1932

Abstract

Comprehensive data about the composition and structure of cellular components have enabled the construction of quantitative whole-cell models. While kinetic network–type models have been established, it is also becoming possible to build physical, molecular-level models of cellular environments. This review outlines challenges in constructing and simulating such models and discusses near- and long-term opportunities for developing physical whole-cell models that can connect molecular structure with biological function.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cellbio-100617-062542
2019-10-06
2024-04-15
Loading full text...

Full text loading...

/deliver/fulltext/cellbio/35/1/annurev-cellbio-100617-062542.html?itemId=/content/journals/10.1146/annurev-cellbio-100617-062542&mimeType=html&fmt=ahah

Literature Cited

  1. Aisenbrey C, Bechinger B, Gröbner G 2008. Macromolecular crowding at membrane interfaces: adsorption and alignment of membrane peptides. J. Mol. Biol. 375:376–85
    [Google Scholar]
  2. Alexander N, Al-Mestarihi A, Bortolus M, Mchaourab H, Meiler J 2008. De novo high-resolution protein structure determination from sparse spin-labeling EPR data. Structure 16:181–95
    [Google Scholar]
  3. Ando T, Chow E, Saad Y, Skolnick J 2012. Krylov subspace methods for computing hydrodynamic interactions in Brownian dynamics simulations. J. Chem. Phys. 137:064106
    [Google Scholar]
  4. Ando T, Skolnick J. 2010. Crowding and hydrodynamic interactions likely dominate in vivo macromolecular motion. PNAS 107:18457–62
    [Google Scholar]
  5. Ando T, Skolnick J. 2014. Sliding of proteins non-specifically bound to DNA: Brownian dynamics studies with coarse-grained protein and DNA models. PLOS Comp. Biol. 10:e1003990
    [Google Scholar]
  6. Ash WL, Zlomislic MR, Oloo EO, Tieleman DP 2004. Computer simulations of membrane proteins. Biochim. Biophys. Acta Biomembr. 1666:158–89
    [Google Scholar]
  7. Atilgan AR, Durell SR, Jernigan RL, Demirel MC, Keskin O, Bahar I 2001. Anisotropy of fluctuation dynamics of proteins with an elastic network model. Biophys. J. 80:505–15
    [Google Scholar]
  8. Balaeff A, Mahadevan L, Schulten K 1999. Elastic rod model of a DNA loop in the lac operon. Phys. Rev. Lett. 83:4900–3
    [Google Scholar]
  9. Banks A, Qin S, Weiss KL, Stanley CB, Zhou H-X 2018. Intrinsically disordered protein exhibits both compaction and expansion under macromolecular crowding. Biophys. J. 114:1067–79
    [Google Scholar]
  10. Banks DS, Fradin C. 2005. Anomalous diffusion of proteins due to molecular crowding. Biophys. J. 89:2960–71
    [Google Scholar]
  11. Bantscheff M, Schirle M, Sweetman G, Rick J, Kuster B 2007. Quantitative mass spectrometry in proteomics: a critical review. Anal. Bioanal. Chem. 389:1017–31
    [Google Scholar]
  12. Beck M, Topf M, Frazier Z, Tjong H, Xu M et al. 2011. Exploring the spatial and temporal organization of a cell's proteome. J. Struct. Biol. 173:483–96
    [Google Scholar]
  13. Bernstein D. 2005. Simulating mesoscopic reaction-diffusion systems using the Gillespie algorithm. Phys. Rev. E 71:041103
    [Google Scholar]
  14. Best RB, Zheng W, Mittal J 2014. Balanced protein-water interactions improve properties of disordered proteins and non-specific protein association. J. Chem. Theory Comput. 10:5113–24
    [Google Scholar]
  15. Best RB, Zhu X, Shim J, Lopes P, Mittal J et al. 2012. Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone ϕ, ψ and side-chain χ1 and χ2 dihedral angles. J. Chem. Theory Comput. 8:3257–73
    [Google Scholar]
  16. Bianchi E, Blaak R, Likos CN 2011. Patchy colloids: state of the art and perspectives. Phys. Chem. Chem. Phys. 13:6397–410
    [Google Scholar]
  17. Bianco S, Chiariello AM, Annunziatella C, Esposito A, Nicodemi M 2017. Predicting chromatin architecture from models of polymer physics. Chromosome Res 25:25–34
    [Google Scholar]
  18. Boehning M, Dugast-Darzacq C, Rankovic M, Hansen AS, Yu T et al. 2018. RNA polymerase II clustering through carboxy-terminal domain phase separation. Nat. Struct. Mol. Biol. 25:833–40
