1932

Abstract

During my graduate work with Keith Porter, I became fascinated by the mitotic spindle, an interest that has motivated much of my scientific work ever since. I began spindle studies by using electron microscopes, instruments that have made significant contributions to our understanding of spindle organization. Such instruments have helped to elucidate the distributions of spindle microtubules, the interactions among them, their molecular polarity, and their associations with both kinetochores and spindle poles. Our lab has also investigated some processes of spindle physiology: microtubule dynamics, the actions of microtubule-associated proteins (including motor enzymes), the character of forces generated by specific spindle components, and factors that control mitotic progression. Here, I give a personal perspective on some of this intellectual history and on what recent discoveries imply about the mechanisms of chromosome motion.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cellbio-100616-060827
2017-10-06
2024-10-09
Loading full text...

Full text loading...

/deliver/fulltext/cellbio/33/1/annurev-cellbio-100616-060827.html?itemId=/content/journals/10.1146/annurev-cellbio-100616-060827&mimeType=html&fmt=ahah

Literature Cited

  1. Aist JR, Berns MW. 1981. Mechanics of chromosome separation during mitosis in Fusarium (Fungi imperfecti): new evidence from ultrastructural and laser microbeam experiments. J. Cell Biol. 91:2 Pt 1446–58 [Google Scholar]
  2. Aist JR, Liang H, Berns MW. 1993. Astral and spindle forces in PtK2 cells during anaphase B: a laser microbeam study. J. Cell Sci. 104:Pt 41207–16 [Google Scholar]
  3. Akiyoshi B, Sarangapani KK, Powers AF, Nelson CR, Reichow SL. et al. 2010. Tension directly stabilizes reconstituted kinetochore-microtubule attachments. Nature 468:7323576–79 [Google Scholar]
  4. Asbury CL. 2017. Anaphase A: Disassembling microtubules move chromosomes toward spindle poles. Biology 6:15 https://doi.org/10.3390/biology6010015 [Crossref] [Google Scholar]
  5. Asbury CL, Gestaut DR, Powers AF, Franck AD, Davis TN. 2006. The Dam1 kinetochore complex harnesses microtubule dynamics to produce force and movement. PNAS 103:269873–78 [Google Scholar]
  6. Ault JG, Nicklas RB. 1989. Tension, microtubule rearrangements, and the proper distribution of chromosomes in mitosis. Chromosoma 98:133–39 [Google Scholar]
  7. Belar K. 1929. Beiträge zur Kausalanalyse der Mitose. Roux Arch. Entw. Mech. Org. 118:359–484 [Google Scholar]
  8. Bernhard W, De Harven E. 1956. Electron microscopic study of the ultrastructure of centrioles in vertebra. Z. Zellforsch. Mikrosk. Anat. 45:3378–98 [Google Scholar]
  9. Bomont P, Maddox P, Shah JV, Desai AB, Cleveland DW. 2005. Unstable microtubule capture at kinetochores depleted of the centromere-associated protein CENP-F. EMBO J 24:223927–39 [Google Scholar]
  10. Brinkley BR, Stubblefield E. 1966. The fine structure of the kinetochore of a mammalian cell in vitro. Chromosoma 19:128–43 [Google Scholar]
  11. Cande WZ, McDonald KL. 1985. In vitro reactivation of anaphase spindle elongation using isolated diatom spindles. Nature 316:6024168–70 [Google Scholar]
  12. Cheeseman I. 2014. The kinetochore. Cold Spring Harb. Perspect. Biol. 6:7a015826 [Google Scholar]
  13. Chen W, Zhang D. 2004. Kinetochore fibre dynamics outside the context of the spindle during anaphase. Nat. Cell Biol. 6:3227–31 [Google Scholar]
  14. Coue M, Lombillo VA, McIntosh JR. 1991. Microtubule depolymerization promotes particle and chromosome movement in vitro. J. Cell Biol. 112:61165–75 [Google Scholar]
