Animal development depends on not only the linear genome sequence that embeds millions of -regulatory elements, but also the three-dimensional (3D) chromatin architecture that orchestrates the interplay between -regulatory elements and their target genes. Compared to our knowledge of the -regulatory sequences, the understanding of the 3D genome organization in human and other eukaryotes is still limited. Recent advances in technologies to map the 3D genome architecture have greatly accelerated the pace of discovery. Here, we review emerging concepts of chromatin organization in mammalian cells, discuss the dynamics of chromatin conformation during development, and highlight important roles for chromatin organization in cancer and other human diseases.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Apostolou E, Ferrari F, Walsh RM, Bar-Nur O, Stadtfeld M. et al. 2013. Genome-wide chromatin interactions of the Nanog locus in pluripotency, differentiation, and reprogramming. Cell Stem Cell 12:6699–712 [Google Scholar]
  2. Battulin N, Fishman VS, Mazur AM, Pomaznoy M, Khabarova AA. et al. 2015. Comparison of the three-dimensional organization of sperm and fibroblast genomes using the Hi-C approach. Genome Biol 16:177 [Google Scholar]
  3. Beagan JA, Gilgenast TG, Kim J, Plona Z, Norton HK. et al. 2016. Local genome topology can exhibit an incompletely rewired 3D-folding state during somatic cell reprogramming. Cell Stem Cell 18:5611–24 [Google Scholar]
  4. Beliveau BJ, Apostolopoulos N, Wu C-T. 2014. Visualizing genomes with Oligopaint FISH probes. Curr. Protoc. Mol. Biol. 105:14.231–20 [Google Scholar]
  5. Benedetti F, Dorier J, Burnier Y, Stasiak A. 2014. Models that include supercoiling of topological domains reproduce several known features of interphase chromosomes. Nucleic Acids Res 42:52848–55 [Google Scholar]
  6. Berlivet S, Paquette D, Dumouchel A, Langlais D, Dostie J, Kmita M. 2013. Clustering of tissue-specific sub-TADs accompanies the regulation of HoxA genes in developing limbs. PLOS Genet 9:12e1004018 [Google Scholar]
  7. Bolzer A, Kreth G, Solovei I, Koehler D, Saracoglu K. et al. 2005. Three-dimensional maps of all chromosomes in human male fibroblast nuclei and prometaphase rosettes. PLOS Biol 3:5e157 [Google Scholar]
  8. Bornfleth H, Edelmann P, Zink D, Cremer T, Cremer C. 1999. Quantitative motion analysis of subchromosomal foci in living cells using four-dimensional microscopy. Biophys. J. 77:52871–86 [Google Scholar]
  9. Branco MR, Pombo A. 2006. Intermingling of chromosome territories in interphase suggests role in translocations and transcription-dependent associations. PLOS Biol 4:5e138 [Google Scholar]
  10. Bunting KL, Soong TD, Singh R, Jiang Y, Béguelin W. et al. 2016. Multi-tiered reorganization of the genome during B cell affinity maturation anchored by a germinal center–specific locus control region. Immunity 45:3497–512 [Google Scholar]
  11. Burton JN, Adey A, Patwardhan RP, Qiu R, Kitzman JO, Shendure J. 2013. Chromosome-scale scaffolding of de novo genome assemblies based on chromatin interactions. Nat. Biotechnol. 31:121119–25 [Google Scholar]
  12. Chen B, Guan J, Huang B. 2016. Imaging specific genomic DNA in living cells. Annu. Rev. Biophys. 45:11–23 http://dx.doi.org/10.1146/annurev-biophys-062215-010830 [Crossref] [Google Scholar]