    [Google Scholar]
  19. Bowers PM, Strauss CEM, Baker D 2000. De novo protein structure determination using sparse NMR data. J. Biomol. NMR 18:311–18
    [Google Scholar]
  20. Brady JF, Bossis G. 1988. Stokesian dynamics. Annu. Rev. Fluid Mech. 20:111–57
    [Google Scholar]
  21. Brown FL. 2008. Elastic modeling of biomembranes and lipid bilayers. Annu. Rev. Phys. Chem. 59:685–712
    [Google Scholar]
  22. Bucciarelli S, Myung JS, Farago B, Das S, Vliegenthart GA et al. 2016. Dramatic influence of patchy attractions on short-time protein diffusion under crowded conditions. Sci. Adv. 2:e1601432
    [Google Scholar]
  23. Buchete NV, Straub JE, Thirumalai D 2004. Development of novel statistical potentials for protein fold recognition. Curr. Opin. Struct. Biol. 14:225–32
    [Google Scholar]
  24. Candotti M, Orozco M. 2016. The differential response of proteins to macromolecular crowding. PLOS Comp. Biol. 12:e1005040
    [Google Scholar]
  25. Case DA. 1994. Normal mode analysis of protein dynamics. Curr. Opin. Struct. Biol. 4:285–90
    [Google Scholar]
  26. Chavent M, Duncan AL, Sansom MSP 2016. Molecular dynamics simulations of membrane proteins and their interactions: from nanoscale to mesoscale. Curr. Opin. Struct. Biol. 40:8–16
    [Google Scholar]
  27. Chmiela S, Tkatchenko A, Sauceda HE, Poltavsky I, Schütt KT, Müller K-R 2017. Machine learning of accurate energy-conserving molecular force fields. Sci. Adv. 3:e1603015
    [Google Scholar]
  28. Ciccotti G, Ferrario M, Schuette C 2014. Molecular dynamics simulation. Entropy 16:1
    [Google Scholar]
  29. Cino EA, Karttunen M, Choy W-Y 2012. Effects of molecular crowding on the dynamics of intrinsically disordered proteins. PLOS ONE 7:e49876
    [Google Scholar]
  30. Clementi C, Nymeyer H, Onuchic JN 2000. Topological and energetic factors: what determines the structural details of the transition state ensemble and “en-route” intermediates for protein folding? An investigation for small globular proteins. J. Mol. Biol. 298:937–53
    [Google Scholar]
  31. Cohen RD, Pielak GJ. 2017. A cell is more than the sum of its (dilute) parts: a brief history of quinary structure. Protein Sci 26:403–13
    [Google Scholar]
  32. Dauty E, Verkman AS. 2004. Molecular crowding reduces to a similar extent the diffusion of small solutes and macromolecules: measurement by fluorescence correlation spectroscopy. J. Mol. Recognit. 17:441–47
    [Google Scholar]
  33. DeLano WL. 2002. Pymol: an open-source molecular graphics tool. CCP4 Newsl. Protein Crystallogr. 40:82–92
    [Google Scholar]
  34. Di Stefano M, Paulsen J, Lien TG, Hovig E, Micheletti C 2016. Hi-C-constrained physical models of human chromosomes recover functionally-related properties of genome organization. Sci. Rep. 6:35985
    [Google Scholar]
  35. Dlugosz M, Antosiewicz JM, Zielinski P, Trylska J 2012. Contributions of far-field hydrodynamic interactions to the kinetics of electrostatically driven molecular association. J. Phys. Chem. B 116:5437–47
    [Google Scholar]
  36. Drenth J. 2007. Principles of Protein X-Ray Crystallography New York: Springer
  37. Duff MR Jr., Grubbs J, Serpersu E, Howell EE. 2012. Weak interactions between folate and osmolytes in solution. Biochemistry 51:2309–18
    [Google Scholar]
  38. Dumetz AC, Chockla AM, Kaler EW, Lenhoff AM 2008. Protein phase behavior in aqueous solutions: crystallization, liquid-liquid phase separation, gels, and aggregates. Biophys. J. 94:570–83
    [Google Scholar]
  39. Eastman P, Swails J, Chodera JD, McGibbon RT, Zhao Y et al. 2017. OpenMM 7: rapid development of high performance algorithms for molecular dynamics. PLOS Comp. Biol. 13:e1005659
    [Google Scholar]
  40. Elbaum-Garfinkle S, Kim Y, Szczepaniak K, Chen CC-H, Eckmann CR et al. 2015. The disordered P granule protein LAF-1 drives phase separation into droplets with tunable viscosity and dynamics. PNAS 112:7189–94
    [Google Scholar]
