1932

Abstract

The brain is our most complex organ. During development, neurons extend axons, which may grow over long distances along well-defined pathways to connect to distant targets. Our current understanding of axon pathfinding is largely based on chemical signaling by attractive and repulsive guidance cues. These cues instruct motile growth cones, the leading tips of growing axons, where to turn and where to stop. However, it is not chemical signals that cause motion—motion is driven by forces. Yet our current understanding of the mechanical regulation of axon growth is very limited. In this review, I discuss the origin of the cellular forces controlling axon growth and pathfinding, and how mechanical signals encountered by growing axons may be integrated with chemical signals. This mechanochemical cross talk is an important but often overlooked aspect of cell motility that has major implications for many physiological and pathological processes involving neuronal growth.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cellbio-100818-125157
2020-10-06
2024-06-14
Loading full text...

Full text loading...

/deliver/fulltext/cellbio/36/1/annurev-cellbio-100818-125157.html?itemId=/content/journals/10.1146/annurev-cellbio-100818-125157&mimeType=html&fmt=ahah

Literature Cited

  1. Amin L, Ercolini E, Ban J, Torre V 2013. Comparison of the force exerted by hippocampal and DRG growth cones. PLOS ONE 8:e73025
    [Google Scholar]
  2. Athamneh AI, Cartagena-Rivera AX, Raman A, Suter DM 2015. Substrate deformation predicts neuronal growth cone advance. Biophys. J. 109:1358–71
    [Google Scholar]
  3. Athamneh AI, He Y, Lamoureux P, Fix L, Suter DM, Miller KE 2017. Neurite elongation is highly correlated with bulk forward translocation of microtubules. Sci. Rep. 7:7292
    [Google Scholar]
  4. Athamneh AI, Suter DM. 2015. Quantifying mechanical force in axonal growth and guidance. Front. Cell Neurosci. 9:359
    [Google Scholar]
  5. Atherton P, Stutchbury B, Wang DY, Jethwa D, Tsang R et al. 2015. Vinculin controls talin engagement with the actomyosin machinery. Nat. Commun. 6:10038
    [Google Scholar]
  6. Baba K, Yoshida W, Toriyama M, Shimada T, Manning CF et al. 2018. Gradient-reading and mechano-effector machinery for netrin-1-induced axon guidance. eLife 7:e34593
    [Google Scholar]
  7. Beach JR, Shao L, Remmert K, Li D, Betzig E, Hammer JA III 2014. Nonmuscle myosin II isoforms coassemble in living cells. Curr. Biol. 24:1160–66
    [Google Scholar]
  8. Bentley D, Caudy M. 1983. Pioneer axons lose directed growth after selective killing of guidepost cells. Nature 304:62–65
    [Google Scholar]
  9. Berger SL, Leo-Macias A, Yuen S, Khatri L, Pfennig S et al. 2018. Localized myosin II activity regulates assembly and plasticity of the axon initial segment. Neuron 97:555–70.e6
    [Google Scholar]
  10. Bernal R, Pullarkat PA, Melo F 2007. Mechanical properties of axons. Phys. Rev. Lett. 99:018301
    [Google Scholar]
  11. Betz T, Koch D, Lu YB, Franze K, Kas JA 2011. Growth cones as soft and weak force generators. PNAS 108:13420–25
    [Google Scholar]
  12. Billington N, Wang A, Mao J, Adelstein RS, Sellers JR 2013. Characterization of three full-length human nonmuscle myosin II paralogs. J. Biol. Chem. 288:33398–410
    [Google Scholar]
  13. Blanquie O, Bradke F. 2018. Cytoskeleton dynamics in axon regeneration. Curr. Opin. Neurobiol. 51:60–69
    [Google Scholar]
  14. Bradke F, Dotti CG. 1999. The role of local actin instability in axon formation. Science 283:1931–34
    [Google Scholar]
  15. Bray D. 1979. Mechanical tension produced by nerve cells in tissue culture. J. Cell Sci. 37:391–410
    [Google Scholar]
  16. Bray D. 1984. Axonal growth in response to experimentally applied mechanical tension. Dev. Biol. 102:379–89
    [Google Scholar]
  17. Breau MA, Bonnet I, Stoufflet J, Xie J, De Castro S, Schneider-Maunoury S 2017. Extrinsic mechanical forces mediate retrograde axon extension in a developing neuronal circuit. Nat. Commun. 8:282