  13. Crane E, Bian Q, McCord RP, Lajoie BR, Wheeler BS. et al. 2015. Condensin-driven remodelling of X chromosome topology during dosage compensation. Nature 523:7559240–44 [Google Scholar]
  14. Cremer M, Grasser F, Lanctôt C, Müller S, Neusser M. et al. 2008. Multicolor 3D fluorescence in situ hybridization for imaging interphase chromosomes. Methods Mol. Biol. 463:Chapter 15205–39 [Google Scholar]
  15. Cremer T, Cremer M. 2010. Chromosome territories. Cold Spring Harb. Perspect. Biol. 2:3a003889 [Google Scholar]
  16. Croft JA, Bridger JM, Boyle S, Perry P, Teague P, Bickmore WA. 1999. Differences in the localization and morphology of chromosomes in the human nucleus. J. Cell Biol. 145:61119–31 [Google Scholar]
  17. Darrow EM, Huntley MH, Dudchenko O, Stamenova EK, Durand NC. et al. 2016. Deletion of DXZ4 on the human inactive X chromosome alters higher-order genome architecture. PNAS 113:31E4504–12 [Google Scholar]
  18. de Wit E, Bouwman BAM, Zhu Y, Klous P, Splinter E. et al. 2013. The pluripotent genome in three dimensions is shaped around pluripotency factors. Nature 501:7466227–31 [Google Scholar]
  19. de Wit E, Vos ESM, Holwerda SJB, Valdes-Quezada C, Verstegen MJAM. et al. 2015. CTCF binding polarity determines chromatin looping. Mol. Cell 60:4676–84 [Google Scholar]
  20. Dekker J. 2014. Two ways to fold the genome during the cell cycle: insights obtained with chromosome conformation capture. Epigenet. Chromatin 7:125 [Google Scholar]
  21. Dekker J. 2016. Mapping the 3D genome: aiming for consilience. Nat. Rev. Mol. Cell Biol. 17:12741–42 [Google Scholar]
  22. Dekker J, Belmont AS, Guttman M, Leshyk VO, Lis JT. et al. 2017. The 4D Nucleome Project. bioRxiv 103499: https://doi.org/10.1101/103499 [Crossref] [Google Scholar]
  23. Dekker J, Heard E. 2015. Structural and functional diversity of topologically associating domains. FEBS Lett 589:20A2877–84 [Google Scholar]
  24. Dekker J, Rippe K, Dekker M, Kleckner N. 2002. Capturing chromosome conformation. Science 295:55581306–11 [Google Scholar]
  25. Denholtz M, Bonora G, Chronis C, Splinter E, de Laat W. et al. 2013. Long-range chromatin contacts in embryonic stem cells reveal a role for pluripotency factors and polycomb proteins in genome organization. Cell Stem Cell 13:5602–16 [Google Scholar]
  26. Deng W, Lee J, Wang H, Miller J, Reik A. et al. 2012. Controlling long-range genomic interactions at a native locus by targeted tethering of a looping factor. Cell 149:61233–44 [Google Scholar]
  27. Deng W, Rupon JW, Krivega I, Breda L, Motta I. et al. 2014. Reactivation of developmentally silenced globin genes by forced chromatin looping. Cell 158:4849–60 [Google Scholar]
  28. Deng X, Ma W, Ramani V, Hill A, Yang F. et al. 2015. Bipartite structure of the inactive mouse X chromosome. Genome Biol 16:1152 [Google Scholar]
  29. Dixon JR, Gorkin DU, Ren B. 2016. Chromatin domains: the unit of chromosome organization. Mol. Cell 62:5668–80 [Google Scholar]
  30. Dixon JR, Jung I, Selvaraj S, Shen Y, Antosiewicz-Bourget JE. et al. 2015. Chromatin architecture reorganization during stem cell differentiation. Nature 518:7539331–36 [Google Scholar]
  31. Dixon JR, Selvaraj S, Yue F, Kim A, Li Y. et al. 2012. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485:7398376–80 [Google Scholar]
