Lipid droplets (LDs) are ubiquitous organelles that store neutral lipids for energy or membrane synthesis and act as hubs for metabolic processes. Cells generate LDs de novo converting cells to emulsions with LDs constituting the dispersed oil phase in the aqueous cytoplasm. Here we review our current view of LD biogenesis. We present a model of LD formation from the ER in distinct steps and highlight the biology of proteins that govern this biophysical process. Areas of incomplete knowledge are identified, as are connections with physiology and diseases linked to alterations in LD biology.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Adeyo O, Horn PJ, Lee S, Binns DD, Chandrahas A. et al. 2011. The yeast lipin orthologue Pah1p is important for biogenesis of lipid droplets. J. Cell Biol. 192:1043–55 [Google Scholar]
  2. Altmann R. 1894. Die Elementarorganismen und ihre Beziehungen zu den Zellen Leipzig: Viet & Co271 [Google Scholar]
  3. Anderson RA, Joyce C, Davis M, Reagan JW, Clark M. et al. 1998. Identification of a form of acyl-CoA:cholesterol acyltransferase specific to liver and intestine in nonhuman primates. J. Biol. Chem. 273:26747–54 [Google Scholar]
  4. Anstee QM, Day CP. 2013. The genetics of NAFLD. Nat. Rev. Gastroenterol. Hepatol. 10:645–55 [Google Scholar]
  5. Bailey AP, Koster G, Guillermier C, Hirst EM, MacRae JI. et al. 2015. Antioxidant role for lipid droplets in a stem cell niche of Drosophila. Cell 163:340–53 [Google Scholar]
  6. Barneda D, Christian M. 2017. Lipid droplet growth: regulation of a dynamic organelle. Curr. Opin. Cell Biol. 47:9–15 [Google Scholar]
  7. Beller M, Riedel D, Jansch L, Dieterich G, Wehland J. et al. 2006. Characterization of the Drosophila lipid droplet subproteome. Mol. Cell. Proteom. 5:1082–94 [Google Scholar]
  8. Beller M, Sztalryd C, Southall N, Bell M, Jackle H. et al. 2008. COPI complex is a regulator of lipid homeostasis. PLOS Biol 6:e292 [Google Scholar]
  9. Binns D, Januszewski T, Chen Y, Hill J, Markin VS. et al. 2006. An intimate collaboration between peroxisomes and lipid bodies. J. Cell Biol. 173:719–31 [Google Scholar]
  10. Binns D, Lee S, Hilton CL, Jiang QX, Goodman JM. 2010. Seipin is a discrete homooligomer. Biochemistry 49:10747–55 [Google Scholar]
  11. Blackstone C. 2012. Cellular pathways of hereditary spastic paraplegia. Annu. Rev. Neurosci. 35:25–47 [Google Scholar]
  12. Brasaemle DL, Dolios G, Shapiro L, Wang R. 2004. Proteomic analysis of proteins associated with lipid droplets of basal and lipolytically stimulated 3T3-L1 adipocytes. J. Biol. Chem. 279:46835–42 [Google Scholar]
  13. Brasaemle DL, Rubin B, Harten IA, Gruia-Gray J, Kimmel AR, Londos C. 2000. Perilipin A increases triacylglycerol storage by decreasing the rate of triacylglycerol hydrolysis. J. Biol. Chem. 275:38486–93 [Google Scholar]
  14. Buhman KK, Chen HC, Farese RV Jr. 2001. The enzymes of neutral lipid synthesis. J. Biol. Chem. 276:40369–72 [Google Scholar]
  15. Bulankina AV, Deggerich A, Wenzel D, Mutenda K, Wittmann JG. et al. 2009. TIP47 functions in the biogenesis of lipid droplets. J. Cell Biol. 185:641–55 [Google Scholar]
  16. Carr RM, Ahima RS. 2016. Pathophysiology of lipid droplet proteins in liver diseases. Exp. Cell Res. 340:187–92 [Google Scholar]
  17. Cartwright BR, Binns DD, Hilton CL, Han S, Gao Q, Goodman JM. 2015. Seipin performs dissectible functions in promoting lipid droplet biogenesis and regulating droplet morphology. Mol. Biol. Cell 26:726–39 [Google Scholar]
  18. Cases S, Novak S, Zheng YW, Myers HM, Lear SR. et al. 1998a. ACAT-2, a second mammalian acyl-CoA:cholesterol acyltransferase: its cloning, expression, and characterization. J. Biol. Chem. 273:26755–64 [Google Scholar]