    [Google Scholar]
  18. Buck KB, Schaefer AW, Schoonderwoert VT, Creamer MS, Dufresne ER, Forscher P 2017. Local Arp2/3-dependent actin assembly modulates applied traction force during apCAM adhesion site maturation. Mol. Biol. Cell 28:98–110
    [Google Scholar]
  19. Buck KB, Zheng JQ. 2002. Growth cone turning induced by direct local modification of microtubule dynamics. J. Neurosci. 22:9358–67
    [Google Scholar]
  20. Cammarata GM, Bearce EA, Lowery LA 2016. Cytoskeletal social networking in the growth cone: how +TIPs mediate microtubule-actin cross-linking to drive axon outgrowth and guidance. Cytoskeleton 73:461–76
    [Google Scholar]
  21. Campbell DS, Holt CE. 2001. Chemotropic responses of retinal growth cones mediated by rapid local protein synthesis and degradation. Neuron 32:1013–26
    [Google Scholar]
  22. Campbell DS, Regan AG, Lopez JS, Tannahill D, Harris WA, Holt CE 2001. Semaphorin 3A elicits stage-dependent collapse, turning, and branching in Xenopus retinal growth cones. J. Neurosci. 21:8538–47
    [Google Scholar]
  23. Case LB, Waterman CM. 2015. Integration of actin dynamics and cell adhesion by a three-dimensional, mechanosensitive molecular clutch. Nat. Cell Biol. 17:955–63
    [Google Scholar]
  24. Chan CE, Odde DJ. 2008. Traction dynamics of filopodia on compliant substrates. Science 322:1687–91
    [Google Scholar]
  25. Chen X, Wanggou S, Bodalia A, Zhu M, Dong W et al. 2018. A feedforward mechanism mediated by mechanosensitive ion channel PIEZO1 and tissue mechanics promotes glioma aggression. Neuron 100:799–815.e7
    [Google Scholar]
  26. Chien CB, Rosenthal DE, Harris WA, Holt CE 1993. Navigational errors made by growth cones without filopodia in the embryonic Xenopus brain. Neuron 11:237–51
    [Google Scholar]
  27. Christ AF, Franze K, Gautier H, Moshayedi P, Fawcett J et al. 2010. Mechanical difference between white and gray matter in the rat cerebellum measured by scanning force microscopy. J. Biomech. 43:2986–92
    [Google Scholar]
  28. Ciobanasu C, Faivre B, Le Clainche C 2014. Actomyosin-dependent formation of the mechanosensitive talin-vinculin complex reinforces actin anchoring. Nat. Commun. 5:3095
    [Google Scholar]
  29. Cojoc D, Difato F, Ferrari E, Shahapure RB, Laishram J et al. 2007. Properties of the force exerted by filopodia and lamellipodia and the involvement of cytoskeletal components. PLOS ONE 2:e1072
    [Google Scholar]
  30. Coste B, Mathur J, Schmidt M, Earley TJ, Ranade S et al. 2010. Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science 330:55–60
    [Google Scholar]
  31. Coste B, Xiao B, Santos JS, Syeda R, Grandl J et al. 2012. Piezo proteins are pore-forming subunits of mechanically activated channels. Nature 483:176–81
    [Google Scholar]
  32. Craig EM, Van Goor D, Forscher P, Mogilner A 2012. Membrane tension, myosin force, and actin turnover maintain actin treadmill in the nerve growth cone. Biophys. J. 102:1503–13
    [Google Scholar]
  33. Craig EM, Yeung HT, Rao AN, Baas PW 2017. Polarity sorting of axonal microtubules: a computational study. Mol. Biol. Cell 28:3271–85
    [Google Scholar]
  34. de Rooij R, Kuhl E, Miller KE 2018. Modeling the axon as an active partner with the growth cone in axonal elongation. Biophys. J. 115:1783–95
    [Google Scholar]
  35. del Castillo U, Winding M, Lu W, Gelfand VI 2015. Interplay between kinesin-1 and cortical dynein during axonal outgrowth and microtubule organization in Drosophila neurons. eLife 4:e10140
    [Google Scholar]
  36. del Rio A, Perez-Jimenez R, Liu R, Roca-Cusachs P, Fernandez JM, Sheetz MP 2009. Stretching single talin rod molecules activates vinculin binding. Science 323:638–41
    [Google Scholar]
  37. Dennerll TJ, Joshi HC, Steel VL, Buxbaum RE, Heidemann SR 1988. Tension and compression in the cytoskeleton of PC-12 neurites. II: Quantitative measurements. J. Cell Biol. 107:665–74
