1932

Abstract

Secondary lymphoid tissues are the sites of both innate and adaptive host defense. Aside from the relatively static nonhematopoietic stromal elements and some macrophages and dendritic cells, most of the cells in these tissues are in constant movement, but the organs maintain a defined microanatomy with preferred locations for the bulk of T cells, B cells, and other lymphocytes and subsets of myeloid cells. Here we describe both the cell dynamics and spatial organization of lymph nodes and review how both physical features and molecular cues guide cell movement to optimize host defense. We emphasize the role of locality in improving the efficiency of a system requiring rare cells to find each other and interact productively through membrane-bound or short-range secreted mediators and highlight how changes in steady-state cell positioning during an infectious challenge contribute to rapid generation of productive responses.

Associated Article

There are media items related to this article:
Spatiotemporal Basis of Innate and Adaptive Immunity in Secondary Lymphoid Tissue: Video 14

Associated Article

There are media items related to this article:
Spatiotemporal Basis of Innate and Adaptive Immunity in Secondary Lymphoid Tissue: Video 5

Associated Article

There are media items related to this article:
Spatiotemporal Basis of Innate and Adaptive Immunity in Secondary Lymphoid Tissue: Video 7

Associated Article

There are media items related to this article:
Spatiotemporal Basis of Innate and Adaptive Immunity in Secondary Lymphoid Tissue: Video 4

Associated Article

There are media items related to this article:
Spatiotemporal Basis of Innate and Adaptive Immunity in Secondary Lymphoid Tissue: Video 3

Associated Article

There are media items related to this article:
Spatiotemporal Basis of Innate and Adaptive Immunity in Secondary Lymphoid Tissue: Video 15

[Erratum, Closure]

An erratum has been published for this article:
Spatiotemporal Basis of Innate and Adaptive Immunity in Secondary Lymphoid Tissue

Associated Article

There are media items related to this article:
Spatiotemporal Basis of Innate and Adaptive Immunity in Secondary Lymphoid Tissue: Video 2

Associated Article

There are media items related to this article:
Spatiotemporal Basis of Innate and Adaptive Immunity in Secondary Lymphoid Tissue: Video 10

Associated Article

There are media items related to this article:
Spatiotemporal Basis of Innate and Adaptive Immunity in Secondary Lymphoid Tissue: Video 8

Associated Article

There are media items related to this article:
Spatiotemporal Basis of Innate and Adaptive Immunity in Secondary Lymphoid Tissue: Video 13

Associated Article

There are media items related to this article:
Spatiotemporal Basis of Innate and Adaptive Immunity in Secondary Lymphoid Tissue: Video 17

Associated Article

There are media items related to this article:
Spatiotemporal Basis of Innate and Adaptive Immunity in Secondary Lymphoid Tissue: Video 9

Associated Article

There are media items related to this article:
Spatiotemporal Basis of Innate and Adaptive Immunity in Secondary Lymphoid Tissue: Video 11

Associated Article

There are media items related to this article:
Spatiotemporal Basis of Innate and Adaptive Immunity in Secondary Lymphoid Tissue: Video 1

Associated Article

There are media items related to this article:
Spatiotemporal Basis of Innate and Adaptive Immunity in Secondary Lymphoid Tissue: Video 12

Associated Article

There are media items related to this article:
Spatiotemporal Basis of Innate and Adaptive Immunity in Secondary Lymphoid Tissue: Video 16

Associated Article

There are media items related to this article:
Spatiotemporal Basis of Innate and Adaptive Immunity in Secondary Lymphoid Tissue: Video 6
Loading

Article metrics loading...

/content/journals/10.1146/annurev-cellbio-100913-013254
2014-10-06
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/cellbio/30/1/annurev-cellbio-100913-013254.html?itemId=/content/journals/10.1146/annurev-cellbio-100913-013254&mimeType=html&fmt=ahah

