A conserved molecular machinery centered on the Cdc42 GTPase regulates cell polarity in diverse organisms. Here we review findings from budding and fission yeasts that reveal both a conserved core polarity circuit and several adaptations that each organism exploits to fulfill the needs of its lifestyle. The core circuit involves positive feedback by local activation of Cdc42 to generate a cluster of concentrated GTP-Cdc42 at the membrane. Species-specific pathways regulate the timing of polarization during the cell cycle, as well as the location and number of polarity sites.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Abenza JF, Couturier E, Dodgson J, Dickmann J, Chessel A. et al. 2015. Wall mechanics and exocytosis define the shape of growth domains in fission yeast. Nat. Commun. 6:8400 [Google Scholar]
  2. Adamo JE, Moskow JJ, Gladfelter AS, Viterbo D, Lew DJ, Brennwald PJ. 2001. Yeast Cdc42 functions at a late step in exocytosis, specifically during polarized growth of the emerging bud. J. Cell Biol. 155:581–92 [Google Scholar]
  3. Alvarez-Tabares I, Grallert A, Ortiz JM, Hagan IM. 2007. Schizosaccharomyces pombe protein phosphatase 1 in mitosis, endocytosis and a partnership with Wsh3/Tea4 to control polarised growth. J. Cell Sci. 120:3589–601 [Google Scholar]
  4. Arellano M, Niccoli T, Nurse P. 2002. Tea3p is a cell end marker activating polarized growth in Schizosaccharomyces pombe. Curr. Biol. 12:751–56 [Google Scholar]
  5. Atkins BD, Yoshida S, Saito K, Wu CF, Lew DJ, Pellman D. 2013. Inhibition of Cdc42 during mitotic exit is required for cytokinesis. J. Cell Biol. 202:231–40 [Google Scholar]
  6. Baek K, Knodler A, Lee SH, Zhang X, Orlando K. et al. 2010. Structure-function study of the N-terminal domain of exocyst subunit Sec3. J. Biol. Chem. 285:10424–33 [Google Scholar]
  7. Bahler J, Pringle JR. 1998. Pom1p, a fission yeast protein kinase that provides positional information for both polarized growth and cytokinesis. Genes Dev 12:1356–70 [Google Scholar]
  8. Bahler J, Steever AB, Wheatley S, Wang Y, Pringle JR. et al. 1998. Role of polo kinase and Mid1p in determining the site of cell division in fission yeast. J. Cell Biol. 143:1603–16 [Google Scholar]
  9. Bauer Y, Knechtle P, Wendland J, Helfer H, Philippsen P. 2004. A Ras-like GTPase is involved in hyphal growth guidance in the filamentous fungus Ashbya gossypii. Mol. Biol. Cell 15:4622–32 [Google Scholar]
  10. Bender A, Pringle JR. 1989. Multicopy suppression of the cdc24 budding defect in yeast by CDC42 and three newly identified genes including the ras-related gene RSR1. PNAS 86:9976–80 [Google Scholar]
  11. Bendezu FO, Vincenzetti V, Vavylonis D, Wyss R, Vogel H, Martin SG. 2015. Spontaneous Cdc42 polarization independent of GDI-mediated extraction and actin-based trafficking. PLOS Biol 13:e1002097 [Google Scholar]
  12. Bi E, Park HO. 2012. Cell polarization and cytokinesis in budding yeast. Genetics 191:347–87 [Google Scholar]
  13. Bicho CC, Kelly DA, Snaith HA, Goryachev AB, Sawin KE. 2010. A catalytic role for Mod5 in the formation of the Tea1 cell polarity landmark. Curr. Biol. 20:1752–57 [Google Scholar]
  14. Bohnert KA, Gould KL. 2012. Cytokinesis-based constraints on polarized cell growth in fission yeast. PLOS Genet 8:e1003004 [Google Scholar]
  15. Bonazzi D, Haupt A, Tanimoto H, Delacour D, Salort D, Minc N. 2015. Actin-based transport adapts polarity domain size to local cellular curvature. Curr. Biol. 25:2677–83 [Google Scholar]