  32. Dostie J, Richmond TA, Arnaout RA, Selzer RR, Lee WL. et al. 2006. Chromosome Conformation Capture Carbon Copy (5C): a massively parallel solution for mapping interactions between genomic elements. Genome Res 16:101299–309 [Google Scholar]
  33. Dowen JM, Fan ZP, Hnisz D, Ren G, Abraham BJ. et al. 2014. Control of cell identity genes occurs in insulated neighborhoods in mammalian chromosomes. Cell 159:2374–87 [Google Scholar]
  34. Dryden NH, Broome LR, Dudbridge F, Johnson N, Orr N. et al. 2014. Unbiased analysis of potential targets of breast cancer susceptibility loci by Capture Hi-C. Genome Res 24:111854–68 [Google Scholar]
  35. Durand NC, Robinson JT, Shamim MS, Machol I, Mesirov JP. et al. 2016. Juicebox provides a visualization system for Hi-C contact maps with unlimited zoom. Cell Syst 3:199–101 [Google Scholar]
  36. ENCODE Project Consortium. 2012. An integrated encyclopedia of DNA elements in the human genome. Nature 489:741457–74 [Google Scholar]
  37. Fang R, Yu M, Li G, Chee S, Liu T. et al. 2016. Mapping of long-range chromatin interactions by proximity ligation–assisted ChIP-seq. Cell Res 26:121345–48 [Google Scholar]
  38. Filion GJ, van Bemmel JG, Braunschweig U, Talhout W, Kind J. et al. 2010. Systematic protein location mapping reveals five principal chromatin types in Drosophila cells. Cell 143:2212–24 [Google Scholar]
  39. Flavahan WA, Drier Y, Liau BB, Gillespie SM, Venteicher AS. et al. 2016. Insulator dysfunction and oncogene activation in IDH mutant gliomas. Nature 529:7584110–14 [Google Scholar]
  40. Flyamer IM, Gassler J, Imakaev M, Brandão HM, Ulianov SB. et al. 2017. Single-nucleus Hi-C reveals unique chromatin reorganization at oocyte-to-zygote transition. Nature 544:7648110–14 [Google Scholar]
  41. Franke M, Ibrahim DM, Andrey G, Schwarzer W, Heinrich V. et al. 2016. Formation of new chromatin domains determines pathogenicity of genomic duplications. Nature 538:7624265–69 [Google Scholar]
  42. Fudenberg G, Imakaev M, Lu C, Goloborodko A, Abdennur N, Mirny LA. 2016. Formation of chromosomal domains by loop extrusion. Cell Rep 15:92038–49 [Google Scholar]
  43. Fullwood MJ, Liu MH, Pan YF, Liu J, Xu H. et al. 2009. An oestrogen-receptor-alpha-bound human chromatin interactome. Nature 462:726958–64 [Google Scholar]
  44. Gaszner M, Felsenfeld G. 2006. Insulators: exploiting transcriptional and epigenetic mechanisms. Nat. Rev. Genet. 7:9703–13 [Google Scholar]
  45. Giorgetti L, Lajoie BR, Carter AC, Attia M, Zhan Y. et al. 2016. Structural organization of the inactive X chromosome in the mouse. Nature 535:7613575–79 [Google Scholar]
  46. Giorgio E, Robyr D, Spielmann M, Ferrero E, Di Gregorio E. et al. 2015. A large genomic deletion leads to enhancer adoption by the lamin B1 gene: a second path to autosomal dominant adult-onset demyelinating leukodystrophy (ADLD). Hum. Mol. Genet. 24:113143–54 [Google Scholar]
  47. Goloborodko A, Imakaev MV, Marko JF, Mirny L. 2016. Compaction and segregation of sister chromatids via active loop extrusion. eLife 5:11202 [Google Scholar]
  48. Gómez-Marín C, Tena JJ, Acemel RD, López-Mayorga M, Naranjo S. et al. 2015. Evolutionary comparison reveals that diverging CTCF sites are signatures of ancestral topological associating domains borders. PNAS 112:247542–47 [Google Scholar]