    [Google Scholar]
  38. Dennerll TJ, Lamoureux P, Buxbaum RE, Heidemann SR 1989. The cytomechanics of axonal elongation and retraction. J. Cell Biol. 109:3073–83
    [Google Scholar]
  39. Dent EW, Gupton SL, Gertler FB 2011. The growth cone cytoskeleton in axon outgrowth and guidance. Cold Spring Harb. Perspect. Biol. 3:a001800
    [Google Scholar]
  40. Dogterom M, Yurke B. 1997. Measurement of the force-velocity relation for growing microtubules. Science 278:856–60
    [Google Scholar]
  41. Dubey P, Jorgenson K, Roy S 2018. Actin assemblies in the axon shaft—some open questions. Curr. Opin. Neurobiol. 51:163–67
    [Google Scholar]
  42. Elkin BS, Azeloglu EU, Costa KD, Morrison B III 2007. Mechanical heterogeneity of the rat hippocampus measured by atomic force microscope indentation. J. Neurotrauma 24:812–22
    [Google Scholar]
  43. Elosegui-Artola A, Oria R, Chen Y, Kosmalska A, Pérez-González C et al. 2016. Mechanical regulation of a molecular clutch defines force transmission and transduction in response to matrix rigidity. Nat. Cell Biol. 18:540–48
    [Google Scholar]
  44. Elosegui-Artola A, Trepat X, Roca-Cusachs P 2018. Control of mechanotransduction by molecular clutch dynamics. Trends Cell Biol 28:356–67
    [Google Scholar]
  45. Fan A, Tofangchi A, Kandel M, Popescu G, Saif T 2017. Coupled circumferential and axial tension driven by actin and myosin influences in vivo axon diameter. Sci. Rep. 7:14188
    [Google Scholar]
  46. Fass JN, Odde DJ. 2003. Tensile force-dependent neurite elicitation via anti-β1 integrin antibody-coated magnetic beads. Biophys. J. 85:623–36
    [Google Scholar]
  47. Flanagan LA, Ju YE, Marg B, Osterfield M, Janmey PA 2002. Neurite branching on deformable substrates. Neuroreport 13:2411–15
    [Google Scholar]
  48. Forscher P, Smith SJ. 1988. Actions of cytochalasins on the organization of actin filaments and microtubules in a neuronal growth cone. J. Cell Biol. 107:1505–16
    [Google Scholar]
  49. Franze K, Gerdelmann J, Weick M, Betz T, Pawlizak S et al. 2009. Neurite branch retraction is caused by a threshold-dependent mechanical impact. Biophys. J. 97:1883–90
    [Google Scholar]
  50. Fuhs T, Reuter L, Vonderhaid I, Claudepierre T, Kas JA 2013. Inherently slow and weak forward forces of neuronal growth cones measured by a drift-stabilized atomic force microscope. Cytoskeleton 70:44–53
    [Google Scholar]
  51. Gallo G. 2006. RhoA-kinase coordinates F-actin organization and myosin II activity during semaphorin-3A-induced axon retraction. J. Cell Sci. 119:3413–23
    [Google Scholar]
  52. Gallo G, Yee HF Jr., Letourneau PC 2002. Actin turnover is required to prevent axon retraction driven by endogenous actomyosin contractility. J. Cell Biol. 158:1219–28
    [Google Scholar]
  53. Ganguly A, Tang Y, Wang L, Ladt K, Loi J et al. 2015. A dynamic formin-dependent deep F-actin network in axons. J. Cell Biol. 210:401–17
    [Google Scholar]
  54. Garate F, Betz T, Pertusa M, Bernal R 2015. Time-resolved neurite mechanics by thermal fluctuation assessments. Phys. Biol. 12:066020
    [Google Scholar]
  55. Gardel ML, Schneider IC, Aratyn-Schaus Y, Waterman CM 2010. Mechanical integration of actin and adhesion dynamics in cell migration. Annu. Rev. Cell Dev. Biol. 26:315–33
    [Google Scholar]
  56. Georges PC, Miller WJ, Meaney DF, Sawyer ES, Janmey PA 2006. Matrices with compliance comparable to that of brain tissue select neuronal over glial growth in mixed cortical cultures. Biophys. J. 90:3012–18
    [Google Scholar]
  57. Gerischer LM, Fehlner A, Kobe T, Prehn K, Antonenko D et al. 2018. Combining viscoelasticity, diffusivity and volume of the hippocampus for the diagnosis of Alzheimer's disease based on magnetic resonance imaging. Neuroimage Clin 18:485–93
    [Google Scholar]
  58. Giannone G, Mege RM, Thoumine O 2009. Multi-level molecular clutches in motile cell processes. Trends Cell Biol 19:475–86
    [Google Scholar]