  16. Bonazzi D, Julien JD, Romao M, Seddiki R, Piel M. et al. 2014. Symmetry breaking in spore germination relies on an interplay between polar cap stability and spore wall mechanics. Dev. Cell 28:534–46 [Google Scholar]
  17. Bose I, Irazoqui JE, Moskow JJ, Bardes ES, Zyla TR, Lew DJ. 2001. Assembly of scaffold-mediated complexes containing Cdc42p, the exchange factor Cdc24p, and the effector Cla4p required for cell cycle–regulated phosphorylation of Cdc24p. J. Biol. Chem. 276:7176–86 [Google Scholar]
  18. Brand A, Vacharaksa A, Bendel C, Norton J, Haynes P. et al. 2008. An internal polarity landmark is important for externally induced hyphal behaviors in Candida albicans. Eukaryot. Cell 7:712–20 [Google Scholar]
  19. Brunner D, Nurse P. 2000. CLIP170-like tip1p spatially organizes microtubular dynamics in fission yeast. Cell 102:695–704 [Google Scholar]
  20. Butty AC, Perrinjaquet N, Petit A, Jaquenoud M, Segall JE. et al. 2002. A positive feedback loop stabilizes the guanine-nucleotide exchange factor Cdc24 at sites of polarization. EMBO J 21:1565–76 [Google Scholar]
  21. Carazo-Salas RE, Nurse P. 2006. Self-organization of interphase microtubule arrays in fission yeast. Nat. Cell Biol. 8:1102–7 [Google Scholar]
  22. Caviston JP, Longtine M, Pringle JR, Bi E. 2003. The role of Cdc42p GTPase-activating proteins in assembly of the septin ring in yeast. Mol. Biol. Cell 14:4051–66 [Google Scholar]
  23. Celton-Morizur S, Racine V, Sibarita JB, Paoletti A. 2006. Pom1 kinase links division plane position to cell polarity by regulating Mid1p cortical distribution. J. Cell Sci. 119:4710–18 [Google Scholar]
  24. Chang EC, Barr M, Wang Y, Jung V, Xu HP, Wigler MH. 1994. Cooperative interaction of S. pombe proteins required for mating and morphogenesis. Cell 79:131–41 [Google Scholar]
  25. Chang F, Woollard A, Nurse P. 1996. Isolation and characterization of fission yeast mutants defective in the assembly and placement of the contractile actin ring. J. Cell Sci. 109:131–42 [Google Scholar]
  26. Chant J, Herskowitz I. 1991. Genetic control of bud site selection in yeast by a set of gene products that constitute a morphogenetic pathway. Cell 65:1203–12 [Google Scholar]
  27. Chant J, Pringle JR. 1995. Patterns of bud-site selection in the yeast Saccharomyces cerevisiae. J. Cell Biol. 129:751–65 [Google Scholar]
  28. Chen T, Hiroko T, Chaudhuri A, Inose F, Lord M. et al. 2000. Multigenerational cortical inheritance of the Rax2 protein in orienting polarity and division in yeast. Science 290:1975–78 [Google Scholar]
  29. Coll PM, Trillo Y, Ametzazurra A, Perez P. 2003. Gef1p, a new guanine nucleotide exchange factor for Cdc42p, regulates polarity in Schizosaccharomyces pombe. Mol. Biol. Cell 14:313–23 [Google Scholar]
  30. Daga RR, Chang F. 2005. Dynamic positioning of the fission yeast cell division plane. PNAS 102:8228–32 [Google Scholar]
  31. Daga RR, Lee KG, Bratman S, Salas-Pino S, Chang F. 2006. Self-organization of microtubule bundles in anucleate fission yeast cells. Nat. Cell Biol. 8:1108–13 [Google Scholar]
  32. Das M, Drake T, Wiley DJ, Buchwald P, Vavylonis D, Verde F. 2012. Oscillatory dynamics of Cdc42 GTPase in the control of polarized growth. Science 337:239–43 [Google Scholar]
  33. Das M, Nunez I, Rodriguez M, Wiley DJ, Rodriguez J. et al. 2015. Phosphorylation-dependent inhibition of Cdc42 GEF Gef1 by 14-3-3 protein Rad24 spatially regulates Cdc42 GTPase activity and oscillatory dynamics during cell morphogenesis. Mol. Biol. Cell 26:3520–34 [Google Scholar]
  34. Das M, Wiley DJ, Chen X, Shah K, Verde F. 2009. The conserved NDR kinase Orb6 controls polarized cell growth by spatial regulation of the small GTPase Cdc42. Curr. Biol. 19:1314–19 [Google Scholar]