  41. Ellis RJ. 2001. Macromolecular crowding: an important but neglected aspect of the intracellular environment. Curr. Opin. Struct. Biol. 11:114–19
    [Google Scholar]
  42. Ermak DL, McCammon JA. 1978. Brownian dynamics with hydrodynamic interactions. J. Chem. Phys. 69:1352–60
    [Google Scholar]
  43. Feig M, Harada R, Mori T, Yu I, Takahashi K, Sugita Y 2015. Complete atomistic model of a bacterial cytoplasm integrates physics, biochemistry, and systems biology. J. Mol. Graph. Modell. 58:1–9
    [Google Scholar]
  44. Feig M, Nawrocki G, Yu I, Wang P-h, Sugita Y 2018. Challenges and opportunities in connecting simulations with experiments via molecular dynamics of cellular environments. J. Phys. Conf. Ser. 1036:012010
    [Google Scholar]
  45. Feig M, Sugita Y. 2012. Variable interactions between protein crowders and biomolecular solutes are important in understanding cellular crowding. J. Phys. Chem. B 116:599–605
    [Google Scholar]
  46. Feig M, Yu I, Wang P-h, Nawrocki G, Sugita Y 2017. Crowding in cellular environments at an atomistic level from computer simulations. J. Phys. Chem. B 121:8009–25
    [Google Scholar]
  47. Fernandez-Leiro R, Scheres SH. 2016. Unravelling biological macromolecules with cryo-electron microscopy. Nature 537:339–46
    [Google Scholar]
  48. Frembgen-Kesner T, Elcock AH. 2010. Absolute protein-protein association rate constants from flexible, coarse-grained Brownian dynamics simulations: the role of intermolecular hydrodynamic interactions in Barnase-Barstar association. Biophys. J. 99:L75–77
    [Google Scholar]
  49. Frembgen-Kesner T, Elcock AH. 2013. Computer simulations of the bacterial cytoplasm. Biophys. Rev. 5:109–19
    [Google Scholar]
  50. Galindo-Murillo R, Robertson JC, Zgarbová M, Šponer J, Otyepka M et al. 2016. Assessing the current state of amber force field modifications for DNA. J. Chem. Theory Comput. 12:4114–27
    [Google Scholar]
  51. Gnutt D, Ebbinghaus S. 2016. The macromolecular crowding effect—from in vitro into the cell. Biol. Chem. 397:37–44
    [Google Scholar]
  52. Goodsell DS, Autin L, Olson AJ 2018. Lattice models of bacterial nucleoids. J. Phys. Chem. B 122:5441–47
    [Google Scholar]
  53. Gopal SM, Mukherjee S, Cheng Y-M, Feig M 2010. PRIMO/PRIMONA: a coarse-grained model for proteins and nucleic acids that preserves near-atomistic accuracy. Proteins 78:1266–81
    [Google Scholar]
  54. Guell M, van Noort V, Yus E, Chen WH, Leigh-Bell J et al. 2009. Transcriptome complexity in a genome-reduced bacterium. Science 326:1268–71
    [Google Scholar]
  55. Guerrier C, Holcman D. 2017. Multiscale models and stochastic simulation methods for computing rare but key binding events in cell biology. J. Comput. Phys. 340:617–38
    [Google Scholar]
  56. Guigas G, Weiss M. 2016. Effects of protein crowding on membrane systems. Biochim. Biophys. Acta Biomemb. 1858:2441–50
    [Google Scholar]
  57. Hacker WC, Li S, Elcock AH 2017. Features of genomic organization in a nucleotide-resolution molecular model of the Escherichia coli chromosome. Nucleic Acids Res 45:7541–54
    [Google Scholar]
  58. Harada R, Kitao A. 2012. The fast-folding mechanism of villin headpiece subdomain studied by multiscale distributed computing. J. Chem. Theory Comput. 8:290–99
    [Google Scholar]
  59. Harada R, Tochio N, Kigawa T, Sugita Y, Feig M 2013. Reduced native state stability in crowded cellular environment due to protein-protein interactions. J. Am. Chem. Soc. 135:3696–701
    [Google Scholar]
  60. Harder E, Damm W, Maple J, Wu C, Reboul M et al. 2016. OPLS3: a force field providing broad coverage of drug-like small molecules and proteins. J. Chem. Theory Comput. 12:281–96
    [Google Scholar]
  61. Harrigan MP, Sultan MM, Hernández CX, Husic BE, Eastman P et al. 2017. MSMBuilder: statistical models for biomolecular dynamics. Biophys. J. 112:10–15
    [Google Scholar]
  62. Hess B, Kutzner C, Van Der Spoel D, Lindahl E 2008. GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 4:435–47
    [Google Scholar]