Literature Cited

  1. Afonso PV, Janka-Junttila M, Lee YJ, McCann CP, Oliver CM. et al. 2012. LTB4 is a signal-relay molecule during neutrophil chemotaxis. Dev. Cell 22:1079–91 [Google Scholar]
  2. Allen CD, Okada T, Tang HL, Cyster JG. 2007. Imaging of germinal center selection events during affinity maturation. Science 315:528–31 [Google Scholar]
  3. Ansel KM, McHeyzer-Williams LJ, Ngo VN, McHeyzer-Williams MG, Cyster JG. 1999. In vivo-activated CD4 T cells upregulate CXC chemokine receptor 5 and reprogram their response to lymphoid chemokines. J. Exp. Med. 190:1123–34 [Google Scholar]
  4. Arnold CN, Campbell DJ, Lipp M, Butcher EC. 2007. The germinal center response is impaired in the absence of T cell-expressed CXCR5. Eur. J. Immunol. 37:100–9 [Google Scholar]
  5. Arnon TI, Horton RM, Grigorova IL, Cyster JG. 2013. Visualization of splenic marginal zone B-cell shuttling and follicular B-cell egress. Nature 493:684–88 [Google Scholar]
  6. Badovinac VP, Haring JS, Harty JT. 2007. Initial T cell receptor transgenic cell precursor frequency dictates critical aspects of the CD8+ T cell response to infection. Immunity 26:827–41 [Google Scholar]
  7. Bajenoff M, Breart B, Huang AY, Qi H, Cazareth J. et al. 2006a. Natural killer cell behavior in lymph nodes revealed by static and real-time imaging. J. Exp. Med. 203:619–31 [Google Scholar]
  8. Bajenoff M, Egen JG, Koo LY, Laugier JP, Brau F. et al. 2006b. Stromal cell networks regulate lymphocyte entry, migration, and territoriality in lymph nodes. Immunity 25:989–1001 [Google Scholar]
  9. Bajenoff M, Granjeaud S, Guerder S. 2003. The strategy of T cell antigen-presenting cell encounter in antigen-draining lymph nodes revealed by imaging of initial T cell activation. J. Exp. Med. 198:715–24 [Google Scholar]
  10. Bannard O, Horton RM, Allen CD, An J, Nagasawa T, Cyster JG. 2013. Germinal center centroblasts transition to a centrocyte phenotype according to a timed program and depend on the dark zone for effective selection. Immunity 39:912–24 [Google Scholar]
  11. Barral P, Polzella P, Bruckbauer A, van Rooijen N, Besra GS. et al. 2010. CD169+ macrophages present lipid antigens to mediate early activation of iNKT cells in lymph nodes. Nat. Immunol. 11:303–12 [Google Scholar]
  12. Basso K, Dalla-Favera R. 2012. Roles of BCL6 in normal and transformed germinal center B cells. Immunol. Rev. 247:172–83 [Google Scholar]
  13. Battich N, Stoeger T, Pelkmans L. 2013. Image-based transcriptomics in thousands of single human cells at single-molecule resolution. Nat. Methods 10:1127–33 [Google Scholar]
  14. Beltman JB, Henrickson SE, von Andrian UH, de Boer RJ, Maree AF. 2009. Towards estimating the true duration of dendritic cell interactions with T cells. J. Immunol. Methods 347:54–69 [Google Scholar]
  15. Bergtold A, Desai DD, Gavhane A, Clynes R. 2005. Cell surface recycling of internalized antigen permits dendritic cell priming of B cells. Immunity 23:503–14 [Google Scholar]
  16. Beuneu H, Deguine J, Breart B, Mandelboim O, Di Santo JP, Bousso P. 2009. Dynamic behavior of NK cells during activation in lymph nodes. Blood 114:3227–34 [Google Scholar]
  17. Beuneu H, Garcia Z, Bousso P. 2006. Cutting edge: cognate CD4 help promotes recruitment of antigen-specific CD8 T cells around dendritic cells. J. Immunol. 177:1406–10 [Google Scholar]
  18. Bhakta NR, Oh DY, Lewis RS. 2005. Calcium oscillations regulate thymocyte motility during positive selection in the three-dimensional thymic environment. Nat. Immunol. 6:143–51 [Google Scholar]
  19. Bousso P, Moreau HD. 2012. Functional immunoimaging: The revolution continues. Nat. Rev. Immunol. 12:858–64 [Google Scholar]
