3571625–35 [Google Scholar]
  194. Zulueta-Coarasa T, Fernandez-Gonzalez R. 2017. Tension (re)builds: biophysical mechanisms of embryonic wound repair. Mech. Dev. 144:43–52 [Google Scholar]
/content/journals/10.1146/annurev-cellbio-111315-125357
Loading
/content/journals/10.1146/annurev-cellbio-111315-125357
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error