  19. Cases S, Smith SJ, Zheng YW, Myers HM, Lear SR. et al. 1998b. Identification of a gene encoding an acyl CoA:diacylglycerol acyltransferase, a key enzyme in triacylglycerol synthesis. PNAS 95:13018–23 [Google Scholar]
  20. Cases S, Stone SJ, Zhou P, Yen E, Tow B. et al. 2001. Cloning of DGAT2, a second mammalian diacylglycerol acyltransferase, and related family members. J. Biol. Chem. 276:38870–76 [Google Scholar]
  21. Cermelli S, Guo Y, Gross SP, Welte MA. 2006. The lipid-droplet proteome reveals that droplets are a protein-storage depot. Curr. Biol. 16:1783–95 [Google Scholar]
  22. Chang CC, Huh HY, Cadigan KM, Chang TY. 1993. Molecular cloning and functional expression of human acyl-coenzyme A:cholesterol acyltransferase cDNA in mutant Chinese hamster ovary cells. J. Biol. Chem. 268:20747–55 [Google Scholar]
  23. Chang CCY, Sun J, Chang T-Y. 2011. Membrane-bound O-acyltransferases (MBOATs). Front. Biol. 6:177 [Google Scholar]
  24. Chen HC, Smith SJ, Ladha Z, Jensen DR, Ferreira LD. et al. 2002. Increased insulin and leptin sensitivity in mice lacking acyl CoA:diacylglycerol acyltransferase 1. J. Clin. Investig. 109:1049–55 [Google Scholar]
  25. Chen S, Novick P, Ferro-Novick S. 2013. ER structure and function. Curr. Opin. Cell Biol. 25:428–33 [Google Scholar]
  26. Cheng D, Meegalla RL, He B, Cromley DA, Billheimer JT, Young PR. 2001. Human acyl-CoA:diacylglycerol acyltransferase is a tetrameric protein. Biochem. J. 359:707–14 [Google Scholar]
  27. Cheng D, Nelson TC, Chen J, Walker SG, Wardwell-Swanson J. et al. 2003. Identification of acyl coenzyme A:monoacylglycerol acyltransferase 3, an intestinal specific enzyme implicated in dietary fat absorption. J. Biol. Chem. 278:13611–14 [Google Scholar]
  28. Choudhary V, Jacquier N, Schneiter R. 2011. The topology of the triacylglycerol synthesizing enzyme Lro1 indicates that neutral lipids can be produced within the luminal compartment of the endoplasmatic reticulum: implications for the biogenesis of lipid droplets. Commun. Integr. Biol. 4:781–84 [Google Scholar]
  29. Choudhary V, Ojha N, Golden A, Prinz WA. 2015. A conserved family of proteins facilitates nascent lipid droplet budding from the ER. J. Cell Biol. 211:261–71 [Google Scholar]
  30. Coleman RA, Haynes EB. 1985. Subcellular location and topography of rat hepatic monoacylglycerol acyltransferase activity. Biochim. Biophys. Acta 834:180–87 [Google Scholar]
  31. Cornell R, Vance DE. 1987. Binding of CTP: phosphocholine cytidylyltransferase to large unilamellar vesicles. Biochim. Biophys. Acta 919:37–48 [Google Scholar]
  32. Cui X, Wang Y, Tang Y, Liu Y, Zhao L. et al. 2011. Seipin ablation in mice results in severe generalized lipodystrophy. Hum. Mol. Genet. 20:3022–30 [Google Scholar]
  33. Currie E, Guo X, Christiano R, Chitraju C, Kory N. et al. 2014. High confidence proteomic analysis of yeast LDs identifies additional droplet proteins and reveals connections to dolichol synthesis and sterol acetylation. J. Lipid Res. 55:1465–77 [Google Scholar]
  34. DeVita RJ, Pinto S. 2013. Current status of the research and development of diacylglycerol O-acyltransferase 1 (DGAT1) inhibitors. J. Med. Chem 569820–25 [Google Scholar]
  35. Devries-Seimon T, Li Y, Yao PM, Stone E, Wang Y. et al. 2005. Cholesterol-induced macrophage apoptosis requires ER stress pathways and engagement of the type A scavenger receptor. J. Cell Biol. 171:61–73 [Google Scholar]
  36. Ding Y, Yang L, Zhang S, Wang Y, Du Y. et al. 2012. Identification of the major functional proteins of prokaryotic lipid droplets. J. Lipid Res. 53:399–411 [Google Scholar]
  37. Dollet L, Magre J, Cariou B, Prieur X. 2014. Function of seipin: new insights from Bscl2/seipin knockout mouse models. Biochimie 96:166–72 [Google Scholar]