  35. Das M, Wiley DJ, Medina S, Vincent HA, Larrea M. et al. 2007. Regulation of cell diameter, For3p localization, and cell symmetry by fission yeast Rho-GAP Rga4p. Mol. Biol. Cell 18:2090–101 [Google Scholar]
  36. Dodgson J, Chessel A, Yamamoto M, Vaggi F, Cox S. et al. 2013. Spatial segregation of polarity factors into distinct cortical clusters is required for cell polarity control. Nat. Commun. 4:1834 [Google Scholar]
  37. Donovan KW, Bretscher A. 2012. Myosin-V is activated by binding secretory cargo and released in coordination with Rab/exocyst function. Dev. Cell 23:769–81 [Google Scholar]
  38. Donovan KW, Bretscher A. 2015. Tracking individual secretory vesicles during exocytosis reveals an ordered and regulated process. J. Cell Biol. 210:181–89 [Google Scholar]
  39. Dyer JM, Savage NS, Jin M, Zyla TR, Elston TC, Lew DJ. 2013. Tracking shallow chemical gradients by actin-driven wandering of the polarization site. Curr. Biol. 23:32–41 [Google Scholar]
  40. Endo M, Shirouzu M, Yokoyama S. 2003. The Cdc42 binding and scaffolding activities of the fission yeast adaptor protein Scd2. J. Biol. Chem. 278:843–52 [Google Scholar]
  41. Erickson JW, Zhang C, Kahn RA, Evans T, Cerione RA. 1996. Mammalian Cdc42 is a brefeldin A–sensitive component of the Golgi apparatus. J. Biol. Chem. 271:26850–54 [Google Scholar]
  42. Etienne-Manneville S. 2004. Cdc42: the centre of polarity. J. Cell Sci. 117:1291–300 [Google Scholar]
  43. Evangelista M, Blundell K, Longtine MS, Chow CJ, Adames N. et al. 1997. Bni1p, a yeast formin linking Cdc42p and the actin cytoskeleton during polarized morphogenesis. Science 276:118–22 [Google Scholar]
  44. Evangelista M, Pruyne D, Amberg DC, Boone C, Bretscher A. 2002. Formins direct Arp2/3-independent actin filament assembly to polarize cell growth in yeast. Nat. Cell Biol. 4:260–69 [Google Scholar]
  45. Feierbach B, Chang F. 2001. Roles of the fission yeast formin for3p in cell polarity, actin cable formation and symmetric cell division. Curr. Biol. 11:1656–65 [Google Scholar]
  46. Freisinger T, Klunder B, Johnson J, Muller N, Pichler G. et al. 2013. Establishment of a robust single axis of cell polarity by coupling multiple positive feedback loops. Nat. Commun. 4:1807 [Google Scholar]
  47. Gierer A, Meinhardt H. 1972. A theory of biological pattern formation. Kybernetik 12:30–39 [Google Scholar]
  48. Goryachev AB, Pokhilko AV. 2008. Dynamics of Cdc42 network embodies a Turing-type mechanism of yeast cell polarity. FEBS Lett 582:1437–43 [Google Scholar]
  49. Grallert A, Patel A, Tallada VA, Chan KY, Bagley S. et al. 2013. Centrosomal MPF triggers the mitotic and morphogenetic switches of fission yeast. Nat. Cell Biol. 15:88–95 [Google Scholar]
  50. Gu Y, Yam C, Oliferenko S. 2015. Rewiring of cellular division site selection in evolution of fission yeasts. Curr. Biol. 25:1187–94 [Google Scholar]
  51. Gulli MP, Jaquenoud M, Shimada Y, Niederhauser G, Wiget P, Peter M. 2000. Phosphorylation of the Cdc42 exchange factor Cdc24 by the PAK-like kinase Cla4 may regulate polarized growth in yeast. Mol. Cell 6:1155–67 [Google Scholar]
  52. Gupta S, Mana-Capelli S, McLean JR, Chen CT, Ray S. et al. 2013. Identification of SIN pathway targets reveals mechanisms of crosstalk between NDR kinase pathways. Curr. Biol. 23:333–38 [Google Scholar]
  53. Harkins HA, Page N, Schenkman LR, De Virgilio C, Shaw S. et al. 2001. Bud8p and Bud9p, proteins that may mark the sites for bipolar budding in yeast. Mol. Biol. Cell 12:2497–518 [Google Scholar]