  15. Dhonukshe P, Vischer N, Gadella TW. 2006. Contribution of microtubule growth polarity and flux to spindle assembly and functioning in plant cells. J. Cell Sci. 119:3193–205 [Google Scholar]
  16. Dumont S, Mitchison T. 2012. Mechanical forces in mitosis. Comprehensive Biophysics 4 EH Egelman 298–320 Oxford, UK: Academic [Google Scholar]
  17. Elting MW, Hueschen CL, Udy DB, Dumont S. 2014. Force on spindle microtubule minus ends moves chromosomes. J. Cell Biol. 206:2245–56 [Google Scholar]
  18. Enos AP, Morris NR. 1990. Mutation of a gene that encodes a kinesin-like protein blocks nuclear division in A. nidulans. Cell 60:61019–27 [Google Scholar]
  19. Eshel D, Urrestarazu LA, Vissers S, Jauniaux JC, van Vliet–Reedijk JC. et al. 1993. Cytoplasmic dynein is required for normal nuclear segregation in yeast. PNAS 90:2311172–76 [Google Scholar]
  20. Euteneuer U, McIntosh JR. 1980. Polarity of midbody and phragmoplast microtubules. J. Cell Biol. 87:2 Pt 1509–15 [Google Scholar]
  21. Euteneuer U, McIntosh JR. 1981. Structural polarity of kinetochore microtubules in PtK1 cells. J. Cell Biol. 89:2338–45 [Google Scholar]
  22. Fink G, Schuchardt I, Colombelli J, Stelzer E, Steinberg G. 2006. Dynein-mediated pulling forces drive rapid mitotic spindle elongation in Ustilago maydis. EMBO J 25:204897–908 [Google Scholar]
  23. Foley EA, Kapoor TM. 2012. Microtubule attachment and spindle assembly checkpoint signalling at the kinetochore. Nat. Rev. Mol. Cell Biol. 14:125–37 [Google Scholar]
  24. Gibbons IR, Rowe AJ. 1965. Dynein: a protein with adenosine triphosphatase activity from cilia. Science 149:3682424–26 [Google Scholar]
  25. Gorbsky GJ, Borisy GG. 1989. Microtubules of the kinetochore fiber turn over in metaphase but not in anaphase. J. Cell Biol. 109:2653–62 [Google Scholar]
  26. Gorbsky GJ, Sammak PJ, Borisy GG. 1987. Chromosomes move poleward in anaphase along stationary microtubules that coordinately disassemble from their kinetochore ends. J. Cell Biol. 104:19–18 [Google Scholar]
  27. Grishchuk EL, McIntosh JR. 2006. Microtubule depolymerization can drive poleward chromosome motion in fission yeast. EMBO J 25:204888–96 [Google Scholar]
  28. Grishchuk EL, Molodtsov MI, Ataullakhanov FI, McIntosh JR. 2005. Force production by disassembling microtubules. Nature 438:7066384–88 [Google Scholar]
  29. Grishchuk EL, Spiridonov IS, Volkov VA, Efremov A, Westermann S. et al. 2008. Different assemblies of the DAM1 complex follow shortening microtubules by distinct mechanisms. PNAS 105:6918–23 [Google Scholar]
  30. Grissom PM, Fiedler T, Grishchuk EL, Nicastro D, West RR, McIntosh JR. 2009. Kinesin-8 from fission yeast: a heterodimeric, plus-end-directed motor that can couple microtubule depolymerization to cargo movement. Mol. Biol. Cell 20:3963–72 [Google Scholar]
  31. Gudimchuk N, Vitre B, Kim Y, Kiyatkin A, Cleveland DW. et al. 2013. Kinetochore kinesin CENP-E is a processive bi-directional tracker of dynamic microtubule tips. Nat. Cell Biol. 15:1079–88 [Google Scholar]
  32. Harris P. 1965. Some observations concerning metakinesis in sea urchin eggs. J. Cell Biol. 25:Suppl.73–77 [Google Scholar]
  33. Heidemann SR, McIntosh JR. 1980. Visualization of the structural polarity of microtubules. Nature 286:5772517–19 [Google Scholar]
  34. Howell BJ, McEwen BF, Canman JC, Hoffman DB, Farrar EM. et al. 2001. Cytoplasmic dynein/dynactin drives kinetochore protein transport to the spindle poles and has a role in mitotic spindle checkpoint inactivation. J. Cell Biol. 155:71159–72 [Google Scholar]