  38. Duelund L, Jensen GV, Hannibal-Bach HK, Ejsing CS, Pedersen JS. et al. 2013. Composition, structure and properties of POPC-triolein mixtures. Evidence of triglyceride domains in phospholipid bilayers. Biochim. Biophys. Acta 1828:1909–17 [Google Scholar]
  39. Eastman SW, Yassaee M, Bieniasz PD. 2009. A role for ubiquitin ligases and Spartin/SPG20 in lipid droplet turnover. J. Cell Biol. 184:881–94 [Google Scholar]
  40. Falk J, Rohde M, Bekhite MM, Neugebauer S, Hemmerich P. et al. 2014. Functional mutation analysis provides evidence for a role of REEP1 in lipid droplet biology. Hum. Mutat. 35:497–504 [Google Scholar]
  41. Fei W, Shui G, Gaeta B, Du X, Kuerschner L. et al. 2008. Fld1p, a functional homologue of human seipin, regulates the size of lipid droplets in yeast. J. Cell Biol. 180:473–82 [Google Scholar]
  42. Fei W, Shui G, Zhang Y, Krahmer N, Ferguson C. et al. 2011. A role for phosphatidic acid in the formation of “supersized” lipid droplets. PLOS Genet 7:e1002201 [Google Scholar]
  43. Fu D, Yu Y, Folick A, Currie E, Farese RV Jr.. et al. 2014. In vivo metabolic fingerprinting of neutral lipids with hyperspectral stimulated Raman scattering microscopy. J. Am. Chem. Soc. 136:8820–28 [Google Scholar]
  44. Gao M, Wang M, Guo X, Qiu X, Liu L. et al. 2015. Expression of seipin in adipose tissue rescues lipodystrophy, hepatic steatosis and insulin resistance in seipin null mice. Biochem. Biophys. Res. Commun. 460:143–50 [Google Scholar]
  45. Gao Q, Goodman JM. 2015. The lipid droplet—a well-connected organelle. Front. Cell Dev. Biol. 3:49 [Google Scholar]
  46. Goh VJ, Tan JS, Tan BC, Seow C, Ong WY. et al. 2015. Postnatal deletion of fat storage–inducing transmembrane protein 2 (FIT2/FITM2) causes lethal enteropathy. J. Biol. Chem. 290:25686–99 [Google Scholar]
  47. Gong J, Sun Z, Wu L, Xu W, Schieber N. et al. 2011. Fsp27 promotes lipid droplet growth by lipid exchange and transfer at lipid droplet contact sites. J. Cell Biol. 195:953–63 [Google Scholar]
  48. Greenberg AS, Coleman RA, Kraemer FB, McManaman JL, Obin MS. et al. 2011. The role of lipid droplets in metabolic disease in rodents and humans. J. Clin. Investig. 121:2102–10 [Google Scholar]
  49. Grippa A, Buxo L, Mora G, Funaya C, Idrissi FZ. et al. 2015. The seipin complex Fld1/Ldb16 stabilizes ER–lipid droplet contact sites. J. Cell Biol. 211:829–44 [Google Scholar]
  50. Gronke S, Mildner A, Fellert S, Tennagels N, Petry S. et al. 2005. Brummer lipase is an evolutionary conserved fat storage regulator in Drosophila. Cell Metab. 1:323–30 [Google Scholar]
  51. Gross DA, Zhan C, Silver DL. 2011. Direct binding of triglyceride to fat storage–inducing transmembrane proteins 1 and 2 is important for lipid droplet formation. PNAS 108:19581–86 [Google Scholar]
  52. Guo Y, Walther TC, Rao M, Stuurman N, Goshima G. et al. 2008. Functional genomic screen reveals genes involved in lipid-droplet formation and utilization. Nature 453:657–61 [Google Scholar]
  53. Haas JT, Winter HS, Lim E, Kirby A, Blumenstiel B. et al. 2012. DGAT1 mutation is linked to a congenital diarrheal disorder. J. Clin. Investig. 122:4680–84 [Google Scholar]
  54. Hamilton JA, Miller KW, Small DM. 1983. Solubilization of triolein and cholesteryl oleate in egg phosphatidylcholine vesicles. J. Biol. Chem. 258:12821–26 [Google Scholar]
  55. Hamilton JA, Small DM. 1981. Solubilization and localization of triolein in phosphatidylcholine bilayers: a 13C NMR study. PNAS 78:6878–82 [Google Scholar]
  56. Harris CA, Haas JT, Streeper RS, Stone SJ, Kumari M. et al. 2011. DGAT enzymes are required for triacylglycerol synthesis and lipid droplets in adipocytes. J. Lipid Res. 52:657–67 [Google Scholar]
  57. He S, McPhaul C, Li JZ, Garuti R, Kinch L. et al. 2010. A sequence variation (I148M) in PNPLA3 associated with nonalcoholic fatty liver disease disrupts triglyceride hydrolysis. J. Biol. Chem. 285:6706–15 [Google Scholar]