  49. Grasser F, Neusser M, Fiegler H, Thormeyer T, Cremer M. et al. 2008. Replication-timing-correlated spatial chromatin arrangements in cancer and in primate interphase nuclei. J. Cell Sci. 121:111876–86 [Google Scholar]
  50. Guo Y, Xu Q, Canzio D, Shou J, Li J. et al. 2015. CRISPR inversion of CTCF sites alters genome topology and enhancer/promoter function. Cell 162:4900–910 [Google Scholar]
  51. Hadjur S, Williams LM, Ryan NK, Cobb BS, Sexton T. et al. 2009. Cohesins form chromosomal cis-interactions at the developmentally regulated IFNG locus. Nature 460:7253410–13 [Google Scholar]
  52. Hindorff LA, Sethupathy P, Junkins HA, Ramos EM, Mehta JP. et al. 2009. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. PNAS 106:239362–67 [Google Scholar]
  53. Hiratani I, Ryba T, Itoh M, Yokochi T, Schwaiger M. et al. 2008. Global reorganization of replication domains during embryonic stem cell differentiation. PLOS Biol 6:10e245 [Google Scholar]
  54. Hnisz D, Day DS, Young RA. 2016a. Insulated neighborhoods: structural and functional units of mammalian gene control. Cell 167:51188–200 [Google Scholar]
  55. Hnisz D, Weintraub AS, Day DS, Valton AL, Bak RO. et al. 2016b. Activation of proto-oncogenes by disruption of chromosome neighborhoods. Science 351:62801454–58 [Google Scholar]
  56. Horakova AH, Moseley SC, McLaughlin CR, Tremblay DC, Chadwick BP. 2012. The macrosatellite DXZ4 mediates CTCF-dependent long-range intrachromosomal interactions on the human inactive X chromosome. Hum. Mol. Genet. 21:204367–77 [Google Scholar]
  57. Hsieh T-HS, Weiner A, Lajoie B, Dekker J, Friedman N, Rando OJ. 2015. Mapping nucleosome resolution chromosome folding in yeast by Micro-C. Cell 162:1108–19 [Google Scholar]
  58. Hughes JR, Roberts N, McGowan S, Hay D, Giannoulatou E. et al. 2014. Analysis of hundreds of cis-regulatory landscapes at high resolution in a single, high-throughput experiment. Nat. Genet. 46:2205–12 [Google Scholar]
  59. Ibn-Salem J, Köhler S, Love MI, Chung H-R, Huang N. et al. 2014. Deletions of chromosomal regulatory boundaries are associated with congenital disease. Genome Biol 15:9423 [Google Scholar]
  60. Jackson DA, Pombo A. 1998. Replicon clusters are stable units of chromosome structure: evidence that nuclear organization contributes to the efficient activation and propagation of S phase in human cells. J. Cell Biol. 140:61285–95 [Google Scholar]
  61. Javierre BM, Burren OS, Wilder SP, Kreuzhuber R, Hill SM. et al. 2016. Lineage-specific genome architecture links enhancers and non-coding disease variants to target gene promoters. Cell 167:51369–84.e19 [Google Scholar]
  62. Ji X, Dadon DB, Powell BE, Fan ZP, Borges-Rivera D. et al. 2016. 3D chromosome regulatory landscape of human pluripotent cells. Cell Stem Cell 18:2262–75 [Google Scholar]
  63. Jin F, Li Y, Dixon JR, Selvaraj S, Ye Z. et al. 2013. A high-resolution map of the three-dimensional chromatin interactome in human cells. Nature 503:7475290–94 [Google Scholar]
  64. Joshi O, Wang S-Y, Kuznetsova T, Atlasi Y, Peng T. et al. 2015. Dynamic reorganization of extremely long-range promoter-promoter interactions between two states of pluripotency. Cell Stem Cell 17:6748–57 [Google Scholar]
  65. Kagey MH, Newman JJ, Bilodeau S, Zhan Y, Orlando DA. et al. 2010. Mediator and cohesin connect gene expression and chromatin architecture. Nature 467:7314430–35 [Google Scholar]