  59. Goldberg JL. 2003. How does an axon grow. ? Genes Dev 17:941–58
    [Google Scholar]
  60. Gomez TM, Letourneau PC. 2014. Actin dynamics in growth cone motility and navigation. J. Neurochem. 129:221–34
    [Google Scholar]
  61. Gomez TM, Spitzer NC. 1999. In vivo regulation of axon extension and pathfinding by growth-cone calcium transients. Nature 397:350–55
    [Google Scholar]
  62. Gordon-Weeks PR. 2004. Microtubules and growth cone function. J. Neurobiol. 58:70–83
    [Google Scholar]
  63. Grashoff C, Hoffman BD, Brenner MD, Zhou R, Parsons M et al. 2010. Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics. Nature 466:263–66
    [Google Scholar]
  64. Harrison RG. 1910. The outgrowth of the nerve fiber as a mode of protoplasmic movement. J. Exp. Zool. 9:787–846
    [Google Scholar]
  65. Hassan A, Sapir L, Nitsan I, Greenblatt Ben-El RT, Halachmi N et al. 2019. A change in ECM composition affects sensory organ mechanics and function. Cell Rep 27:2272–80.e4
    [Google Scholar]
  66. He Y, Francis F, Myers KA, Yu W, Black MM, Baas PW 2005. Role of cytoplasmic dynein in the axonal transport of microtubules and neurofilaments. J. Cell Biol. 168:697–703
    [Google Scholar]
  67. He Z, Tessier-Lavigne M. 1997. Neuropilin is a receptor for the axonal chemorepellent Semaphorin III. Cell 90:739–51
    [Google Scholar]
  68. Heidemann SR, Lamoureux P, Buxbaum RE 1990. Growth cone behavior and production of traction force. J. Cell Biol. 111:1949–57
    [Google Scholar]
  69. Heidemann SR, Lamoureux P, Buxbaum RE 1995. Cytomechanics of axonal development. Cell Biochem. Biophys. 27:135–55
    [Google Scholar]
  70. Hellal F, Hurtado A, Ruschel J, Flynn KC, Laskowski CJ et al. 2011. Microtubule stabilization reduces scarring and causes axon regeneration after spinal cord injury. Science 331:928–31
    [Google Scholar]
  71. Henley J, Poo M-M. 2004. Guiding neuronal growth cones using Ca2+ signals. Trends Cell Biol 14:320–30
    [Google Scholar]
  72. His W. 1887. Die Entwicklung der ersten Nervenbahnen beim menschlichen Embryo: Uebersichtliche Darstellung. Arch. Anat. Physiol. 92:368–78
    [Google Scholar]
  73. Hochmuth FM, Shao JY, Dai J, Sheetz MP 1996. Deformation and flow of membrane into tethers extracted from neuronal growth cones. Biophys. J. 70:358–69
    [Google Scholar]
  74. Holt CE, Harris WA. 1993. Position, guidance, and mapping in the developing visual system. J. Neurobiol. 24:1400–22
    [Google Scholar]
  75. Hong K, Nishiyama M, Henley J, Tessier-Lavigne M, Poo M 2000. Calcium signalling in the guidance of nerve growth by netrin-1. Nature 403:93–98
    [Google Scholar]
  76. Hu H, Marton TF, Goodman CS 2001. Plexin B mediates axon guidance in Drosophila by simultaneously inhibiting active Rac and enhancing RhoA signaling. Neuron 32:39–51
    [Google Scholar]
  77. Hur E-M, Yang IH, Kim D-H, Byun J, Saijilafu et al. 2011. Engineering neuronal growth cones to promote axon regeneration over inhibitory molecules. PNAS 108:5057–62
    [Google Scholar]
  78. Hyland C, Mertz AF, Forscher P, Dufresne E 2014. Dynamic peripheral traction forces balance stable neurite tension in regenerating Aplysia bag cell neurons. Sci. Rep. 4:4961
    [Google Scholar]
  79. Iwashita M, Kataoka N, Toida K, Kosodo Y 2014. Systematic profiling of spatiotemporal tissue and cellular stiffness in the developing brain. Development 141:3793–98
    [Google Scholar]
  80. Jakobs M, Franze K, Zemel A 2015. Force generation by molecular-motor-powered microtubule bundles; implications for neuronal polarization and growth. Front. Cell Neurosci. 9:441
    [Google Scholar]
  81. Jalink K, van Corven EJ, Hengeveld T, Morii N, Narumiya S, Moolenaar WH 1994. Inhibition of lysophosphatidate- and thrombin-induced neurite retraction and neuronal cell rounding by ADP ribosylation of the small GTP-binding protein Rho. J. Cell Biol. 126:801–10
    [Google Scholar]
  82. Janson ME, de Dood ME, Dogterom M 2003. Dynamic instability of microtubules is regulated by force. J. Cell Biol. 161:1029–34