  58. Herms A, Bosch M, Reddy BJ, Schieber NL, Fajardo A. et al. 2015. AMPK activation promotes lipid droplet dispersion on detyrosinated microtubules to increase mitochondrial fatty acid oxidation. Nat. Commun. 6:7176 [Google Scholar]
  59. Hu J, Shibata Y, Zhu PP, Voss C, Rismanchi N. et al. 2009. A class of dynamin-like GTPases involved in the generation of the tubular ER network. Cell 138:549–61 [Google Scholar]
  60. Irshad Z, Dimitri F, Christian M, Zammit VA. 2017. Diacylglycerol acyltransferase 2 links glucose utilization to fatty acid oxidation in the brown adipocytes. J. Lipid Res. 58:15–30 [Google Scholar]
  61. Ito D, Suzuki N. 2009. Seipinopathy: a novel endoplasmic reticulum stress-associated disease. Brain 132:8–15 [Google Scholar]
  62. Jacquier N, Choudhary V, Mari M, Toulmay A, Reggiori F, Schneiter R. 2011. Lipid droplets are functionally connected to the endoplasmic reticulum in Saccharomyces cerevisiae. J. Cell Sci. 124:2424–37 [Google Scholar]
  63. Kadereit B, Kumar P, Wang WJ, Miranda D, Snapp EL. et al. 2008. Evolutionarily conserved gene family important for fat storage. PNAS 105:94–99 [Google Scholar]
  64. Kassan A, Herms A, Fernandez-Vidal A, Bosch M, Schieber NL. et al. 2013. Acyl-CoA synthetase 3 promotes lipid droplet biogenesis in ER microdomains. J. Cell Biol. 203:985–1001 [Google Scholar]
  65. Kedi X, Ming Y, Yongping W, Yi Y, Xiaoxiang Z. 2009. Free cholesterol overloading induced smooth muscle cells death and activated both ER- and mitochondrial-dependent death pathway. Atherosclerosis 207:123–30 [Google Scholar]
  66. Khor VK, Ahrends R, Lin Y, Shen WJ, Adams CM. et al. 2014. The proteome of cholesteryl-ester-enriched versus triacylglycerol-enriched lipid droplets. PLOS ONE 9:e105047 [Google Scholar]
  67. Kimmel AR, Sztalryd C. 2016. The perilipins: major cytosolic lipid droplet–associated proteins and their roles in cellular lipid storage, mobilization, and systemic homeostasis. Annu. Rev. Nutr. 36:471–509 [Google Scholar]
  68. Klemm RW, Norton JP, Cole RA, Li CS, Park SH. et al. 2013. A conserved role for atlastin GTPases in regulating lipid droplet size. Cell Rep 3:1465–75 [Google Scholar]
  69. Koliwad SK, Streeper RS, Monetti M, Cornelissen I, Chan L. et al. 2010. DGAT1-dependent triacylglycerol storage by macrophages protects mice from diet-induced insulin resistance and inflammation. J. Clin. Investig. 120:756–67 [Google Scholar]
  70. Kory N, Farese RV Jr., Walther TC. 2016. Targeting fat: mechanisms of protein localization to lipid droplets. Trends Cell Biol 26:535–46 [Google Scholar]
  71. Krahmer N, Farese RV Jr., Walther TC. 2013a. Balancing the fat: lipid droplets and human disease. EMBO Mol. Med. 5:973–83 [Google Scholar]
  72. Krahmer N, Guo Y, Wilfling F, Hilger M, Lingrell S. et al. 2011. Phosphatidylcholine synthesis for lipid droplet expansion is mediated by localized activation of CTP:phosphocholine cytidylyltransferase. Cell Metab 14:504–15 [Google Scholar]
  73. Krahmer N, Hilger M, Kory N, Wilfling F, Stoehr G. et al. 2013b. Protein correlation profiles identify lipid droplet proteins with high confidence. Mol. Cell. Proteom. 12:1115–26 [Google Scholar]
  74. Kuerschner L, Moessinger C, Thiele C. 2008. Imaging of lipid biosynthesis: how a neutral lipid enters lipid droplets. Traffic 9:338–52 [Google Scholar]
  75. Kurat CF, Wolinski H, Petschnigg J, Kaluarachchi S, Andrews B. et al. 2009. Cdk1/Cdc28-dependent activation of the major triacylglycerol lipase Tgl4 in yeast links lipolysis to cell-cycle progression. Mol. Cell 33:53–63 [Google Scholar]
  76. Lardizabal KD, Mai JT, Wagner NW, Wyrick A, Voelker T, Hawkins DJ. 2001. DGAT2 is a new diacylglycerol acyltransferase gene family: purification, cloning, and expression in insect cells of two polypeptides from Mortierella ramanniana with diacylglycerol acyltransferase activity. J. Biol. Chem. 276:38862–69 [Google Scholar]