  66. Kalhor R, Tjong H, Jayathilaka N, Alber F, Chen L. 2011. Genome architectures revealed by tethered chromosome conformation capture and population-based modeling. Nat. Biotechnol. 30:190–98 [Google Scholar]
  67. Kaplan N, Dekker J. 2013. High-throughput genome scaffolding from in vivo DNA interaction frequency. Nat. Biotechnol. 31:121143–47 [Google Scholar]
  68. Katainen R, Dave K, Pitkänen E, Palin K, Kivioja T. et al. 2015. CTCF/cohesin-binding sites are frequently mutated in cancer. Nat. Genet. 47:7818–21 [Google Scholar]
  69. Kim T-K, Shiekhattar R. 2015. Architectural and functional commonalities between enhancers and promoters. Cell 162:5948–59 [Google Scholar]
  70. Krijger PHL, Di Stefano B, de Wit E, Limone F, van Oevelen C. et al. 2016. Cell-of-origin-specific 3D genome structure acquired during somatic cell reprogramming. Cell Stem Cell 18:5597–610 [Google Scholar]
  71. Lakadamyali M, Cosma MP. 2015. Advanced microscopy methods for visualizing chromatin structure. FEBS Lett 589:20A3023–30 [Google Scholar]
  72. Langer-Safer PR, Levine M, Ward DC. 1982. Immunological method for mapping genes on Drosophila polytene chromosomes. PNAS 79:144381–85 [Google Scholar]
  73. Lee TI, Young RA. 2013. Transcriptional regulation and its misregulation in disease. Cell 152:61237–51 [Google Scholar]
  74. Levine M. 2010. Transcriptional enhancers in animal development and evolution. Curr. Biol. 20:17R754–63 [Google Scholar]
  75. Levine M, Cattoglio C, Tjian R. 2014. Looping back to leap forward: Transcription enters a new era. Cell 157:113–25 [Google Scholar]
  76. Li G, Ruan X, Auerbach RK, Sandhu KS, Zheng M. et al. 2012. Extensive promoter-centered chromatin interactions provide a topological basis for transcription regulation. Cell 148:1–284–98 [Google Scholar]
  77. Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T. et al. 2009. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326:5950289–93 [Google Scholar]
  78. Lucas JS, Zhang Y, Dudko OK, Murre C. 2014. 3D trajectories adopted by coding and regulatory DNA elements: first-passage times for genomic interactions. Cell 158:2339–52 [Google Scholar]
  79. Lupiáñez DG, Kraft K, Heinrich V, Krawitz P, Brancati F. et al. 2015. Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions. Cell 161:51012–25 [Google Scholar]
  80. Ma W, Ay F, Lee C, Gülsoy G, Deng X. et al. 2015. Fine-scale chromatin interaction maps reveal the cis-regulatory landscape of human lincRNA genes. Nat. Methods 12:171–78 [Google Scholar]
  81. MacArthur J, Bowler E, Cerezo M, Gil L, Hall P. et al. 2017. The new NHGRI-EBI Catalog of published genome-wide association studies (GWAS Catalog). Nucleic Acids Res 45:D1D896–901 [Google Scholar]
  82. Marshall WF, Straight A, Marko JF, Swedlow J, Dernburg A. et al. 1997. Interphase chromosomes undergo constrained diffusional motion in living cells. Curr. Biol. 7:12930–39 [Google Scholar]
  83. Maurano MT, Humbert R, Rynes E, Thurman RE, Haugen E. et al. 2012. Systematic localization of common disease-associated variation in regulatory DNA. Science 337:60991190–95 [Google Scholar]
  84. Mifsud B, Tavares-Cadete F, Young AN, Sugar R, Schoenfelder S. et al. 2015. Mapping long-range promoter contacts in human cells with high-resolution capture Hi-C. Nat. Genet. 47:6598–606 [Google Scholar]