  63. Hospital A, Goñi JR, Orozco M, Gelpi JL 2015. Molecular dynamics simulations: advances and applications. Adv. Appl. Bioinform. Chem. 8:37–47
    [Google Scholar]
  64. Huang B, Bates M, Zhuang X 2009. Super-resolution fluorescence microscopy. Annu. Rev. Biochem. 78:993–1016
    [Google Scholar]
  65. Huang J, Rauscher S, Nawrocki G, Ran T, Feig M et al. 2017. CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat. Methods 14:71–73
    [Google Scholar]
  66. Huggins DJ, Biggin PC, Dämgen MA, Essex JW, Harris SA et al. 2018. Biomolecular simulations: from dynamics and mechanisms to computational assays of biological activity. Wiley Interdiscip. Rev. Comput. Mol. Sci. In press ; https://doi.org/10.1002/wcms.1393
    [Crossref] [Google Scholar]
  67. Humphrey W, Dalke A, Schulten K 1996. VMD: visual molecular dynamics. J. Mol. Graph. 14:33–38
    [Google Scholar]
  68. Hyman AA, Weber CA, Jülicher F 2014. Liquid-liquid phase separation in biology. Annu. Rev. Cell Dev. Biol. 30:39–58
    [Google Scholar]
  69. Ignatova Z, Krishnan B, Bombardier JP, Marcelino AMC, Hong J, Gierasch LM 2007. From the test tube to the cell: exploring the folding and aggregation of a β-clam protein. Biopolymers 88:157–63
    [Google Scholar]
  70. Im W, Brooks CL III. 2004. De novo folding of integral membrane proteins: an exploration of the structure and NMR properties of the fd coat protein. J. Mol. Biol. 337:513–19
    [Google Scholar]
  71. Im W, Liang J, Olson A, Zhou H-X, Vajda S, Vakser IA 2016. Challenges in structural approaches to cell modeling. J. Mol. Biol. 428:2943–64
    [Google Scholar]
  72. Inomata K, Ohno A, Tochio H, Isogai S, Tenno T et al. 2009. High-resolution multi-dimensional NMR spectroscopy of proteins in human cells. Nature 458:106–11
    [Google Scholar]
  73. Jeon J-H, Javanainen M, Martinez-Seara H, Metzler R, Vattulainen I 2016. Protein crowding in lipid bilayers gives rise to non-Gaussian anomalous lateral diffusion of phospholipids and proteins. Phys. Rev. X 6:021006
    [Google Scholar]
  74. Jung J, Mori T, Kobayashi C, Matsunaga Y, Yoda T et al. 2015. GENESIS: a hybrid-parallel and multi-scale molecular dynamics simulator with enhanced sampling algorithms for biomolecular and cellular simulations. Wiley Interdiscip. Rev. Comput. Mol. Sci. 5:310–23
    [Google Scholar]
  75. Jung J, Naurse A, Kobayashi C, Sugita Y 2016. Graphics processing unit acceleration and parallelization of GENESIS for large-scale molecular dynamics simulations. J. Chem. Theory Comput. 12:4947–58
    [Google Scholar]
  76. Kale L, Skeel R, Bhandarkar M, Brunner R, Gursoy A et al. 1999. NAMD2: greater scalability for parallel molecular dynamics. J. Comput. Phys. 151:283–312
    [Google Scholar]
  77. Kang H, Pincus PA, Hyeon C, Thirumalai D 2015. Effects of macromolecular crowding on the collapse of biopolymers. Phys. Rev. Lett. 114:068303
    [Google Scholar]
  78. Kar P, Feig M. 2014. Recent advances in transferable coarse-grained modeling of proteins. Adv. Prot. Chem. Struct. Biol. 96:143–80
    [Google Scholar]
  79. Kar P, Feig M. 2017. Hybrid all-atom/coarse-grained simulations of proteins by direct coupling of CHARMM and PRIMO force fields. J. Chem. Theory Comput. 13:5753–65
    [Google Scholar]
  80. Kar P, Gopal SM, Cheng YM, Predeus AV, Feig M 2013. PRIMO: a transferable coarse-grained force field for proteins. J. Chem. Theory Comput. 9:3769–88
    [Google Scholar]
  81. Karr JR, Sanghvi JC, Jacobs JM, Covert MW 2011. Toward a whole cell model of Mycoplasma genitalium. Biophys. J 100:32
    [Google Scholar]
  82. Karr JR, Sanghvi JC, Macklin DN, Gutschow MV, Jacobs JM et al. 2012. A whole-cell computational model predicts phenotype from genotype. Cell 150:389–401
    [Google Scholar]
  83. Karr JR, Takahashi K, Funahashi A 2015. The principles of whole-cell modeling. Curr. Opin. Microbiol. 27:18–24
    [Google Scholar]
  84. Kirchhoff H, Haferkamp S, Allen JF, Epstein DB, Mullineaux CW 2008. Protein diffusion and macromolecular crowding in thylakoid membranes. Plant Physiol 146:1571–78
    [Google Scholar]