  77. Lee AH, Scapa EF, Cohen DE, Glimcher LH. 2008. Regulation of hepatic lipogenesis by the transcription factor XBP1. Science 320:1492–96 [Google Scholar]
  78. Li C, Li L, Lian J, Watts R, Nelson R. et al. 2015. Roles of acyl-CoA:diacylglycerol acyltransferases 1 and 2 in triacylglycerol synthesis and secretion in primary hepatocytes. Arterioscler. Thromb. Vasc. Biol. 35:1080–91 [Google Scholar]
  79. Li C, Luo X, Zhao S, Siu GK, Liang Y. et al. 2017. COPI-TRAPPII activates Rab18 and regulates its lipid droplet association. EMBO J 36:441–57 [Google Scholar]
  80. Li JZ, Huang Y, Karaman R, Ivanova PT, Brown HA. et al. 2012. Chronic overexpression of PNPLA3I148M in mouse liver causes hepatic steatosis. J. Clin. Investig. 122:4130–44 [Google Scholar]
  81. Li Z, Thiel K, Thul PJ, Beller M, Kuhnlein RP, Welte MA. 2012. Lipid droplets control the maternal histone supply of Drosophila embryos. Curr. Biol. 22:2104–13 [Google Scholar]
  82. Listenberger LL, Han X, Lewis SE, Cases S, Farese RV Jr.. et al. 2003. Triglyceride accumulation protects against fatty acid–induced lipotoxicity. PNAS 100:3077–82 [Google Scholar]
  83. Liu L, Jiang Q, Wang X, Zhang Y, Lin RC. et al. 2014. Adipose-specific knockout of SEIPIN/BSCL2 results in progressive lipodystrophy. Diabetes 63:2320–31 [Google Scholar]
  84. Liu L, Zhang K, Sandoval H, Yamamoto S, Jaiswal M. et al. 2015. Glial lipid droplets and ROS induced by mitochondrial defects promote neurodegeneration. Cell 160:177–90 [Google Scholar]
  85. Liu P, Ying Y, Zhao Y, Mundy DI, Zhu M, Anderson RG. 2004. Chinese hamster ovary K2 cell lipid droplets appear to be metabolic organelles involved in membrane traffic. J. Biol. Chem. 279:3787–92 [Google Scholar]
  86. Liu Z, Li X, Ge Q, Ding M, Huang X. 2014. A lipid droplet–associated GFP reporter–based screen identifies new fat storage regulators in C. elegans. J. Genet. Genom. 41:305–13 [Google Scholar]
  87. Lundin C, Nordstrom R, Wagner K, Windpassinger C, Andersson H. et al. 2006. Membrane topology of the human seipin protein. FEBS Lett 580:2281–84 [Google Scholar]
  88. Magre J, Delepine M, Khallouf E, Gedde-Dahl T Jr., Van Maldergem L. et al. 2001. Identification of the gene altered in Berardinelli-Seip congenital lipodystrophy on chromosome 11q13. Nat. Genet. 28:365–70 [Google Scholar]
  89. Martin S, Driessen K, Nixon SJ, Zerial M, Parton RG. 2005. Regulated localization of Rab18 to lipid droplets: effects of lipolytic stimulation and inhibition of lipid droplet catabolism. J. Biol. Chem. 280:42325–35 [Google Scholar]
  90. Miranda DA, Kim JH, Nguyen LN, Cheng W, Tan BC. et al. 2014. Fat storage–inducing transmembrane protein 2 is required for normal fat storage in adipose tissue. J. Biol. Chem. 289:9560–72 [Google Scholar]
  91. Moessinger C, Klizaite K, Steinhagen A, Philippou-Massier J, Shevchenko A. et al. 2014. Two different pathways of phosphatidylcholine synthesis, the Kennedy Pathway and the Lands Cycle, differentially regulate cellular triacylglycerol storage. BMC Cell Biol 15:43 [Google Scholar]
  92. Murphy S, Martin S, Parton RG. 2010. Quantitative analysis of lipid droplet fusion: inefficient steady state fusion but rapid stimulation by chemical fusogens. PLOS ONE 5:e15030 [Google Scholar]
  93. Nishino N, Tamori Y, Tateya S, Kawaguchi T, Shibakusa T. et al. 2008. FSP27 contributes to efficient energy storage in murine white adipocytes by promoting the formation of unilocular lipid droplets. J. Clin. Investig. 118:2808–21 [Google Scholar]
  94. Nixon-Abell J, Obara CJ, Weigel AV, Li D, Legant WR. et al. 2016. Increased spatiotemporal resolution reveals highly dynamic dense tubular matrices in the peripheral ER. Science 354:6311aaf3928 [Google Scholar]