  54. Hausauer DL, Gerami-Nejad M, Kistler-Anderson C, Gale CA. 2005. Hyphal guidance and invasive growth in Candida albicans require the Ras-like GTPase Rsr1p and its GTPase-activating protein Bud2p. Eukaryot. Cell 4:1273–86 [Google Scholar]
  55. Hegemann B, Unger M, Lee SS, Stoffel-Studer I, van den Heuvel J. et al. 2015. A cellular system for spatial signal decoding in chemical gradients. Dev. Cell 35:458–70 [Google Scholar]
  56. Hirata D, Kishimoto N, Suda M, Sogabe Y, Nakagawa S. et al. 2002. Fission yeast Mor2/Cps12, a protein similar to Drosophila Furry, is essential for cell morphogenesis and its mutation induces Wee1-dependent G2 delay. EMBO J 21:4863–74 [Google Scholar]
  57. Hou MC, Wiley DJ, Verde F, McCollum D. 2003. Mob2p interacts with the protein kinase Orb6p to promote coordination of cell polarity with cell cycle progression. J. Cell Sci. 116:125–35 [Google Scholar]
  58. Howell AS, Jin M, Wu CF, Zyla TR, Elston TC, Lew DJ. 2012. Negative feedback enhances robustness in the yeast polarity establishment circuit. Cell 149:322–33 [Google Scholar]
  59. Howell AS, Lew DJ. 2012. Morphogenesis and the cell cycle. Genetics 190:51–77 [Google Scholar]
  60. Huang Y, Chew TG, Ge W, Balasubramanian MK. 2007. Polarity determinants Tea1p, Tea4p, and Pom1p inhibit division-septum assembly at cell ends in fission yeast. Dev. Cell 12:987–96 [Google Scholar]
  61. Huang Y, Yan H, Balasubramanian MK. 2008. Assembly of normal actomyosin rings in the absence of Mid1p and cortical nodes in fission yeast. J. Cell Biol. 183:979–88 [Google Scholar]
  62. Irazoqui JE, Gladfelter AS, Lew DJ. 2003. Scaffold-mediated symmetry breaking by Cdc42p. Nat. Cell Biol. 5:1062–70 [Google Scholar]
  63. Ito T, Matsui Y, Ago T, Ota K, Sumimoto H. 2001. Novel modular domain PB1 recognizes PC motif to mediate functional protein-protein interactions. EMBO J 20:3938–46 [Google Scholar]
  64. Johnson JM, Jin M, Lew DJ. 2011. Symmetry breaking and the establishment of cell polarity in budding yeast. Curr. Opin. Genet. Dev. 21:740–46 [Google Scholar]
  65. Kanai M, Kume K, Miyahara K, Sakai K, Nakamura K. et al. 2005. Fission yeast MO25 protein is localized at SPB and septum and is essential for cell morphogenesis. EMBO J 24:3012–25 [Google Scholar]
  66. Kang PJ, Sanson A, Lee B, Park HO. 2001. A GDP/GTP exchange factor involved in linking a spatial landmark to cell polarity. Science 292:1376–78 [Google Scholar]
  67. Kelly FD, Nurse P. 2011. Spatial control of Cdc42 activation determines cell width in fission yeast. Mol. Biol. Cell 22:3801–11 [Google Scholar]
  68. Knaus M, Pelli-Gulli MP, van Drogen F, Springer S, Jaquenoud M, Peter M. 2007. Phosphorylation of Bem2p and Bem3p may contribute to local activation of Cdc42p at bud emergence. EMBO J 26:4501–13 [Google Scholar]
  69. Koch G, Tanaka K, Masuda T, Yamochi W, Nonaka H, Takai Y. 1997. Association of the Rho family small GTP-binding proteins with Rho GDP dissociation inhibitor (Rho GDI) in Saccharomyces cerevisiae. Oncogene 15:417–22 [Google Scholar]
  70. Kokkoris K, Gallo Castro D, Martin SG. 2014. The Tea4-PP1 landmark promotes local growth by dual Cdc42 GEF recruitment and GAP exclusion. J. Cell Sci. 127:2005–16 [Google Scholar]
  71. Koyano T, Kume K, Konishi M, Toda T, Hirata D. 2010. Search for kinases related to transition of growth polarity in fission yeast. Biosci. Biotechnol. Biochem. 74:1129–33 [Google Scholar]
  72. Kozminski KG, Beven L, Angerman E, Tong AH, Boone C, Park HO. 2003. Interaction between a Ras and a Rho GTPase couples selection of a growth site to the development of cell polarity in yeast. Mol. Biol. Cell 14:4958–70 [Google Scholar]