  85. Klauda JB, Venable RM, Freites JA, O'Connor JW, Tobias DJ et al. 2010. Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J. Phys. Chem. B 114:7830–43
    [Google Scholar]
  86. Klein T, Autin L, Kozlíková B, Goodsell DS, Olson A et al. 2018. Instant construction and visualization of crowded biological environments. IEEE Trans. Vis. Comput. Graph. 24:862–72
    [Google Scholar]
  87. Kmiecik S, Gront D, Kolinski M, Wieteska L, Dawid AE, Kolinski A 2016. Coarse-grained protein models and their applications. Chem. Rev. 116:7898–936
    [Google Scholar]
  88. Kobayashi C, Jung J, Matsunaga Y, Mori T, Ando T et al. 2017. GENESIS 1.1: a hybrid‐parallel molecular dynamics simulator with enhanced sampling algorithms on multiple computational platforms. J. Comput. Chem. 38:2193–206
    [Google Scholar]
  89. Koldsø H, Sansom MSP. 2015. Organization and dynamics of receptor proteins in a plasma membrane. J. Am. Chem. Soc. 137:14694–704
    [Google Scholar]
  90. Kowalczyk P, Ciach A, Gauden PA, Terzyk AP 2011. Equilibrium clusters in concentrated lysozyme protein solutions. J. Colloid Interface Sci. 363:579–84
    [Google Scholar]
  91. Kuhner S, van Noort V, Betts MJ, Leo-Macias A, Batisse C et al. 2009. Proteome organization in a genome-reduced bacterium. Science 326:1235–40
    [Google Scholar]
  92. Lane TJ, Shukla D, Beauchamp KA, Pande VS 2013. To milliseconds and beyond: challenges in the simulation of protein folding. Curr. Opin. Struct. Biol. 23:58–65
    [Google Scholar]
  93. Li C, Wang Y, Pielak GJ 2009. Translational and rotational diffusion of a small globular protein under crowded conditions. J. Phys. Chem. B 113:13390–92
    [Google Scholar]
  94. Li W, Zhang Y, Skolnick J 2004. Application of sparse NMR restraints to large-scale protein structure prediction. Biophys. J. 87:1241–48
    [Google Scholar]
  95. Li Z, Kermode JR, De Vita A 2015. Molecular dynamics with on-the-fly machine learning of quantum-mechanical forces. Phys. Rev. Lett. 114:096405
    [Google Scholar]
  96. Macklin DN, Ruggero NA, Covert MW 2014. The future of whole-cell modeling. Curr. Opin. Biotech. 28:111–15
    [Google Scholar]
  97. Mani E, Lechner W, Kegel WK, Bolhuis PG 2014. Equilibrium and non-equilibrium cluster phases in colloids with competing interactions. Soft Matter 10:4479–86
    [Google Scholar]
  98. Manning GS. 1978. The molecular theory of polyelectrolyte solutions with applications to the electrostatic properties of polynucleotides. Q. Rev. Biophys. 11:179–246
    [Google Scholar]
  99. Marcovitz A, Levy Y. 2013. Obstacles may facilitate and direct DNA search by proteins. Biophys. J. 104:2042–50
    [Google Scholar]
  100. Marsh JA, Teichmann SA. 2015. Structure, dynamics, assembly, and evolution of protein complexes. Annu. Rev. Biochem. 84:551–75
    [Google Scholar]
  101. McGuffee SR, Elcock AH. 2010. Diffusion, crowding & protein stability in a dynamic molecular model of the bacterial cytoplasm. PLOS Comp. Biol. 6:e1000694
    [Google Scholar]
  102. McPhie P, Ni YS, Minton AP 2006. Macromolecular crowding stabilizes the molten globule form of apomyoglobin with respect to both cold and heat unfolding. J. Mol. Biol. 361:7–10
    [Google Scholar]
  103. Mereghetti P, Wade RC. 2012. Atomic detail Brownian dynamics simulations of concentrated protein solutions with a mean field treatment of hydrodynamic interactions. J. Phys. Chem. B 116:8523–33
    [Google Scholar]
  104. Miao Z, Adamiak RW, Blanchet M-F, Boniecki M, Bujnicki JM et al. 2015. RNA-puzzles round II: assessment of RNA structure prediction programs applied to three large RNA structures. RNA 21:1066–84
    [Google Scholar]
  105. Miklos AC, Li C, Sharaf NG, Pielak GJ 2010. Volume exclusion and soft interaction effects on protein stability under crowded conditions. Biochemistry 49:6984–91
    [Google Scholar]
  106. Miklos AC, Sarkar M, Wang Y, Pielak GJ 2011. Protein crowding tunes protein stability. J. Am. Chem. Soc. 133:7116–20
    [Google Scholar]