  95. Oelkers P, Behari A, Cromley D, Billheimer JT, Sturley SL. 1998. Characterization of two human genes encoding acyl coenzyme A:cholesterol acyltransferase–related enzymes. J. Biol. Chem. 273:26765–71 [Google Scholar]
  96. Ohsaki Y, Kawai T, Yoshikawa Y, Cheng J, Jokitalo E, Fujimoto T. 2016. PML isoform II plays a critical role in nuclear lipid droplet formation. J. Cell Biol. 212:29–38 [Google Scholar]
  97. Pagac M, Cooper DE, Qi Y, Lukmantara IE, Mak HY. et al. 2016. SEIPIN regulates lipid droplet expansion and adipocyte development by modulating the activity of glycerol-3-phosphate acyltransferase. Cell Rep 17:1546–59 [Google Scholar]
  98. Park SH, Blackstone C. 2010. Further assembly required: construction and dynamics of the endoplasmic reticulum network. EMBO Rep 11:515–21 [Google Scholar]
  99. Paul A, Chan L, Bickel PE. 2008. The PAT family of lipid droplet proteins in heart and vascular cells. Curr. Hypertens. Rep. 10:461–66 [Google Scholar]
  100. Payne F, Lim K, Girousse A, Brown RJ, Kory N. et al. 2014. Mutations disrupting the Kennedy phosphatidylcholine pathway in humans with congenital lipodystrophy and fatty liver disease. PNAS 111:8901–6 [Google Scholar]
  101. Ploegh HL. 2007. A lipid-based model for the creation of an escape hatch from the endoplasmic reticulum. Nature 448:435–38 [Google Scholar]
  102. Qi J, Lang W, Geisler JG, Wang P, Petrounia I. et al. 2012. The use of stable isotope-labeled glycerol and oleic acid to differentiate the hepatic functions of DGAT1 and -2. J. Lipid Res. 53:1106–16 [Google Scholar]
  103. Rambold AS, Cohen S, Lippincott-Schwartz J. 2015. Fatty acid trafficking in starved cells: regulation by lipid droplet lipolysis, autophagy, and mitochondrial fusion dynamics. Dev. Cell 32:678–92 [Google Scholar]
  104. Renvoisé B, Malone B, Falgairolle M, Munasinghe J, Stadler J. et al. 2016. Reep1 null mice reveal a converging role for hereditary spastic paraplegia proteins in lipid droplet regulation. Hum. Mol. Genet. 25:5111–25 [Google Scholar]
  105. Robenek H, Hofnagel O, Buers I, Robenek MJ, Troyer D, Severs NJ. 2006. Adipophilin-enriched domains in the ER membrane are sites of lipid droplet biogenesis. J. Cell Sci. 119:4215–24 [Google Scholar]
  106. Robenek MJ, Severs NJ, Schlattmann K, Plenz G, Zimmer KP. et al. 2004. Lipids partition caveolin-1 from ER membranes into lipid droplets: updating the model of lipid droplet biogenesis. FASEB J 18:866–68 [Google Scholar]
  107. Roingeard P, Melo RC. 2017. Lipid droplet hijacking by intracellular pathogens. Cell Microbiol 19:e12688 [Google Scholar]
  108. Romeo S, Kozlitina J, Xing C, Pertsemlidis A, Cox D. et al. 2008. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat. Genet. 40:1461–65 [Google Scholar]
  109. Rowe ER, Mimmack ML, Barbosa AD, Haider A, Isaac I. et al. 2016. Conserved amphipathic helices mediate lipid droplet targeting of perilipins 1–3. J. Biol. Chem. 291:6664–78 [Google Scholar]
  110. Saito K, Arai E, Maekawa K, Ishikawa M, Fujimoto H. et al. 2016. Lipidomic signatures and associated transcriptomic profiles of clear cell renal cell carcinoma. Sci. Rep. 6:28932 [Google Scholar]
  111. Salo VT, Belevich I, Li S, Karhinen L, Vihinen H. et al. 2016. Seipin regulates ER–lipid droplet contacts and cargo delivery. EMBO J 35:2699–716 [Google Scholar]
  112. Schmidt C, Ploier B, Koch B, Daum G. 2013. Analysis of yeast lipid droplet proteome and lipidome. Methods Cell Biol 116:15–37 [Google Scholar]
  113. Schrul B, Kopito RR. 2016. Peroxin-dependent targeting of a lipid-droplet-destined membrane protein to ER subdomains. Nat. Cell Biol. 18:740–51 [Google Scholar]