  73. Kozubowski L, Saito K, Johnson JM, Howell AS, Zyla TR, Lew DJ. 2008. Symmetry-breaking polarization driven by a Cdc42p GEF-PAK complex. Curr. Biol. 18:1719–26 [Google Scholar]
  74. Kume K, Koyano T, Kanai M, Toda T, Hirata D. 2011. Calcineurin ensures a link between the DNA replication checkpoint and microtubule-dependent polarized growth. Nat. Cell Biol. 13:234–42 [Google Scholar]
  75. Kuo CC, Savage NS, Chen H, Wu CF, Zyla TR, Lew DJ. 2014. Inhibitory GEF phosphorylation provides negative feedback in the yeast polarity circuit. Curr. Biol. 24:753–59 [Google Scholar]
  76. Layton AT, Savage NS, Howell AS, Carroll SY, Drubin DG, Lew DJ. 2011. Modeling vesicle traffic reveals unexpected consequences for cdc42p-mediated polarity establishment. Curr. Biol. 21:184–94 [Google Scholar]
  77. Leonard D, Hart MJ, Platko JV, Eva A, Henzel W. et al. 1992. The identification and characterization of a GDP-dissociation inhibitor (GDI) for the CDC42Hs protein. J. Biol. Chem. 267:22860–68 [Google Scholar]
  78. Leonard DA, Cerione RA. 1995. Solubilization of Cdc42Hs from membranes by Rho-GDP dissociation inhibitor. Methods Enzymol 256:98–105 [Google Scholar]
  79. Lew DJ, Reed SI. 1993. Morphogenesis in the yeast cell cycle: regulation by Cdc28 and cyclins. J. Cell Biol. 120:1305–20 [Google Scholar]
  80. Makushok T, Alves P, Huisman SM, Kijowski AR, Brunner D. 2016. Sterol-rich membrane domains define fission yeast cell polarity. Cell 165:1182–96 [Google Scholar]
  81. Martin SG. 2009. Microtubule-dependent cell morphogenesis in the fission yeast. Trends Cell Biol 19:447–54 [Google Scholar]
  82. Martin SG, McDonald WH, 3rd Yates JR, Chang F. 2005. Tea4p links microtubule plus ends with the formin for3p in the establishment of cell polarity. Dev. Cell 8:479–91 [Google Scholar]
  83. Masuda T, Tanaka K, Nonaka H, Yamochi W, Maeda A, Takai Y. 1994. Molecular cloning and characterization of yeast rho GDP dissociation inhibitor. J. Biol. Chem. 269:19713–18 [Google Scholar]
  84. Mata J, Nurse P. 1997. tea1 and the microtubular cytoskeleton are important for generating global spatial order within the fission yeast cell. Cell 89:939–49 [Google Scholar]
  85. McClure AW, Minakova M, Dyer JM, Zyla TR, Elston TC, Lew DJ. 2015. Role of polarized G protein signaling in tracking pheromone gradients. Dev. Cell 35:471–82 [Google Scholar]
  86. Meitinger F, Khmelinskii A, Morlot S, Kurtulmus B, Palani S. et al. 2014. A memory system of negative polarity cues prevents replicative aging. Cell 159:1056–69 [Google Scholar]
  87. Mendoza M, Redemann S, Brunner D. 2005. The fission yeast MO25 protein functions in polar growth and cell separation. Eur. J. Cell Biol. 84:915–26 [Google Scholar]
  88. Minc N, Bratman SV, Basu R, Chang F. 2009. Establishing new sites of polarization by microtubules. Curr. Biol. 19:83–94 [Google Scholar]
  89. Mishra M, Huang Y, Srivastava P, Srinivasan R, Sevugan M. et al. 2012. Cylindrical cellular geometry ensures fidelity of division site placement in fission yeast. J. Cell Sci. 125:3850–57 [Google Scholar]
  90. Mitchison JM, Nurse P. 1985. Growth in cell length in the fission yeast Schizosaccharomyces pombe. J. Cell Sci. 75:357–76 [Google Scholar]
  91. Mori Y, Jilkine A, Edelstein-Keshet L. 2008. Wave-pinning and cell polarity from a bistable reaction-diffusion system. Biophys. J. 94:3684–97 [Google Scholar]
  92. Mosch HU, Fink GR. 1997. Dissection of filamentous growth by transposon mutagenesis in Saccharomyces cerevisiae. Genetics 145:671–84 [Google Scholar]