  107. Miles EW, Rhee S, Davies DR 1999. The molecular basis of substrate channeling. J. Biol. Chem. 274:12193–96
    [Google Scholar]
  108. Minton AP, Wilf J. 1981. Effect of macromolecular crowding upon the structure and function of an enzyme: glyceraldehyde-3-phosphate dehydrogenase. Biochemistry 20:4821–26
    [Google Scholar]
  109. Modi V, Xu Q, Adhikari S, Dunbrack RL Jr. 2016. Assessment of template‐based modeling of protein structure in CASP11. Proteins 84:200–20
    [Google Scholar]
  110. Mondal J, Bratton BP, Li Y, Yethiraj A, Weisshaar JC 2011. Entropy-based mechanism of ribosome-nucleoid segregation in E. coli cells. Biophys. J. 100:2605–13
    [Google Scholar]
  111. Monticelli L, Kandasamy SK, Periole X, Larson RG, Tieleman DP, Marrink SJ 2008. The MARTINI coarse-grained force field: extension to proteins. J. Chem. Theory Comput. 4:819–34
    [Google Scholar]
  112. Mori T, Miyashita N, Im W, Feig M, Sugita Y 2016. Molecular dynamics simulations of biological membranes and membrane proteins using enhanced conformational sampling algorithms. Biochim. Biophys. Acta Biomemb. 1858:1635–51
    [Google Scholar]
  113. Nawrocki G, Wang P-h, Yu I, Sugita Y, Feig M 2017. Slow-down in crowded protein solutions correlates with transient oligomer formation. J. Phys. Chem. B 121:11072–84
    [Google Scholar]
  114. Nguemaha V, Zhou H-X. 2018. Liquid-liquid phase separation of patchy particles illuminates diverse effects of regulatory components on protein droplet formation. Sci. Rep. 8:6728
    [Google Scholar]
  115. Pastore A, Temussi PA. 2017. The emperor's new clothes: myths and truths of in-cell NMR. Arch. Biochem. Biophys. 628:114–22
    [Google Scholar]
  116. Patel A, Malinovska L, Saha S, Wang J, Alberti S et al. 2017. ATP as a biological hydrotrope. Science 356:753–56
    [Google Scholar]
  117. Prytkova V, Heyden M, Khago D, Freites JA, Butts CT et al. 2016. Multi-conformation monte carlo: a method for introducing flexibility in efficient simulations of many-protein systems. J. Phys. Chem. B 120:8115–26
    [Google Scholar]
  118. Qin S, Zhou H-X. 2017. Protein folding, binding, and droplet formation in cell-like conditions. Curr. Opin. Struct. Biol. 43:28–37
    [Google Scholar]
  119. Renevey A, Riniker S. 2017. Improved accuracy of hybrid atomistic/coarse-grained simulations using reparametrised interactions. J. Chem. Phys. 146:124131
    [Google Scholar]
  120. Rivas G, Minton AP. 2016. Macromolecular crowding in vitro, in vivo, and in between. Trends Biochem. Sci. 41:970–81
    [Google Scholar]
  121. Robustelli P, Piana S, Shaw DE 2018. Developing a molecular dynamics force field for both folded and disordered protein states. PNAS 115:E4758–66
    [Google Scholar]
  122. Rohl CA, Strauss CE, Misura KM, Baker D 2004. Protein structure prediction using Rosetta. Methods Enzymol 383:66–93
    [Google Scholar]
  123. Roos M, Ott M, Hofmann M, Link S, Rössler E et al. 2016. Coupling and decoupling of rotational and translational diffusion of proteins under crowding conditions. J. Am. Chem. Soc. 138:10365–72
    [Google Scholar]
  124. Ross CA, Poirier MA. 2004. Protein aggregation and neurodegenerative disease. Nat. Med. 10:S10–17
    [Google Scholar]
  125. Roux B, Simonson T. 1999. Implicit solvent models. Biophys. Chem. 78:1–20
    [Google Scholar]
  126. Roy A, Kucukural A, Zhang Y 2010. I-TASSER: a unified platform for automated protein structure and function prediction. Nat. Protoc. 5:725–38
    [Google Scholar]
  127. Sakakibara D, Sasaki A, Ikeya T, Hamatsu J, Hanashima T et al. 2009. Protein structure determination in living cells by in-cell NMR spectroscopy. Nature 458:102–5
    [Google Scholar]
  128. Schonhoft JD, Kosowicz JG, Stivers JT 2013. DNA translocation by human uracil DNA glycosylase: role of DNA phosphate charge. Biochemistry 52:2526–35
    [Google Scholar]
  129. Schuler B, Soranno A, Hofmann H, Nettels D 2016. Single-molecule FRET spectroscopy and the polymer physics of unfolded and intrinsically disordered proteins. Annu. Rev. Biophys. 45:207–31
    [Google Scholar]