    [Google Scholar]
  83. Jiang FX, Yurke B, Firestein BL, Langrana NA 2008. Neurite outgrowth on a DNA crosslinked hydrogel with tunable stiffnesses. Ann. Biomed. Eng. 36:1565–79
    [Google Scholar]
  84. Jiang FX, Yurke B, Schloss RS, Firestein BL, Langrana NA 2010. Effect of dynamic stiffness of the substrates on neurite outgrowth by using a DNA-crosslinked hydrogel. Tissue Eng 16:1873–89
    [Google Scholar]
  85. Jiang J, Zhang Z-H, Yuan X-B, Poo M-M 2015. Spatiotemporal dynamics of traction forces show three contraction centers in migratory neurons. J. Cell Biol. 209:759–74
    [Google Scholar]
  86. Joshi HC, Chu D, Buxbaum RE, Heidemann SR 1985. Tension and compression in the cytoskeleton of PC 12 neurites. J. Cell Biol. 101:697–705
    [Google Scholar]
  87. Kapitein LC, Hoogenraad CC. 2015. Building the neuronal microtubule cytoskeleton. Neuron 87:492–506
    [Google Scholar]
  88. Kerstein PC, Jacques-Fricke BT, Rengifo J, Mogen BJ, Williams JC et al. 2013. Mechanosensitive TRPC1 channels promote calpain proteolysis of talin to regulate spinal axon outgrowth. J. Neurosci. 33:273–85
    [Google Scholar]
  89. Kerstein PC, Nichol RI, Gomez TM 2015. Mechanochemical regulation of growth cone motility. Front. Cell Neurosci. 9:244
    [Google Scholar]
  90. Koch D, Rosoff WJ, Jiang J, Geller HM, Urbach JS 2012. Strength in the periphery: growth cone biomechanics and substrate rigidity response in peripheral and central nervous system neurons. Biophys. J. 102:452–60
    [Google Scholar]
  91. Kolodkin AL, Matthes DJ, Goodman CS 1993. The semaphorin genes encode a family of transmembrane and secreted growth cone guidance molecules. Cell 75:1389–99
    [Google Scholar]
  92. Koser DE, Moeendarbary E, Hanne J, Kuerten S, Franze K 2015. CNS cell distribution and axon orientation determine local spinal cord mechanical properties. Biophys. J. 108:2137–47
    [Google Scholar]
  93. Koser DE, Thompson AJ, Foster SK, Dwivedy A, Pillai EK et al. 2016. Mechanosensing is critical for axon growth in the developing brain. Nat. Neurosci. 19:1592–98
    [Google Scholar]
  94. Kostic A, Sap J, Sheetz MP 2007. RPTPα is required for rigidity-dependent inhibition of extension and differentiation of hippocampal neurons. J. Cell Sci. 120:3895–904
    [Google Scholar]
  95. Krieg M, Dunn AR, Goodman MB 2014. Mechanical control of the sense of touch by β-spectrin. Nat. Cell Biol. 16:224–33
    [Google Scholar]
  96. Krieg M, Stuhmer J, Cueva JG, Fetter R, Spilker K et al. 2017. Genetic defects in β-spectrin and tau sensitize C. elegans axons to movement-induced damage via torque-tension coupling. eLife 6:e20172
    [Google Scholar]
  97. Kubo Y, Baba K, Toriyama M, Minegishi T, Sugiura T et al. 2015. Shootin1–cortactin interaction mediates signal-force transduction for axon outgrowth. J. Cell Biol. 210:663–76
    [Google Scholar]
  98. Laan L, Husson J, Munteanu EL, Kerssemakers JW, Dogterom M 2008. Force-generation and dynamic instability of microtubule bundles. PNAS 105:8920–25
    [Google Scholar]
  99. Lamoureux P, Buxbaum RE, Heidemann SR 1989. Direct evidence that growth cones pull. Nature 340:159–62
    [Google Scholar]
  100. Leterrier C, Dubey P, Roy S 2017. The nano-architecture of the axonal cytoskeleton. Nat. Rev. Neurosci. 18:713–26
    [Google Scholar]
  101. Leung K-M, van Horck FPG, Lin AC, Allison R, Standart N, Holt CE 2006. Asymmetrical β-actin mRNA translation in growth cones mediates attractive turning to netrin-1. Nat. Neurosci. 9:1247–56
    [Google Scholar]
  102. Lewis AH, Grandl J. 2015. Mechanical sensitivity of Piezo1 ion channels can be tuned by cellular membrane tension. eLife 4:e12088
    [Google Scholar]
  103. Lin CH, Espreafico EM, Mooseker MS, Forscher P 1996. Myosin drives retrograde F-actin flow in neuronal growth cones. Neuron 16:769–82
    [Google Scholar]
  104. Lin CH, Forscher P. 1995. Growth cone advance is inversely proportional to retrograde F-actin flow. Neuron 14:763–71