  93. Mutavchiev DR, Leda M, Sawin KE. 2016. Remodeling of the fission yeast Cdc42 cell-polarity module via the Sty1 p38 stress-activated protein kinase pathway. Curr. Biol. 26:2921–28 [Google Scholar]
  94. Nern A, Arkowitz RA. 2000. G proteins mediate changes in cell shape by stabilizing the axis of polarity. Mol. Cell 5:853–64 [Google Scholar]
  95. Oh Y, Bi E. 2011. Septin structure and function in yeast and beyond. Trends Cell Biol 21:141–48 [Google Scholar]
  96. Okada S, Leda M, Hanna J, Savage NS, Bi E, Goryachev AB. 2013. Daughter cell identity emerges from the interplay of Cdc42, septins, and exocytosis. Dev. Cell 26:148–61 [Google Scholar]
  97. Onishi M, Ko N, Nishihama R, Pringle JR. 2013. Distinct roles of Rho1, Cdc42, and Cyk3 in septum formation and abscission during yeast cytokinesis. J. Cell Biol. 202:311–29 [Google Scholar]
  98. Otsuji M, Ishihara S, Co C, Kaibuchi K, Mochizuki A, Kuroda S. 2007. A mass conserved reaction-diffusion system captures properties of cell polarity. PLOS Comput. Biol. 3:e108 [Google Scholar]
  99. Ozbudak EM, Becskei A, van Oudenaarden A. 2005. A system of counteracting feedback loops regulates Cdc42p activity during spontaneous cell polarization. Dev. Cell 9:565–71 [Google Scholar]
  100. Padte NN, Martin SG, Howard M, Chang F. 2006. The cell-end factor pom1p inhibits mid1p in specification of the cell division plane in fission yeast. Curr. Biol. 16:2480–87 [Google Scholar]
  101. Paoletti A, Chang F. 2000. Analysis of mid1p, a protein required for placement of the cell division site, reveals a link between the nucleus and the cell surface in fission yeast. Mol. Biol. Cell 11:2757–73 [Google Scholar]
  102. Park HO, Kang PJ, Rachfal AW. 2002. Localization of the Rsr1/Bud1 GTPase involved in selection of a proper growth site in yeast. J. Biol. Chem. 277:26721–24 [Google Scholar]
  103. Pulver R, Heisel T, Gonia S, Robins R, Norton J. et al. 2013. Rsr1 focuses Cdc42 activity at hyphal tips and promotes maintenance of hyphal development in Candida albicans. Eukaryot. Cell 12:482–95 [Google Scholar]
  104. Ray S, Kume K, Gupta S, Ge W, Balasubramanian M. et al. 2010. The mitosis-to-interphase transition is coordinated by cross talk between the SIN and MOR pathways in Schizosaccharomyces pombe. J. Cell Biol. 190:793–805 [Google Scholar]
  105. Revilla-Guarinos MT, Martin-Garcia R, Villar-Tajadura MA, Estravis M, Coll PM, Perez P. 2016. Rga6 is a fission yeast Rho GAP involved in Cdc42 regulation of polarized growth. Mol. Biol. Cell 27:1524–35 [Google Scholar]
  106. Richman TJ, Sawyer MM, Johnson DI. 2002. Saccharomyces cerevisiae Cdc42p localizes to cellular membranes and clusters at sites of polarized growth. Eukaryot. Cell 1:458–68 [Google Scholar]
  107. Rincon SA, Estravis M, Dingli F, Loew D, Tran PT, Paoletti A. 2017. SIN-dependent dissociation of the SAD kinase Cdr2 from the cell cortex resets the division plane. Curr. Biol. 27:534–42 [Google Scholar]
  108. Roemer T, Madden K, Chang J, Snyder M. 1996. Selection of axial growth sites in yeast requires Axl2p, a novel plasma membrane glycoprotein. Genes Dev 10:777–93 [Google Scholar]
  109. Sagot I, Klee SK, Pellman D. 2002. Yeast formins regulate cell polarity by controlling the assembly of actin cables. Nat. Cell Biol. 4:42–50 [Google Scholar]
  110. Saito K, Fujimura-Kamada K, Hanamatsu H, Kato U, Umeda M. et al. 2007. Transbilayer phospholipid flipping regulates Cdc42p signaling during polarized cell growth via Rga GTPase-activating proteins. Dev. Cell 13:743–51 [Google Scholar]
  111. Savage NS, Layton AT, Lew DJ. 2012. Mechanistic mathematical model of polarity in yeast. Mol. Biol. Cell 23:1998–2013 [Google Scholar]