  35. Hoyt MA, He L, Loo KK, Saunders WS. 1992. Two Saccharomyces cerevisiae kinesin-related gene products required for mitotic spindle assembly. J. Cell Biol. 118:1109–20 [Google Scholar]
  36. Hoyt MA, Hyman AA, Bahler M. 1997. Motor proteins of the eukaryotic cytoskeleton. PNAS 94:2412747–48 [Google Scholar]
  37. Hughes AF, Swann MM. 1948. Anaphase movements in the living cell. J. Exp. Biol. 25:45–72 [Google Scholar]
  38. Inoué S, Dan K. 1951. Birefringence of the dividing cell. J. Morphol. 89:423–56 [Google Scholar]
  39. Inoué S, Salmon ED. 1995. Force generation by microtubule assembly/disassembly in mitosis and related movements. Mol. Biol. Cell 6:121619–40 [Google Scholar]
  40. Inoué S, Sato H. 1967. Cell motility by labile association of molecules: the nature of mitotic spindle fibers and their role in chromosome movement. J. Gen. Physiol. 50:6259–92 [Google Scholar]
  41. Kajtez J, Solomatina A, Novak M, Polak B, Vekusic K. et al. 2016. Overlap microtubules link sister k-fibres and balance the forces on bi-oriented kinetochores. Nat. Commun. 7:10298 [Google Scholar]
  42. Koonce MP, Grissom PM, McIntosh JR. 1992. Dynein from Dictyostelium: primary structure comparisons between a cytoplasmic motor enzyme and flagellar dynein. J. Cell Biol. 119:61597–604 [Google Scholar]
  43. Koshland DE, Mitchison TJ, Kirschner MW. 1988. Polewards chromosome movement driven by microtubule depolymerization in vitro. Nature 331:6156499–504 [Google Scholar]
  44. Laan L, Pavin N, Husson J, Romet-Lemonne G, van Duijn M. et al. 2012. Cortical dynein controls microtubule dynamics to generate pulling forces that position microtubule asters. Cell 148:3502–14 [Google Scholar]
  45. LaFountain JR, Cohan CS, LaFountain DJ. 2004. Direct visualization of microtubule flux during metaphase and anaphase in crane-fly spermatocytes. Mol. Biol. Cell 15:125724–32 [Google Scholar]
  46. Leslie RJ, Pickett-Heaps JD. 1984. Spindle microtubule dynamics following ultraviolet-microbeam irradiations of mitotic diatoms. Cell 36:3717–27 [Google Scholar]
  47. Lombillo VA, Nislow C, Yen TJ, Gelfand VI, McIntosh JR. 1995a. Antibodies to the kinesin motor domain and CENP-E inhibit microtubule depolymerization–dependent motion of chromosomes in vitro. J. Cell Biol. 128:1–2107–15 [Google Scholar]
  48. Lombillo VA, Stewart RJ, McIntosh JR. 1995b. Minus-end-directed motion of kinesin-coated microspheres driven by microtubule depolymerization. Nature 373:6510161–64 [Google Scholar]
  49. Maddox P, Straight A, Coughlin P, Mitchison TJ, Salmon ED. 2003. Direct observation of microtubule dynamics at kinetochores in Xenopus extract spindles: implications for spindle mechanics. J. Cell Biol. 162:3377–82 [Google Scholar]
  50. Maddox PS, Bloom KS, Salmon ED. 2000. The polarity and dynamics of microtubule assembly in the budding yeast Saccharomyces cerevisiae. Nat. Cell Biol. 2:136–41 [Google Scholar]
  51. Mastronarde DN, McDonald KL, Ding R, McIntosh JR. 1993. Interpolar spindle microtubules in PTK cells. J. Cell Biol. 123:6 Pt 11475–89 [Google Scholar]
  52. Masuda H, Hirano T, Yanagida M, Cande WZ. 1990. In vitro reactivation of spindle elongation in fission yeast nuc2 mutant cells. J. Cell Biol. 110:2417–25 [Google Scholar]
  53. Mazia D. 1961. Mitosis and the physiology of cell division. The Cell: Biochemistry, Physiology, Morphology, Vol. , III., ed. J Brachet, AE Mirsky 77–412 New York: Academic [Google Scholar]