  85. Minajigi A, Froberg JE, Wei C, Sunwoo H, Kesner B. et al. 2015. A comprehensive Xist interactome reveals cohesin repulsion and an RNA-directed chromosome conformation. Science 349:6245aab2276 [Google Scholar]
  86. Mizuguchi T, Barrowman J, Grewal SIS. 2015. Chromosome domain architecture and dynamic organization of the fission yeast genome. FEBS Lett 589:20A2975–86 [Google Scholar]
  87. Roy S, Ernst J, Kharchenko PV, Kheradpour P. modENCODE Consortium et al. 2010. Identification of functional elements and regulatory circuits by Drosophila modENCODE. Science 330:60121787–97 [Google Scholar]
  88. Mumbach MR, Rubin AJ, Flynn RA, Dai C, Khavari PA. et al. 2016. HiChIP: efficient and sensitive analysis of protein-directed genome architecture. Nat. Methods 13:919–22 [Google Scholar]
  89. Nagano T, Lubling Y, Stevens TJ, Schoenfelder S, Yaffe E. et al. 2013. Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature 502:746959–64 [Google Scholar]
  90. Nagano T, Lubling Y, Várnai C, Dudley C, Leung W. et al. 2017. Cell cycle dynamics of chromosomal organisation at single-cell resolution. Nature 547:766161–67 [Google Scholar]
  91. Narendra V, Rocha PP, An D, Raviram R, Skok JA. et al. 2015. CTCF establishes discrete functional chromatin domains at the Hox clusters during differentiation. Science 347:62251017–21 [Google Scholar]
  92. Naughton C, Avlonitis N, Corless S, Prendergast JG, Mati IK. et al. 2013. Transcription forms and remodels supercoiling domains unfolding large-scale chromatin structures. Nat. Struct. Mol. Biol. 20:3387–95 [Google Scholar]
  93. Naumova N, Imakaev M, Fudenberg G, Zhan Y, Lajoie BR. et al. 2013. Organization of the mitotic chromosome. Science 342:6161948–53 [Google Scholar]
  94. Nora EP, Lajoie BR, Schulz EG, Giorgetti L, Okamoto I. et al. 2012. Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature 485:7398381–85 [Google Scholar]
  95. Ong C-T, Corces VG. 2011. Enhancer function: new insights into the regulation of tissue-specific gene expression. Nat. Rev. Genet. 12:4283–93 [Google Scholar]
  96. Parada LA, Roix JJ, Misteli T. 2003. An uncertainty principle in chromosome positioning. Trends Cell Biol 13:8393–96 [Google Scholar]
  97. Paweletz N. 2001. Walther Flemming: pioneer of mitosis research. Nat. Rev. Mol. Cell Biol. 2:72–75 [Google Scholar]
  98. Pepenella S, Murphy KJ, Hayes JJ. 2014. Intra- and inter-nucleosome interactions of the core histone tail domains in higher-order chromatin structure. Chromosoma 123:1–23–13 [Google Scholar]
  99. Phillips JE, Corces VG. 2009. CTCF: master weaver of the genome. Cell 137:71194–211 [Google Scholar]
  100. Phillips-Cremins JE, Sauria MEG, Sanyal A, Gerasimova TI, Lajoie BR. et al. 2013. Architectural protein subclasses shape 3D organization of genomes during lineage commitment. Cell 153:61281–95 [Google Scholar]
  101. Pope BD, Ryba T, Dileep V, Yue F, Wu W. et al. 2014. Topologically associating domains are stable units of replication-timing regulation. Nature 515:7527402–5 [Google Scholar]
  102. Ramani V, Deng X, Qiu R, Gunderson KL, Steemers FJ. et al. 2017. Massively multiplex single-cell Hi-C. Nat. Methods 14:263–66 [Google Scholar]
  103. Rao SSP, Huntley MH, Durand NC, Stamenova EK, Bochkov ID. et al. 2014. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159:71665–80 [Google Scholar]