  112. Scheffler K, Recouvreux P, Paoletti A, Tran PT. 2014. Oscillatory AAA+ ATPase Knk1 constitutes a novel morphogenetic pathway in fission yeast. PNAS 111:17899–904 [Google Scholar]
  113. Schott D, Ho J, Pruyne D, Bretscher A. 1999. The COOH-terminal domain of Myo2p, a yeast myosin V, has a direct role in secretory vesicle targeting. J. Cell Biol. 147:791–808 [Google Scholar]
  114. Schott DH, Collins RN, Bretscher A. 2002. Secretory vesicle transport velocity in living cells depends on the myosin-V lever arm length. J. Cell Biol. 156:35–39 [Google Scholar]
  115. Shimada Y, Wiget P, Gulli MP, Bi E, Peter M. 2004. The nucleotide exchange factor Cdc24p may be regulated by auto-inhibition. EMBO J 23:1051–62 [Google Scholar]
  116. Sloat BF, Adams AEM, Pringle JR. 1981. Roles of the CDC24 gene product in cellular morphogenesis during the Saccharomyces cerevisiae cell cycle. J. Cell Biol. 89:395–405 [Google Scholar]
  117. Snaith HA, Samejima I, Sawin KE. 2005. Multistep and multimode cortical anchoring of tea1p at cell tips in fission yeast. EMBO J 24:3690–99 [Google Scholar]
  118. Snaith HA, Sawin KE. 2003. Fission yeast mod5p regulates polarized growth through anchoring of tea1p at cell tips. Nature 423:647–51 [Google Scholar]
  119. Sohrmann M, Fankhauser C, Brodbeck C, Simanis V. 1996. The dmf1/mid1 gene is essential for correct positioning of the division septum in fission yeast. Genes Dev. 10:2707–19 [Google Scholar]
  120. Sopko R, Huang D, Smith JC, Figeys D, Andrews BJ. 2007. Activation of the Cdc42p GTPase by cyclin-dependent protein kinases in budding yeast. EMBO J 26:4487–500 [Google Scholar]
  121. Takeda T, Kawate T, Chang F. 2004. Organization of a sterol-rich membrane domain by cdc15p during cytokinesis in fission yeast. Nat. Cell Biol. 6:1142–44 [Google Scholar]
  122. Tatebe H, Nakano K, Maximo R, Shiozaki K. 2008. Pom1 DYRK regulates localization of the Rga4 GAP to ensure bipolar activation of Cdc42 in fission yeast. Curr. Biol. 18:322–30 [Google Scholar]
  123. Tatebe H, Shimada K, Uzawa S, Morigasaki S, Shiozaki K. 2005. Wsh3/Tea4 is a novel cell-end factor essential for bipolar distribution of Tea1 and protects cell polarity under environmental stress in S. pombe. Curr. Biol. 15:1006–15 [Google Scholar]
  124. Terenna CR, Makushok T, Velve-Casquillas G, Baigl D, Chen Y. et al. 2008. Physical mechanisms redirecting cell polarity and cell shape in fission yeast. Curr. Biol. 18:1748–53 [Google Scholar]
  125. Tiedje C, Sakwa I, Just U, Hofken T. 2008. The Rho GDI Rdi1 regulates Rho GTPases by distinct mechanisms. Mol. Biol. Cell 19:2885–96 [Google Scholar]
  126. Tolic-Norrelykke IM, Sacconi L, Stringari C, Raabe I, Pavone FS. 2005. Nuclear and division-plane positioning revealed by optical micromanipulation. Curr. Biol. 15:1212–16 [Google Scholar]
  127. Tong Z, Gao XD, Howell AS, Bose I, Lew DJ, Bi E. 2007. Adjacent positioning of cellular structures enabled by a Cdc42 GTPase-activating protein-mediated zone of inhibition. J. Cell Biol. 179:1375–84 [Google Scholar]
  128. Tran PT, Marsh L, Doye V, Inoue S, Chang F. 2001. A mechanism for nuclear positioning in fission yeast based on microtubule pushing. J. Cell Biol. 153:397–411 [Google Scholar]
  129. Vavylonis D, Wu JQ, Hao S, O'Shaughnessy B, Pollard TD. 2008. Assembly mechanism of the contractile ring for cytokinesis by fission yeast. Science 319:97–100 [Google Scholar]
  130. Verde F, Mata J, Nurse P. 1995. Fission yeast cell morphogenesis: identification of new genes and analysis of their role during the cell cycle. J. Cell Biol. 131:1529–38 [Google Scholar]