  20. Bousso P, Robey E. 2003. Dynamics of CD8+ T cell priming by dendritic cells in intact lymph nodes. Nat. Immunol. 4:579–85 [Google Scholar]
  21. Braun A, Worbs T, Moschovakis GL, Halle S, Hoffmann K. et al. 2011. Afferent lymph-derived T cells and DCs use different chemokine receptor CCR7-dependent routes for entry into the lymph node and intranodal migration. Nat. Immunol. 12:879–87 [Google Scholar]
  22. Budhu S, Loike JD, Pandolfi A, Han S, Catalano G. et al. 2010. CD8+ T cell concentration determines their efficiency in killing cognate antigen-expressing syngeneic mammalian cells in vitro and in mouse tissues. J. Exp. Med. 207:223–35 [Google Scholar]
  23. Buonaguro L, Pulendran B. 2011. Immunogenomics and systems biology of vaccines. Immunol. Rev. 239:197–208 [Google Scholar]
  24. Cahalan MD, Parker I. 2008. Choreography of cell motility and interaction dynamics imaged by two-photon microscopy in lymphoid organs. Annu. Rev. Immunol. 26:585–626 [Google Scholar]
  25. Cai Y, Shen X, Ding C, Qi C, Li K. et al. 2011. Pivotal role of dermal IL-17-producing γδ T cells in skin inflammation. Immunity 35:596–610 [Google Scholar]
  26. Cannons JL, Qi H, Lu KT, Dutta M, Gomez-Rodriguez J. et al. 2010. Optimal germinal center responses require a multistage T cell:B cell adhesion process involving integrins, SLAM-associated protein, and CD84. Immunity 32:253–65 [Google Scholar]
  27. Cannons JL, Yu LJ, Jankovic D, Crotty S, Horai R. et al. 2006. SAP regulates T cell-mediated help for humoral immunity by a mechanism distinct from cytokine regulation. J. Exp. Med. 203:1551–65 [Google Scholar]
  28. Carrasco YR, Batista FD. 2007. B cells acquire particulate antigen in a macrophage-rich area at the boundary between the follicle and the subcapsular sinus of the lymph node. Immunity 27:160–71 [Google Scholar]
  29. Castellino F, Germain RN. 2006. Cooperation between CD4+ and CD8+ T cells: when, where, and how. Annu. Rev. Immunol. 24:519–40 [Google Scholar]
  30. Castellino F, Huang AY, Altan-Bonnet G, Stoll S, Scheinecker C, Germain RN. 2006. Chemokines enhance immunity by guiding naive CD8+ T cells to sites of CD4+ T cell-dendritic cell interaction. Nature 440:890–95 [Google Scholar]
  31. Cebrián M, Yagüe E, Rincón M, López-Botet M, de Landázuri MO, Sánchez-Madrid F. 1988. Triggering of T cell proliferation through AIM, an activation inducer molecule expressed on activated human lymphocytes. J. Exp. Med. 168:1621–37 [Google Scholar]
  32. Celli S, Garcia Z, Bousso P. 2005. CD4 T cells integrate signals delivered during successive DC encounters in vivo. J. Exp. Med. 202:1271–78 [Google Scholar]
  33. Chennupati V, Worbs T, Liu X, Malinarich FH, Schmitz S. et al. 2010. Intra- and intercompartmental movement of γδ T cells: Intestinal intraepithelial and peripheral γδ T cells represent exclusive nonoverlapping populations with distinct migration characteristics. J. Immunol. 185:5160–68 [Google Scholar]
  34. Choi YS, Kageyama R, Eto D, Escobar TC, Johnston RJ. et al. 2011. ICOS receptor instructs T follicular helper cell versus effector cell differentiation via induction of the transcriptional repressor Bcl6. Immunity 34:932–46 [Google Scholar]
  35. Chtanova T, Han SJ, Schaeffer M, van Dooren GG, Herzmark P. et al. 2009. Dynamics of T cell, antigen-presenting cell, and pathogen interactions during recall responses in the lymph node. Immunity 31:342–55 [Google Scholar]
  36. Chtanova T, Schaeffer M, Han SJ, van Dooren GG, Nollmann M. et al. 2008. Dynamics of neutrophil migration in lymph nodes during infection. Immunity 29:487–96 [Google Scholar]
  37. Chung K, Deisseroth K. 2013. CLARITY for mapping the nervous system. Nat. Methods 10:508–13 [Google Scholar]