  54. McDonald K, Pickett-Heaps JD, McIntosh JR, Tippit DH. 1977. On the mechanism of anaphase spindle elongation in Diatoma vulgare. J. Cell Biol. 74:2377–88 [Google Scholar]
  55. McDonald KL, Edwards MK, McIntosh JR. 1979. Cross-sectional structure of the central mitotic spindle of Diatoma vulgare: evidence for specific interactions between antiparallel microtubules. J. Cell Biol. 83:2 Pt 1443–61 [Google Scholar]
  56. McDonald KL, O'Toole ET, Mastronarde DN, McIntosh JR. 1992. Kinetochore microtubules in PTK cells. J. Cell Biol. 118:2369–83 [Google Scholar]
  57. McIntosh JR, Cande WZ, Snyder JA. 1975a. Structure and physiology of the mammalian mitotic spindle. Soc. Gen. Physiol. Ser. 30:31–76 [Google Scholar]
  58. McIntosh JR, Cande WZ, Snyder JA, Vanderslice K. 1975b. Studies on the mechanism of mitosis. Ann. N.Y. Acad. Sci. 253:383–406 [Google Scholar]
  59. McIntosh JR, Grishchuk EL, Morphew MK, Efremov AK, Zhudenkov K. et al. 2008. Fibrils connect microtubule tips with kinetochores: a mechanism to couple tubulin dynamics to chromosome motion. Cell 135:2322–33 [Google Scholar]
  60. McIntosh JR, Hepler PK, Van Wie DG. 1969. Model for mitosis. Nature 224:659–63 [Google Scholar]
  61. McIntosh JR, Landis SC. 1971. The distribution of spindle microtubules during mitosis in cultured human cells. J. Cell Biol. 49:2468–97 [Google Scholar]
  62. McIntosh JR, McDonald KL, Edwards MK, Ross BM. 1979. Three-dimensional structure of the central mitotic spindle of Diatoma vulgare. J. Cell Biol. 83:2 Pt 1428–42 [Google Scholar]
  63. McIntosh JR, O'Toole ET, Zhudenkov K, Morphew M, Schwartz C. et al. 2013. Conserved and divergent features of kinetochores and spindle microtubule ends from five species. J. Cell Biol. 200:4459–74 [Google Scholar]
  64. Meluh PB, Rose MD. 1990. KAR3, a kinesin-related gene required for yeast nuclear fusion. Cell 60:61029–41 [Google Scholar]
  65. Mitchison T, Evans L, Schulze E, Kirschner M. 1986. Sites of microtubule assembly and disassembly in the mitotic spindle. Cell 45:4515–27 [Google Scholar]
  66. Mitchison TJ. 1989. Polewards microtubule flux in the mitotic spindle: evidence from photoactivation of fluorescence. J. Cell Biol. 109:2637–52 [Google Scholar]
  67. Mitchison TJ, Kirschner MW. 1985. Properties of the kinetochore in vitro. II. Microtubule capture and ATP-dependent translocation. J. Cell Biol. 101:3766–77 [Google Scholar]
  68. Mitchison TJ, Salmon ED. 1992. Poleward kinetochore fiber movement occurs during both metaphase and anaphase A in newt lung cell mitosis. J. Cell Biol. 119:3569–82 [Google Scholar]
  69. Moore PB, Huxley HE, DeRosier DJ. 1970. Three-dimensional reconstruction of F-actin, thin filaments and decorated thin filaments. J. Mol. Biol. 50:279–95 [Google Scholar]
  70. Muller-Reichert T, Srayko M, Hyman A, O'Toole ET, McDonald K. 2007. Correlative light and electron microscopy of early Caenorhabditis elegans embryos in mitosis. Methods Cell Biol 79:101–19 [Google Scholar]
  71. Mullins JM, McIntosh JR. 1982. Isolation and initial characterization of the mammalian midbody. J. Cell Biol. 94:3654–61 [Google Scholar]
  72. Musacchio A, Desai A. 2017. A molecular view of kinetochore assembly and function. Biology 6:15 [Google Scholar]
  73. Nicklas RB. 1965. Chromosome velocity during mitosis as a function of chromosome size and position. J. Cell Biol. 25:Suppl.119–35 [Google Scholar]
  74. Nicklas RB. 1983. Measurements of the force produced by the mitotic spindle in anaphase. J. Cell Biol. 97:2542–48 [Google Scholar]