  131. Verde F, Wiley DJ, Nurse P. 1998. Fission yeast orb6, a ser/thr protein kinase related to mammalian rho kinase and myotonic dystrophy kinase, is required for maintenance of cell polarity and coordinates cell morphogenesis with the cell cycle. PNAS 95:7526–31 [Google Scholar]
  132. Wachtler V, Rajagopalan S, Balasubramanian MK. 2003. Sterol-rich plasma membrane domains in the fission yeast Schizosaccharomyces pombe. J. Cell Sci. 116:867–74 [Google Scholar]
  133. Wai SC, Gerber SA, Li R. 2009. Multisite phosphorylation of the guanine nucleotide exchange factor Cdc24 during yeast cell polarization. PLOS ONE 4:e6563 [Google Scholar]
  134. Watson LJ, Rossi G, Brennwald P. 2014. Quantitative analysis of membrane trafficking in regulation of Cdc42 polarity. Traffic 15:1330–43 [Google Scholar]
  135. Wedlich-Soldner R, Altschuler S, Wu L, Li R. 2003. Spontaneous cell polarization through actomyosin-based delivery of the Cdc42 GTPase. Science 299:1231–35 [Google Scholar]
  136. Wei B, Hercyk BS, Mattson N, Mohammadi A, Rich J. et al. 2016. Unique spatiotemporal activation pattern of Cdc42 by Gef1 and Scd1 promotes different events during cytokinesis. Mol. Biol. Cell 27:1235–45 [Google Scholar]
  137. Witte KL, Strickland D, Glotzer M. 2017. Cell cycle entry triggers a switch between two modes of Cdc42 activation during yeast polarization. eLife In press. https://doi.org/10.7554/eLife.26722 [Crossref]
  138. Woods B, Kuo CC, Wu CF, Zyla TR, Lew DJ. 2015. Polarity establishment requires localized activation of Cdc42. J. Cell Biol. 211:19–26 [Google Scholar]
  139. Woods B, Lai H, Wu CF, Zyla TR, Savage NS, Lew DJ. 2016. Parallel actin-independent recycling pathways polarize Cdc42 in budding yeast. Curr. Biol. 26:2114–26 [Google Scholar]
  140. Woods B, Lew DJ. 2017. Polarity establishment by Cdc42: key roles for positive feedback and differential mobility. Small GTPasesIn press https://doi.org/10.1080/21541248.2016.1275370 [Crossref]
  141. Wu CF, Chiou JG, Minakova M, Woods B, Tsygankov D. et al. 2015. Role of competition between polarity sites in establishing a unique front. eLife 4:e11611 [Google Scholar]
  142. Wu CF, Lew DJ. 2013. Beyond symmetry-breaking: competition and negative feedback in GTPase regulation. Trends Cell Biol 23:476–83 [Google Scholar]
  143. Wu CF, Savage NS, Lew DJ. 2013. Interaction between bud-site selection and polarity-establishment machineries in budding yeast. Philos. Trans. R. Soc. B Biol. Sci. 368:20130006 [Google Scholar]
  144. Wu H, Turner C, Gardner J, Temple B, Brennwald P. 2010. The Exo70 subunit of the exocyst is an effector for both Cdc42 and Rho3 function in polarized exocytosis. Mol. Biol. Cell 21:430–42 [Google Scholar]
  145. Wu JQ, Sirotkin V, Kovar DR, Lord M, Beltzner CC. et al. 2006. Assembly of the cytokinetic contractile ring from a broad band of nodes in fission yeast. J. Cell Biol. 174:391–402 [Google Scholar]
  146. Zheng Y, Bender A, Cerione RA. 1995. Interactions among proteins involved in bud-site selection and bud-site assembly in Saccharomyces cerevisiae. J. Biol. Chem. 270:626–30 [Google Scholar]
  147. Ziman M, Johnson DI. 1994. Genetic evidence for a functional interaction between Saccharomyces cerevisiae CDC24. CDC42. Yeast 10:463–74 [Google Scholar]
  148. Ziman M, Preuss D, Mulholland J, O'Brien JM, Botstein D, Johnson DI. 1993. Subcellular localization of Cdc42p, a Saccharomyces cerevisiae GTP-binding protein involved in the control of cell polarity. Mol. Biol. Cell 4:1307–16 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error