    [Google Scholar]
  105. Lipp A, Skowronek C, Fehlner A, Streitberger KJ, Braun J, Sack I 2018. Progressive supranuclear palsy and idiopathic Parkinson's disease are associated with local reduction of in vivo brain viscoelasticity. Eur. Radiol. 28:3347–54
    [Google Scholar]
  106. Lowery LA, Stout A, Faris AE, Ding L, Baird MA et al. 2013. Growth cone-specific functions of XMAP215 in restricting microtubule dynamics and promoting axonal outgrowth. Neural Dev 8:22
    [Google Scholar]
  107. Lu W, Fox P, Lakonishok M, Davidson MW, Gelfand VI 2013. Initial neurite outgrowth in Drosophila neurons is driven by kinesin-powered microtubule sliding. Curr. Biol. 23:1018–23
    [Google Scholar]
  108. Lu W, Gelfand VI. 2017. Moonlighting motors: kinesin, dynein, and cell polarity. Trends Cell Biol 27:505–14
    [Google Scholar]
  109. Maneshi MM, Maki B, Gnanasambandam R, Belin S, Popescu GK et al. 2017. Mechanical stress activates NMDA receptors in the absence of agonists. Sci. Rep. 7:39610
    [Google Scholar]
  110. Mason C, Erskine L. 2000. Growth cone form, behavior, and interactions in vivo: retinal axon pathfinding as a model. J. Neurobiol. 44:260–70
    [Google Scholar]
  111. Medeiros NA, Burnette DT, Forscher P 2006. Myosin II functions in actin-bundle turnover in neuronal growth cones. Nat. Cell Biol. 8:215–26
    [Google Scholar]
  112. Miller KE, Suter DM. 2018. An integrated cytoskeletal model of neurite outgrowth. Front. Cell. Neurosci. 12:447
    [Google Scholar]
  113. Mitchison T, Kirschner M. 1988. Cytoskeletal dynamics and nerve growth. Neuron 1:761–72
    [Google Scholar]
  114. Moeendarbary E, Weber IP, Sheridan GK, Koser DE, Soleman S et al. 2017. The soft mechanical signature of glial scars in the central nervous system. Nat. Commun. 8:14787
    [Google Scholar]
  115. Moore SW, Biais N, Sheetz MP 2009. Traction on immobilized netrin-1 is sufficient to reorient axons. Science 325:166
    [Google Scholar]
  116. Moore SW, Correia JP, Lai Wing Sun K, Pool M, Fournier AE, Kennedy TE 2008. Rho inhibition recruits DCC to the neuronal plasma membrane and enhances axon chemoattraction to netrin 1. Development 135:2855–64
    [Google Scholar]
  117. Moore SW, Zhang X, Lynch CD, Sheetz MP 2012. Netrin-1 attracts axons through FAK-dependent mechanotransduction. J. Neurosci. 32:11574–85
    [Google Scholar]
  118. Mutalik SP, Joseph J, Pullarkat PA, Ghose A 2018. Cytoskeletal mechanisms of axonal contractility. Biophys. J. 115:713–24
    [Google Scholar]
  119. Nichol RH IV, Catlett TS, Onesto MM, Hollender D, Gómez TM 2019. Environmental elasticity regulates cell-type specific RHOA signaling and neuritogenesis of human neurons. Stem Cell Rep 13:1006–21
    [Google Scholar]
  120. Nichol RH IV, Hagen KM, Lumbard DC, Dent EW, Gomez TM 2016. Guidance of axons by local coupling of retrograde flow to point contact adhesions. J. Neurosci. 36:2267–82
    [Google Scholar]
  121. Omotade OF, Pollitt SL, Zheng JQ 2017. Actin-based growth cone motility and guidance. Mol. Cell. Neurosci. 84:4–10
    [Google Scholar]
  122. O'Toole M, Lamoureux P, Miller KE 2008. A physical model of axonal elongation: Force, viscosity, and adhesions govern the mode of outgrowth. Biophys. J. 94:2610–20
    [Google Scholar]
  123. O'Toole M, Lamoureux P, Miller KE 2015. Measurement of subcellular force generation in neurons. Biophys. J. 108:1027–37
    [Google Scholar]
  124. Pampaloni F, Lattanzi G, Jonas A, Surrey T, Frey E, Florin EL 2006. Thermal fluctuations of grafted microtubules provide evidence of a length-dependent persistence length. PNAS 103:10248–53
    [Google Scholar]
  125. Papandreou MJ, Leterrier C. 2018. The functional architecture of axonal actin. Mol. Cell. Neurosci. 91:151–59
    [Google Scholar]
  126. Parsons JT, Horwitz AR, Schwartz MA 2010. Cell adhesion: integrating cytoskeletal dynamics and cellular tension. Nat. Rev. Mol. Cell Biol. 11:633–43