  75. O'Toole ET, McDonald KL, Mantler J, McIntosh JR, Hyman AA, Muller-Reichert T. 2003. Morphologically distinct microtubule ends in the mitotic centrosome of Caenorhabditis elegans. J. Cell Biol. 163:3451–56 [Google Scholar]
  76. Pfarr CM, Coue M, Grissom PM, Hays TS, Porter ME, McIntosh JR. 1990. Cytoplasmic dynein is localized to kinetochores during mitosis. Nature 345:6272263–65 [Google Scholar]
  77. Polak B, Risteski P, Lesjak S, Tolic IM. 2017. PRC1-labeled microtubule bundles and kinetochore pairs show one-to-one association in metaphase. EMBO Rep 18:217–30 [Google Scholar]
  78. Powers AF, Franck AD, Gestaut DR, Cooper J, Gracyzk B. et al. 2009. The Ndc80 kinetochore complex forms load-bearing attachments to dynamic microtubule tips via biased diffusion. Cell 136:5865–75 [Google Scholar]
  79. Rogers GC, Rogers SL, Schwimmer TA, Ems-McClung SC, Walczak CE. et al. 2004. Two mitotic kinesins cooperate to drive sister chromatid separation during anaphase. Nature 427:6972364–70 [Google Scholar]
  80. Roth LE, Daniels EW. 1962. Electron microscopic studies of mitosis in amebae. II. The giant ameba Pelomyxa carolinensis. J. Cell Biol. 12:157–78 [Google Scholar]
  81. Salmon ED, Leslie RJ, Saxton WM, Karow ML, McIntosh JR. 1984. Spindle microtubule dynamics in sea urchin embryos: analysis using a fluorescein-labeled tubulin and measurements of fluorescence redistribution after laser photobleaching. J. Cell Biol. 99:62165–74 [Google Scholar]
  82. Satir P. 1965. Studies on cilia. II. Examination of the distal region of the ciliary shaft and the role of the filaments in motility. J. Cell Biol. 26:3805–34 [Google Scholar]
  83. Saxton WM, McIntosh JR. 1987. Interzone microtubule behavior in late anaphase and telophase spindles. J. Cell Biol. 105:2875–86 [Google Scholar]
  84. Saxton WM, Porter ME, Cohn SA, Scholey JM, Raff EC, McIntosh JR. 1988. Drosophila kinesin: characterization of microtubule motility and ATPase. PNAS 85:41109–13 [Google Scholar]
  85. Saxton WM, Stemple DL, Leslie RJ, Salmon ED, Zavortink M, McIntosh JR. 1984. Tubulin dynamics in cultured mammalian cells. J. Cell Biol. 99:62175–86 [Google Scholar]
  86. Schmidt DJ, Rose DJ, Saxton WM, Strome S. 2005. Functional analysis of cytoplasmic dynein heavy chain in Caenorhabditis elegans with fast-acting temperature-sensitive mutations. Mol. Biol. Cell 16:31200–12 [Google Scholar]
  87. Schmidt FO. 1939. The ultrastructure of protoplasmic constituents. Physiol. Rev. 19:270–302 [Google Scholar]
  88. Schmidt JC, Arthanari H, Boeszoermenyi A, Dashkevich NM, Wilson-Kubalek EM. et al. 2012. The kinetochore-bound Ska1 complex tracks depolymerizing microtubules and binds to curved protofilaments. Dev. Cell 23:5968–80 [Google Scholar]
  89. Schmidt WJ. 1937. Doppelbrechung von Chromosomen und Kernspindel im lebenden Zelle. Naturewissenschaften 24:463 [Google Scholar]
  90. Scholey J, Civelekoglu-Scholey G, Brust-Mascher I. 2016. Anaphase B. Biology 5:451 [Google Scholar]
  91. Schrader F. 1953. Mitosis: The Movements of Chromosomes in Cell Division New York: Columbia Univ. Press, 2nd ed.. [Google Scholar]
  92. Sharp DJ, Rogers GC, Scholey JM. 2000. Cytoplasmic dynein is required for poleward chromosome movement during mitosis in Drosophila embryos. Nat. Cell Biol. 2:12922–30 [Google Scholar]
  93. Sikirzhytski V, Magidson V, Steinman JB, He J, Le Berre M. et al. 2014. Direct kinetochore-spindle pole connections are not required for chromosome segregation. J. Cell Biol. 206:2231–43 [Google Scholar]