  130. Shin Y, Brangwynne CP. 2017. Liquid phase condensation in cell physiology and disease. Science 357:eaaf4382
    [Google Scholar]
  131. Singla J, McClary KM, White KL, Alber F, Sali A, Stevens RC 2018. Opportunities and challenges in building a spatiotemporal multi-scale model of the human pancreatic β cell. Cell 173:11–19
    [Google Scholar]
  132. Solernou A, Hanson BS, Richardson RA, Welch R, Read DJ et al. 2018. Fluctuating finite element analysis (FFEA): a continuum mechanics software tool for mesoscale simulation of biomolecules. PLOS Comp. Biol. 14:e1005897
    [Google Scholar]
  133. Soranno A, Koenig I, Borgia MB, Hofmann H, Zosel F et al. 2014. Single-molecule spectroscopy reveals polymer effects of disordered proteins in crowded environments. PNAS 111:4874–79
    [Google Scholar]
  134. Stachowiak JC, Schmid EM, Ryan CJ, Ann HS, Sasaki DY et al. 2012. Membrane bending by protein–protein crowding. Nat. Cell Biol. 14:944–49
    [Google Scholar]
  135. Stradner A, Sedgwick H, Cardinaux F, Poon WCK, Egelhaaf SU, Schurtenberger P 2004. Equilibrium cluster formation in concentrated protein solutions and colloids. Nature 432:492–95
    [Google Scholar]
  136. Szigeti B, Roth YD, Sekar JA, Goldberg AP, Pochiraju SC, Karr JR 2018. A blueprint for human whole-cell modeling. Curr. Opin. Syst. Biol. 7:8–15
    [Google Scholar]
  137. Szymanski J, Patkowski A, Wilk A, Garstecki P, Holyst R 2006. Diffusion and viscosity in a crowded environment: from nano- to macroscale. J. Phys. Chem. B 110:25593–97
    [Google Scholar]
  138. Takada S, Kanada R, Tan C, Terakawa T, Li W, Kenzaki H 2015. Modeling structural dynamics of biomolecular complexes by coarse-grained molecular simulations. Acc. Chem. Res. 48:3026–35
    [Google Scholar]
  139. Tan C, Terakawa T, Takada S 2016. Dynamic coupling among protein binding, sliding, and DNA bending revealed by molecular dynamics. J. Am. Chem. Soc. 138:8512–22
    [Google Scholar]
  140. Tan D, Piana S, Dirks RM, Shaw DE 2018. RNA force field with accuracy comparable to state-of-the-art protein force fields. PNAS 115:E1346–55
    [Google Scholar]
  141. Tanizaki S, Feig M. 2005. A generalized Born formalism for heterogeneous dielectric environments: application to the implicit modeling of biological membranes. J. Chem. Phys. 122:124706
    [Google Scholar]
  142. Tempkin JOB, Qi B, Saunders MG, Roux B, Dinner AR, Weare J 2014. Using multiscale preconditioning to accelerate the convergence of iterative molecular calculations. J. Chem. Phys. 140:184114
    [Google Scholar]
  143. Terakawa T, Kenzaki H, Takada S 2012. p53 searches on DNA by rotation-uncoupled sliding at C-terminal tails and restricted hopping of core domains. J. Am. Chem. Soc. 134:14555–62
    [Google Scholar]
  144. Tiana G, Giorgetti L. 2018. Integrating experiment, theory and simulation to determine the structure and dynamics of mammalian chromosomes. Curr. Opin. Struct. Biol. 49:11–17
    [Google Scholar]
  145. Tomita M. 2001. Whole-cell simulation: a grand challenge of the 21st century. Trends Biotechnol 19:205–10
    [Google Scholar]
  146. Tomita M, Hashimoto K, Takahashi K, Matsuzaki Y, Matsushima R et al. 2000. The E-CELL project: towards integrative simulation of cellular processes. New Generat. Comput. 18:1–12
    [Google Scholar]
  147. Trovato F, Fumagalli G. 2017. Molecular simulations of cellular processes. Biophys. Rev. 9:941–58
    [Google Scholar]
  148. Trovato F, Tozzini V. 2014. Diffusion within the cytoplasm: a mesoscale model of interacting macromolecules. Biophys. J. 107:2579–91
    [Google Scholar]
  149. Vitkup D, Melamud E, Moult J, Sander C 2001. Completeness in structural genomics. Nat. Struct. Biol. 8:559–66
    [Google Scholar]
  150. von Lilienfeld OA, Ramakrishnan R, Rupp M, Knoll A 2015. Fourier series of atomic radial distribution functions: a molecular fingerprint for machine learning models of quantum chemical properties. Int. J. Quantum Chem. 115:1084–93
    [Google Scholar]