    [Google Scholar]
  127. Peskin CS, Odell GM, Oster GF 1993. Cellular motions and thermal fluctuations: the Brownian ratchet. Biophys. J. 65:316–24
    [Google Scholar]
  128. Pfister BJ, Iwata A, Meaney DF, Smith DH 2004. Extreme stretch growth of integrated axons. J. Neurosci. 24:7978–83
    [Google Scholar]
  129. Piper M, van Horck F, Holt C 2007. The role of cyclic nucleotides in axon guidance. Adv. Exp. Med. Biol. 621:134–43
    [Google Scholar]
  130. Polackwich RJ, Koch D, McAllister R, Geller HM, Urbach JS 2015. Traction force and tension fluctuations in growing axons. Front. Cell. Neurosci. 9:417
    [Google Scholar]
  131. Polleux F, Morrow T, Ghosh A 2000. Semaphorin 3A is a chemoattractant for cortical apical dendrites. Nature 404:567–73
    [Google Scholar]
  132. Previtera ML, Langhammer CG, Firestein BL 2010. Effects of substrate stiffness and cell density on primary hippocampal cultures. J. Biosci. Bioeng. 110:459–70
    [Google Scholar]
  133. Qiu Z, Guo J, Kala S, Zhu J, Xian Q et al. 2019. The mechanosensitive ion channel Piezo1 significantly mediates in vitro ultrasonic stimulation of neurons. iScience 21:448–57
    [Google Scholar]
  134. Raffa V, Falcone F, De Vincentiis S, Falconieri A, Calatayud MP et al. 2018. Piconewton mechanical forces promote neurite growth. Biophys. J. 115:2026–33
    [Google Scholar]
  135. Rajagopalan J, Tofangchi A, Saif MTA 2010. Drosophila neurons actively regulate axonal tension in vivo. Biophys. J. 99:3208–15
    [Google Scholar]
  136. Recho P, Jerusalem A, Goriely A 2016. Growth, collapse, and stalling in a mechanical model for neurite motility. Phys. Rev. E 93:032410
    [Google Scholar]
  137. Renaudin A, Lehmann M, Girault J, McKerracher L 1999. Organization of point contacts in neuronal growth cones. J. Neurosci. Res. 55:458–71
    [Google Scholar]
  138. Renkawitz J, Schumann K, Weber M, Lammermann T, Pflicke H et al. 2009. Adaptive force transmission in amoeboid cell migration. Nat. Cell Biol. 11:1438–43
    [Google Scholar]
  139. Ringer P, Weissl A, Cost AL, Freikamp A, Sabass B et al. 2017. Multiplexing molecular tension sensors reveals piconewton force gradient across talin-1. Nat. Methods 14:1090–96
    [Google Scholar]
  140. Robles E, Gomez TM. 2006. Focal adhesion kinase signaling at sites of integrin-mediated adhesion controls axon pathfinding. Nat. Neurosci. 9:1274–83
    [Google Scholar]
  141. Roossien DH, Lamoureux P, Miller KE 2014. Cytoplasmic dynein pushes the cytoskeletal meshwork forward during axonal elongation. J. Cell Sci. 127:3593–602
    [Google Scholar]
  142. Roossien DH, Lamoureux P, Van Vactor D, Miller KE 2013. Drosophila growth cones advance by forward translocation of the neuronal cytoskeletal meshwork in vivo. . PLOS ONE 8:e80136
    [Google Scholar]
  143. Santiago-Medina M, Myers JP, Gomez TM 2012. Imaging adhesion and signaling dynamics in Xenopus laevis growth cones. Dev. Neurobiol. 72:585–99
    [Google Scholar]
  144. Segel M, Neumann B, Hill MFE, Weber IP, Viscomi C et al. 2019. Niche stiffness underlies the ageing of central nervous system progenitor cells. Nature 573:130–34
    [Google Scholar]
  145. Shimada T, Toriyama M, Uemura K, Kamiguchi H, Sugiura T et al. 2008. Shootin1 interacts with actin retrograde flow and L1-CAM to promote axon outgrowth. J. Cell Biol. 181:817–29
    [Google Scholar]
  146. Small JV, Stradal T, Vignal E, Rottner K 2002. The lamellipodium: where motility begins. Trends Cell Biol 12:112–20
    [Google Scholar]
  147. Šmít D, Fouquet C, Pincet F, Zapotocky M, Trembleau A 2017. Axon tension regulates fasciculation/defasciculation through the control of axon shaft zippering. eLife 6:e19907
    [Google Scholar]
  148. Smith SJ. 1988. Neuronal cytomechanics: the actin-based motility of growth cones. Science 242:708–15
    [Google Scholar]
  149. Song H, Poo M. 2001. The cell biology of neuronal navigation. Nat. Cell Biol. 3:E81–88
    [Google Scholar]