  114. Schweitzer Y, Shemesh T, Kozlov MM. 2015. A model for shaping membrane sheets by protein scaffolds. Biophys. J. 109:564–73 [Google Scholar]
  115. Shibata Y, Hu J, Kozlov MM, Rapoport TA. 2009. Mechanisms shaping the membranes of cellular organelles. Annu. Rev. Cell Dev. Biol. 25:329–54 [Google Scholar]
  116. Shibata Y, Shemesh T, Prinz WA, Palazzo AF, Kozlov MM, Rapoport TA. 2010. Mechanisms determining the morphology of the peripheral ER. Cell 143:774–88 [Google Scholar]
  117. Shibata Y, Voeltz GK, Rapoport TA. 2006. Rough sheets and smooth tubules. Cell 126:435–39 [Google Scholar]
  118. Shockey JM, Gidda SK, Chapital DC, Kuan JC, Dhanoa PK. et al. 2006. Tung tree DGAT1 and DGAT2 have nonredundant functions in triacylglycerol biosynthesis and are localized to different subdomains of the endoplasmic reticulum. Plant Cell 18:2294–313 [Google Scholar]
  119. Sim MF, Talukder MU, Dennis RJ, Edwardson JM, Rochford JJ. 2014. Analyzing the functions and structure of the human lipodystrophy protein seipin. Methods Enzymol 537:161–75 [Google Scholar]
  120. Smagris E, BasuRay S, Li J, Huang Y, Lai KM. et al. 2015. Pnpla3I148M knockin mice accumulate PNPLA3 on lipid droplets and develop hepatic steatosis. Hepatology 61:108–18 [Google Scholar]
  121. Smith SJ, Cases S, Jensen DR, Chen HC, Sande E. et al. 2000. Obesity resistance and multiple mechanisms of triglyceride synthesis in mice lacking Dgat. Nat. Genet. 25:87–90 [Google Scholar]
  122. Soni KG, Mardones GA, Sougrat R, Smirnova E, Jackson CL, Bonifacino JS. 2009. Coatomer-dependent protein delivery to lipid droplets. J. Cell Sci. 122:1834–41 [Google Scholar]
  123. Stone SJ, Levin MC, Farese RV Jr. 2006. Membrane topology and identification of key functional amino acid residues of murine acyl-CoA:diacylglycerol acyltransferase-2. J. Biol. Chem. 281:40273–82 [Google Scholar]
  124. Stone SJ, Levin MC, Zhou P, Han J, Walther TC, Farese RV Jr. 2009. The endoplasmic reticulum enzyme DGAT2 is found in mitochondria-associated membranes and has a mitochondrial targeting signal that promotes its association with mitochondria. J. Biol. Chem. 284:5352–61 [Google Scholar]
  125. Stone SJ, Myers HM, Watkins SM, Brown BE, Feingold KR. et al. 2004. Lipopenia and skin barrier abnormalities in DGAT2-deficient mice. J. Biol. Chem. 279:11767–76 [Google Scholar]
  126. Streeper RS, Grueter CA, Salomonis N, Cases S, Levin MC. et al. 2012. Deficiency of the lipid synthesis enzyme, DGAT1, extends longevity in mice. Aging 4:13–27 [Google Scholar]
  127. Suzuki M, Murakami T, Cheng J, Kano H, Fukata M, Fujimoto T. 2015. ELMOD2 is anchored to lipid droplets by palmitoylation and regulates adipocyte triglyceride lipase recruitment. Mol. Biol. Cell 26:2333–42 [Google Scholar]
  128. Szymanski KM, Binns D, Bartz R, Grishin NV, Li WP. et al. 2007. The lipodystrophy protein seipin is found at endoplasmic reticulum lipid droplet junctions and is important for droplet morphology. PNAS 104:20890–95 [Google Scholar]
  129. Thiam AR, Antonny B, Wang J, Delacotte J, Wilfling F. et al. 2013a. COPI buds 60-nm lipid droplets from reconstituted water-phospholipid-triacylglyceride interfaces, suggesting a tension clamp function. PNAS 110:13244–49 [Google Scholar]
  130. Thiam AR, Farese RV Jr., Walther TC. 2013b. The biophysics and cell biology of lipid droplets. Nat. Rev. Mol. Cell Biol. 14:775–86 [Google Scholar]
  131. Thiam AR, Foret L. 2016. The physics of lipid droplet nucleation, growth and budding. Biochim. Biophys. Acta 1861:715–22 [Google Scholar]
  132. Villanueva CJ, Monetti M, Shih M, Zhou P, Watkins SM. et al. 2009. Specific role for acyl CoA:diacylglycerol acyltransferase 1 (Dgat1) in hepatic steatosis due to exogenous fatty acids. Hepatology 50:434–42 [Google Scholar]
  133. Voeltz GK, Prinz WA, Shibata Y, Rist JM, Rapoport TA. 2006. A class of membrane proteins shaping the tubular endoplasmic reticulum. Cell 124:573–86 [Google Scholar]