  151. Vorontsova MA, Chan HY, Lubchenko V, Vekilov PG 2015. Lack of dependence of the sizes of the mesoscopic protein clusters on electrostatics. Biophys. J. 109:1959–68
    [Google Scholar]
  152. Walcott S, Sun SX. 2010. A mechanical model of actin stress fiber formation and substrate elasticity sensing in adherent cells. PNAS 107:7757–62
    [Google Scholar]
  153. Wang L-P, McKiernan KA, Gomes J, Beauchamp KA, Head-Gordon T et al. 2017. Building a more predictive protein force field: a systematic and reproducible route to AMBER-FB15. J. Phys. Chem. B 121:4023–39
    [Google Scholar]
  154. Wang Y, Li C, Pielak GJ 2010. Effects of proteins on protein diffusion. J. Am. Chem. Soc. 132:9392–97
    [Google Scholar]
  155. Wang Y, Sarkar M, Smith AE, Krois AS, Pielak GJ 2012. Macromolecular crowding and protein stability. J. Am. Chem. Soc. 134:16614–18
    [Google Scholar]
  156. Ward MD, Nangia S, May ER 2017. Evaluation of the hybrid resolution PACE model for the study of folding, insertion, and pore formation of membrane associated peptides. J. Comput. Chem. 38:1462–71
    [Google Scholar]
  157. Wassenaar TA, Ingolfsson HI, Priess M, Marrink SJ 2011. Mixing MARTINI: electrostatic coupling in hybrid atomistic-coarse-grained biomolecular simulations. J. Phys. Chem. B 117:3516–30
    [Google Scholar]
  158. Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G et al. 2018. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res 45:D313–19
    [Google Scholar]
  159. Westbrook J, Feng ZK, Chen L, Yang HW, Berman HM 2003. The Protein Data Bank and structural genomics. Nucleic Acids Res 31:489–91
    [Google Scholar]
  160. Woldeyes MA, Calero-Rubio C, Furst EM, Roberts CJ 2017. Predicting protein interactions of concentrated globular protein solutions using colloidal models. J. Phys. Chem. B 121:4756–67
    [Google Scholar]
  161. Yildirim A, Feig M. 2018. High-resolution 3D models of Caulobacter crescentus chromosome reveal genome structural variability and organization. Nucleic Acids Res 46:3937–52
    [Google Scholar]
  162. Yildirim A, Sharma M, Varner BM, Fang L, Feig M 2014. Conformational preferences of DNA in reduced dielectric environments. J. Phys. Chem. B 118:10874–81
    [Google Scholar]
  163. Yu I, Feig M, Sugita Y 2018. High-performance data analysis on the big trajectory data of cellular scale all-atom molecular dynamics simulations. J. Phys. Conf. Ser. 1036:012009
    [Google Scholar]
  164. Yu I, Mori T, Ando T, Harada R, Jung J et al. 2016. Biomolecular interactions modulate macromolecular structure and dynamics in atomistic model of a bacterial cytoplasm. eLife 5:e19274
    [Google Scholar]
  165. Yus E, Maier T, Michalodimitrakis K, van Noort V, Yamada T et al. 2009. Impact of genome reduction on bacterial metabolism and its regulation. Science 326:1263–68
    [Google Scholar]
  166. Zhang WH, Chen JH. 2014. Accelerate sampling in atomistic energy landscapes using topology-based coarse-grained models. J. Chem. Theory Comput. 10:918–23
    [Google Scholar]
  167. Zhang Y, Hubner IA, Arakaki AK, Shakhnovich E, Skolnick J 2006. On the origin and highly likely completeness of single-domain protein structures. PNAS 103:2605–10
    [Google Scholar]
  168. Zhou H-X, Pang X. 2018. Electrostatic interactions in protein structure, folding, binding, and condensation. Chem. Rev. 118:1691–741
    [Google Scholar]
  169. Zhou H-X, Rivas G, Minton AP 2008. Macromolecular crowding and confinement: biochemical, biophysical, and potential physiological consequences. Annu. Rev. Biophys. 37:375–97
    [Google Scholar]
  170. Zhuang Y, Charbonneau P. 2016. Recent advances in the theory and simulation of model colloidal microphase formers. J. Phys. Chem. B 120:7775–82
    [Google Scholar]
  171. Zimmerman SB, Minton AP. 1993. Macromolecular crowding: biochemical, biophysical, and physiological consequences. Annu. Rev. Biophys. Biomol. Struct. 22:27–65
    [Google Scholar]
/content/journals/10.1146/annurev-cellbio-100617-062542
Loading
/content/journals/10.1146/annurev-cellbio-100617-062542
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error