  150. Song Y, Li D, Farrelly O, Miles L, Li F et al. 2019. The mechanosensitive ion channel Piezo inhibits axon regeneration. Neuron 102:373–89.e6
    [Google Scholar]
  151. Sperry RW. 1963. Chemoaffinity in the orderly growth of nerve fiber patterns and connections. PNAS 50:703–10
    [Google Scholar]
  152. Streitberger KJ, Sack I, Krefting D, Pfuller C, Braun J et al. 2012. Brain viscoelasticity alteration in chronic-progressive multiple sclerosis. PLOS ONE 7:e29888
    [Google Scholar]
  153. Suter DM, Errante LD, Belotserkovsky V, Forscher P 1998. The Ig superfamily cell adhesion molecule, apCAM, mediates growth cone steering by substrate-cytoskeletal coupling. J. Cell Biol. 141:227–40
    [Google Scholar]
  154. Suter DM, Forscher P. 2000. Substrate-cytoskeletal coupling as a mechanism for the regulation of growth cone motility and guidance. J. Neurobiol. 44:97–113
    [Google Scholar]
  155. Suter DM, Miller KE. 2011. The emerging role of forces in axonal elongation. Prog. Neurobiol. 94:91–101
    [Google Scholar]
  156. Tanaka EM, Kirschner MW. 1991. Microtubule behavior in the growth cones of living neurons during axon elongation. J. Cell Biol. 115:345–63
    [Google Scholar]
  157. Tessier-Lavigne M, Goodman CS. 1996. The molecular biology of axon guidance. Science 274:1123–33
    [Google Scholar]
  158. Thompson AJ, Pillai EK, Dimov IB, Foster SK, Holt CE, Franze K 2019. Rapid changes in tissue mechanics regulate cell behaviour in the developing embryonic brain. eLife 8:e39356
    [Google Scholar]
  159. Tofangchi A, Fan A, Saif MTA 2016. Mechanism of axonal contractility in embryonic Drosophila motor neurons in vivo. Biophys. J. 111:1519–27
    [Google Scholar]
  160. Toriyama M, Kozawa S, Sakumura Y, Inagaki N 2013. Conversion of a signal into forces for axon outgrowth through Pak1-mediated shootin1 phosphorylation. Curr. Biol. 23:529–34
    [Google Scholar]
  161. Wang L, Brown A. 2002. Rapid movement of microtubules in axons. Curr. Biol. 12:1496–501
    [Google Scholar]
  162. Weickenmeier J, de Rooij R, Budday S, Steinmann P, Ovaert TC, Kuhl E 2016. Brain stiffness increases with myelin content. Acta Biomater 42:265–72
    [Google Scholar]
  163. Weiss P. 1934. In vitro experiments on the factors determining the course of the outgrowing nerve fiber. J. Exp. Zool. 68:393–448
    [Google Scholar]
  164. Weiss PA. 1941. Nerve patterns: the mechanics of nerve growth. Growth Suppl. Third Growth Symp. 5:163–203
    [Google Scholar]
  165. Wen Z, Zheng JQ. 2006. Directional guidance of nerve growth cones. Curr. Opin. Neurobiol. 16:52–58
    [Google Scholar]
  166. Witte H, Neukirchen D, Bradke F 2008. Microtubule stabilization specifies initial neuronal polarization. J. Cell Biol. 180:619–32
    [Google Scholar]
  167. Woo S, Gomez TM. 2006. Rac1 and RhoA promote neurite outgrowth through formation and stabilization of growth cone point contacts. J. Neurosci. 26:1418–28
    [Google Scholar]
  168. Wylie SR, Chantler PD. 2003. Myosin IIA drives neurite retraction. Mol. Biol. Cell 14:4654–66
    [Google Scholar]
  169. Xu G, Knutsen AK, Dikranian K, Kroenke CD, Bayly PV, Taber LA 2010. Axons pull on the brain, but tension does not drive cortical folding. J. Biomech. Eng. 132:071013
    [Google Scholar]
  170. Xu K, Zhong G, Zhuang X 2013. Actin, spectrin, and associated proteins form a periodic cytoskeletal structure in axons. Science 339:452–56
    [Google Scholar]
  171. Yuan X-B, Jin M, Xu X, Song Y-Q, Wu C-P et al. 2003. Signalling and crosstalk of Rho GTPases in mediating axon guidance. Nat. Cell Biol. 5:38–45
    [Google Scholar]
  172. Zhang XF, Ajeti V, Tsai N, Fereydooni A, Burns W et al. 2019. Regulation of axon growth by myosin II-dependent mechanocatalysis of cofilin activity. J. Cell Biol. 218:2329–49
    [Google Scholar]
/content/journals/10.1146/annurev-cellbio-100818-125157
Loading
/content/journals/10.1146/annurev-cellbio-100818-125157
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error