  104. Kundaje A, Meuleman W, Ernst J, Bilenky M. Roadmap Epigenomics Consortium et al. 2015. Integrative analysis of 111 reference human epigenomes. Nature 518:7539317–30 [Google Scholar]
  105. Ryba T, Hiratani I, Lu J, Itoh M, Kulik M. et al. 2010. Evolutionarily conserved replication timing profiles predict long-range chromatin interactions and distinguish closely related cell types. Genome Res 20:6761–70 [Google Scholar]
  106. Sanborn AL, Rao SSP, Huang S-C, Durand NC, Huntley MH. et al. 2015. Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes. PNAS 112:47E6456–65 [Google Scholar]
  107. Sanyal A, Lajoie BR, Jain G, Dekker J. 2012. The long-range interaction landscape of gene promoters. Nature 489:7414109–13 [Google Scholar]
  108. Schmitt AD, Hu M, Jung I, Xu Z, Qiu Y. et al. 2016a. A compendium of chromatin contact maps reveals spatially active regions in the human genome. Cell Rep 17:82042–59 [Google Scholar]
  109. Schmitt AD, Hu M, Ren B. 2016b. Genome-wide mapping and analysis of chromosome architecture. Nat. Rev. Mol. Cell Biol. 17:743–55 [Google Scholar]
  110. Schoenfelder S, Furlan-Magaril M, Mifsud B, Tavares-Cadete F, Sugar R. et al. 2015a. The pluripotent regulatory circuitry connecting promoters to their long-range interacting elements. Genome Res 25:4582–97 [Google Scholar]
  111. Schoenfelder S, Sugar R, Dimond A, Javierre B-M, Armstrong H. et al. 2015b. Polycomb repressive complex PRC1 spatially constrains the mouse embryonic stem cell genome. Nat. Genet. 47:101179–86 [Google Scholar]
  112. Selvaraj S, R Dixon J, Bansal V, Ren B. 2013. Whole-genome haplotype reconstruction using proximity-ligation and shotgun sequencing. Nat. Biotechnol. 31:121111–18 [Google Scholar]
  113. Sexton T, Yaffe E, Kenigsberg E, Bantignies F, Leblanc B. et al. 2012. Three-dimensional folding and functional organization principles of the Drosophila genome. Cell 148:3458–72 [Google Scholar]
  114. Simonis M, Klous P, Homminga I, Galjaard R-J, Rijkers E-J. et al. 2009. High-resolution identification of balanced and complex chromosomal rearrangements by 4C technology. Nat. Methods 6:11837–42 [Google Scholar]
  115. Smemo S, Tena JJ, Kim K-H, Gamazon ER, Sakabe NJ. et al. 2014. Obesity-associated variants within FTO form long-range functional connections with IRX3. Nature 507:7492371–75 [Google Scholar]
  116. Splinter E, Heath H, Kooren J, Palstra R-J, Klous P. et al. 2006. CTCF mediates long-range chromatin looping and local histone modification in the beta-globin locus. Genes Dev 20:172349–54 [Google Scholar]
  117. Stevens TJ, Lando D, Basu S, Atkinson LP, Cao Y. et al. 2017. 3D structures of individual mammalian genomes studied by single-cell Hi-C. Nature 544:764859–64 [Google Scholar]
  118. Symmons O, Pan L, Remeseiro S, Aktas T, Klein F. et al. 2016. The Shh topological domain facilitates the action of remote enhancers by reducing the effects of genomic distances. Dev. Cell 39:5529–43 [Google Scholar]
  119. Symmons O, Uslu VV, Tsujimura T, Ruf S, Nassari S. et al. 2014. Functional and topological characteristics of mammalian regulatory domains. Genome Res 24:3390–400 [Google Scholar]
  120. Takizawa T, Meaburn KJ, Misteli T. 2008. The meaning of gene positioning. Cell 135:19–13 [Google Scholar]