  134. Walther TC, Farese RV Jr. 2012. Lipid droplets and cellular lipid metabolism. Annu. Rev. Biochem. 81:687–714 [Google Scholar]
  135. Wang H, Becuwe M, Housden BE, Chitraju C, Porras AJ. et al. 2016. Seipin is required for converting nascent to mature lipid droplets. eLife 5:e16582 [Google Scholar]
  136. Wang H, Lei M, Hsia RC, Sztalryd C. 2013. Analysis of lipid droplets in cardiac muscle. Methods Cell Biol 116:129–49 [Google Scholar]
  137. Weiss SB, Kennedy EP, Kiyasu JY. 1960. The enzymatic synthesis of triglycerides. J. Biol. Chem. 235:40–44 [Google Scholar]
  138. Welte MA. 2015. Expanding roles for lipid droplets. Curr. Biol. 25:R470–81 [Google Scholar]
  139. Whittaker R, Loy PA, Sisman E, Suyama E, Aza-Blanc P. et al. 2010. Identification of microRNAs that control lipid droplet formation and growth in hepatocytes via high-content screening. J. Biomol. Screen. 15:798–805 [Google Scholar]
  140. Wilfling F, Haas JT, Walther TC, Farese RV Jr. 2014a. Lipid droplet biogenesis. Curr. Opin. Cell Biol. 29:39–45 [Google Scholar]
  141. Wilfling F, Thiam AR, Olarte MJ, Wang J, Beck R. et al. 2014b. Arf1/COPI machinery acts directly on lipid droplets and enables their connection to the ER for protein targeting. eLife 3:e01607 [Google Scholar]
  142. Wilfling F, Wang H, Haas JT, Krahmer N, Gould TJ. et al. 2013. Triacylglycerol synthesis enzymes mediate lipid droplet growth by relocalizing from the ER to lipid droplets. Dev. Cell 24:384–99 [Google Scholar]
  143. Wolinski H, Hofbauer HF, Hellauer K, Cristobal-Sarramian A, Kolb D. et al. 2015. Seipin is involved in the regulation of phosphatidic acid metabolism at a subdomain of the nuclear envelope in yeast. Biochim. Biophys. Acta 1851:1450–64 [Google Scholar]
  144. Wurie HR, Buckett L, Zammit VA. 2012. Diacylglycerol acyltransferase 2 acts upstream of diacylglycerol acyltransferase 1 and utilizes nascent diglycerides and de novo synthesized fatty acids in HepG2 cells. FEBS J 279:3033–47 [Google Scholar]
  145. Yang H, Bard M, Bruner DA, Gleeson A, Deckelbaum RJ. et al. 1996. Sterol esterification in yeast: a two-gene process. Science 272:1353–56 [Google Scholar]
  146. Ye J, Li JZ, Liu Y, Li X, Yang T. et al. 2009. Cideb, an ER- and lipid droplet–associated protein, mediates VLDL lipidation and maturation by interacting with apolipoprotein B. Cell Metab 9:177–90 [Google Scholar]
  147. Yen CL, Farese RV Jr. 2003. MGAT2, a monoacylglycerol acyltransferase expressed in the small intestine. J. Biol. Chem. 278:18532–37 [Google Scholar]
  148. Yen CL, Monetti M, Burri BJ, Farese RV Jr. 2005. The triacylglycerol synthesis enzyme DGAT1 also catalyzes the synthesis of diacylglycerols, waxes, and retinyl esters. J. Lipid Res. 46:1502–11 [Google Scholar]
  149. Yen CL, Stone SJ, Cases S, Zhou P, Farese RV Jr. 2002. Identification of a gene encoding MGAT1, a monoacylglycerol acyltransferase. PNAS 99:8512–17 [Google Scholar]
  150. Yen CL, Stone SJ, Koliwad S, Harris C, Farese RV Jr. 2008. DGAT enzymes and triacylglycerol biosynthesis. J. Lipid Res. 49:2283–301 [Google Scholar]
  151. Yu M, Wang H, Zhao J, Yuan Y, Wang C. et al. 2013. Expression of CIDE proteins in clear cell renal cell carcinoma and their prognostic significance. Mol. Cell. Biochem. 378:145–51 [Google Scholar]
  152. Zhang H, Wang Y, Li J, Yu J, Pu J. et al. 2011. Proteome of skeletal muscle lipid droplet reveals association with mitochondria and apolipoprotein A-I. J. Proteome Res. 10:4757–68 [Google Scholar]
  153. Zhang P, Na H, Liu Z, Zhang S, Xue P. et al. 2012. Proteomic study and marker protein identification of Caenorhabditis elegans lipid droplets. Mol. Cell. Proteom. 11:317–28 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error