  94. Steuer ER, Wordeman L, Schroer TA, Sheetz MP. 1990. Localization of cytoplasmic dynein to mitotic spindles and kinetochores. Nature 345:266–68 [Google Scholar]
  95. Tanaka K, Kitamura E, Kitamura Y, Tanaka TU. 2007. Molecular mechanisms of microtubule-dependent kinetochore transport toward spindle poles. J. Cell Biol. 178:2269–81 [Google Scholar]
  96. Taylor EW. 1965. Brownian and saltatory movements of cytoplasmic granules and the movement of anaphase chromosomes. Proceedings of the Fourth International Congress on Rheology175–91 New York: NASA [Google Scholar]
  97. Tien JF, Umbreit NT, Gestaut DR, Franck AD, Cooper J. et al. 2010. Cooperation of the Dam1 and Ndc80 kinetochore complexes enhances microtubule coupling and is regulated by aurora B. J. Cell Biol. 189:4713–23 [Google Scholar]
  98. Umbreit NT, Miller MP, Tien JF, Ortolá JC, Gui L. et al. 2014. Kinetochores require oligomerization of Dam1 complex to maintain microtubule attachments against tension and promote biorientation. Nat. Commun. 5:4951 [Google Scholar]
  99. Vale RD, Reese TS, Sheetz MP. 1985. Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell 42:139–50 [Google Scholar]
  100. Volkov VA, Grissom PM, Arzhanik VK, Zaytsev AV, Renganathan K. et al. 2015. Centromere protein F includes two sites that couple efficiently to depolymerizing microtubules. J. Cell Biol. 209:6813–28 [Google Scholar]
  101. Volkov VA, Zaytsev AV, Gudimchuk N, Grissom PM, Gintsburg AL. et al. 2013. Long tethers provide high-force coupling of the Dam1 ring to shortening microtubule. PNAS 110:197708–12 [Google Scholar]
  102. Walker RA, Salmon ED, Endow SA. 1990. The Drosophila claret segregation protein is a minus-end directed motor molecule. Nature 347:6295780–82 [Google Scholar]
  103. Waterman-Storer CM, Salmon ED. 1998. How microtubules get fluorescent speckles. Biophys. J. 75:42059–69 [Google Scholar]
  104. West RR, Malmstrom T, McIntosh JR. 2002. Kinesins klp5+ and klp6+ are required for normal chromosome movement in mitosis. J. Cell Sci. 115:Pt 5931–40 [Google Scholar]
  105. Westermann S, Avila-Sakar A, Wang HW, Niederstrasser H, Wong J. et al. 2005. Formation of a dynamic kinetochore-microtubule interface through assembly of the Dam1 ring complex. Mol. Cell 17:2277–90 [Google Scholar]
  106. Wilson EB. 1925. The Cell in Development and Heredity New York: MacMillan [Google Scholar]
  107. Winey M, Mamay CL, O'Toole ET, Mastronarde DN, Giddings TH. et al. 1995. Three-dimensional ultrastructural analysis of the Saccharomyces cerevisiae mitotic spindle. J. Cell Biol. 129:61601–15 [Google Scholar]
  108. Yamamoto A, West RR, McIntosh JR, Hiraoka Y. 1999. A cytoplasmic dynein heavy chain is required for oscillatory nuclear movement of meiotic prophase and efficient meiotic recombination in fission yeast. J. Cell Biol. 145:61233–49 [Google Scholar]
  109. Yang G, Cameron LA, Maddox PS, Salmon ED, Danuser G. 2008. Regional variation of microtubule flux reveals microtubule organization in the metaphase meiotic spindle. J. Cell Biol. 182:4631–39 [Google Scholar]
  110. Yang JT, Saxton WM, Goldstein LS. 1988. Isolation and characterization of the gene encoding the heavy chain of Drosophila kinesin. PNAS 85:1864–68 [Google Scholar]
  111. Yang Z, Tulu US, Wadsworth P, Rieder CL. 2007. Kinetochore dynein is required for chromosome motion and congression independent of the spindle checkpoint. Curr. Biol. 17:11973–80 [Google Scholar]
/content/journals/10.1146/annurev-cellbio-100616-060827
Loading
/content/journals/10.1146/annurev-cellbio-100616-060827
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error