  121. Tang Z, Luo OJ, Li X, Zheng M, Zhu JJ. et al. 2015. CTCF-mediated human 3D genome architecture reveals chromatin topology for transcription. Cell 163:71611–27 [Google Scholar]
  122. Tolhuis B, Palstra R-J, Splinter E, Grosveld F, de Laat W. 2002. Looping and interaction between hypersensitive sites in the active beta-globin locus. Mol. Cell 10:61453–65 [Google Scholar]
  123. Ulianov SV, Khrameeva EE, Gavrilov AA, Flyamer IM, Kos P. et al. 2016. Active chromatin and transcription play a key role in chromosome partitioning into topologically associating domains. Genome Res 26:170–84 [Google Scholar]
  124. Uusküla-Reimand L, Hou H, Samavarchi-Tehrani P, Rudan MV, Liang M. et al. 2016. Topoisomerase II beta interacts with cohesin and CTCF at topological domain borders. Genome Biol 17:1182 [Google Scholar]
  125. Visser M, Kayser M, Palstra R-J. 2012. HERC2 rs12913832 modulates human pigmentation by attenuating chromatin-loop formation between a long-range enhancer and the OCA2 promoter. Genome Res 22:3446–55 [Google Scholar]
  126. Walter J, Joffe B, Bolzer A, Albiez H, Benedetti PA. et al. 2006. Towards many colors in FISH on 3D-preserved interphase nuclei. Cytogenet. Genome Res. 114:3–4367–78 [Google Scholar]
  127. Wang C, Liu C, Roqueiro D, Grimm D, Schwab R. et al. 2015. Genome-wide analysis of local chromatin packing in Arabidopsis thaliana. Genome Res. 25:2246–56 [Google Scholar]
  128. Wang S, Su J-H, Beliveau BJ, Bintu B, Moffitt JR. et al. 2016. Spatial organization of chromatin domains and compartments in single chromosomes. Science 353:6299598–602 [Google Scholar]
  129. Wei Z, Gao F, Kim S, Yang H, Lyu J. et al. 2013. Klf4 organizes long-range chromosomal interactions with the Oct4 locus in reprogramming and pluripotency. Cell Stem Cell 13:136–47 [Google Scholar]
  130. Williamson I, Berlivet S, Eskeland R, Boyle S, Illingworth RS. et al. 2014. Spatial genome organization: contrasting views from chromosome conformation capture and fluorescence in situ hybridization. Genes Dev 28:242778–91 [Google Scholar]
  131. Won H, de la Torre–Ubieta L, Stein JL, Parikshak NN, Huang J. et al. 2016. Chromosome conformation elucidates regulatory relationships in developing human brain. Nature 538:7626523–27 [Google Scholar]
  132. Yue F, Cheng Y, Breschi A, Vierstra J, Wu W. et al. 2014. A comparative encyclopedia of DNA elements in the mouse genome. Nature 515:7527355–64 [Google Scholar]
  133. Zhan Y, Mariani L, Barozzi I, Schulz EG, Blüthgen N. et al. 2017. Reciprocal insulation analysis of Hi-C data shows that TADs represent a functionally but not structurally privileged scale in the hierarchical folding of chromosomes. Genome Res 27:3479–90 [Google Scholar]
  134. Zhang H, Jiao W, Sun L, Fan J, Chen M. et al. 2013. Intrachromosomal looping is required for activation of endogenous pluripotency genes during reprogramming. Cell Stem Cell 13:130–35 [Google Scholar]
  135. Zhang Y, Wong C-H, Birnbaum RY, Li G, Favaro R. et al. 2013. Chromatin connectivity maps reveal dynamic promoter-enhancer long-range associations. Nature 504:7479306–10 [Google Scholar]
  136. Zuin J, Dixon JR, van der Reijden MIJA, Ye Z, Kolovos P. et al. 2014. Cohesin and CTCF differentially affect chromatin architecture and gene expression in human cells. PNAS 111:3996–1001 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error