  38. Coombes JL, Han SJ, van Rooijen N, Raulet DH, Robey EA. 2012. Infection-induced regulation of natural killer cells by macrophages and collagen at the lymph node subcapsular sinus. Cell Rep. 2:124–35 [Google Scholar]
  39. Crotty S. 2011. Follicular helper CD4 T cells (TFH). Annu. Rev. Immunol. 29:621–63 [Google Scholar]
  40. Crotty S, Kersh EN, Cannons J, Schwartzberg PL, Ahmed R. 2003. SAP is required for generating long-term humoral immunity. Nature 421:282–87 [Google Scholar]
  41. Cyster JG. 2005. Chemokines, sphingosine-1-phosphate, and cell migration in secondary lymphoid organs. Annu. Rev. Immunol. 23:127–59 [Google Scholar]
  42. Cyster JG. 2010. B cell follicles and antigen encounters of the third kind. Nat. Immunol. 11:989–96 [Google Scholar]
  43. Cyster JG, Ansel KM, Reif K, Ekland EH, Hyman PL. et al. 2000. Follicular stromal cells and lymphocyte homing to follicles. Immunol. Rev. 176:181–93 [Google Scholar]
  44. Cyster JG, Schwab SR. 2012. Sphingosine-1-phosphate and lymphocyte egress from lymphoid organs. Annu. Rev. Immunol. 30:69–94 [Google Scholar]
  45. Davis BK, Wen H, Ting JP. 2011. The inflammasome NLRs in immunity, inflammation, and associated diseases. Annu. Rev. Immunol. 29:707–35 [Google Scholar]
  46. Davis MM. 2008. A prescription for human immunology. Immunity 29:835–38 [Google Scholar]
  47. Delamarre L, Pack M, Chang H, Mellman I, Trombetta ES. 2005. Differential lysosomal proteolysis in antigen-presenting cells determines antigen fate. Science 307:1630–34 [Google Scholar]
  48. Dorner BG, Dorner MB, Zhou X, Opitz C, Mora A. et al. 2009. Selective expression of the chemokine receptor XCR1 on cross-presenting dendritic cells determines cooperation with CD8+ T cells. Immunity 31:823–33 [Google Scholar]
  49. Dustin ML. 2008. Hunter to gatherer and back: immunological synapses and kinapses as variations on the theme of amoeboid locomotion. Annu. Rev. Cell Dev. Biol. 24:577–96 [Google Scholar]
  50. Dustin ML, Bromley SK, Kan Z, Peterson DA, Unanue ER. 1997. Antigen receptor engagement delivers a stop signal to migrating T lymphocytes. Proc. Natl. Acad. Sci. USA 94:3909–13 [Google Scholar]
  51. Eberl M, Moser B. 2009. Monocytes and γδ T cells: close encounters in microbial infection. Trends Immunol. 30:562–68 [Google Scholar]
  52. El Shikh ME, El Sayed RM, Sukumar S, Szakal AK, Tew JG. 2010. Activation of B cells by antigens on follicular dendritic cells. Trends Immunol. 31:205–11 [Google Scholar]
  53. Friedl P, Wolf K. 2010. Plasticity of cell migration: a multiscale tuning model. J. Cell Biol. 188:11–19 [Google Scholar]
  54. Garcia Z, Lemaître F, van Rooijen N, Albert ML, Levy Y. et al. 2012. Subcapsular sinus macrophages promote NK cell accumulation and activation in response to lymph-borne viral particles. Blood 120:4744–50 [Google Scholar]
  55. Garrod KR, Wei SH, Parker I, Cahalan MD. 2007. Natural killer cells actively patrol peripheral lymph nodes forming stable conjugates to eliminate MHC-mismatched targets. Proc. Natl. Acad. Sci. USA 104:12081–86 [Google Scholar]
  56. Garside P, Ingulli E, Merica RR, Johnson JG, Noelle RJ, Jenkins MK. 1998. Visualization of specific B and T lymphocyte interactions in the lymph node. Science 281:96–99 [Google Scholar]
  57. Gatto D, Paus D, Basten A, Mackay CR, Brink R. 2009. Guidance of B cells by the orphan G protein-coupled receptor EBI2 shapes humoral immune responses. Immunity 31:259–69 [Google Scholar]
  58. Gatto D, Wood K, Caminschi I, Murphy-Durland D, Schofield P. et al. 2013. The chemotactic receptor EBI2 regulates the homeostasis, localization and immunological function of splenic dendritic cells. Nat. Immunol. 14:446–53 [Google Scholar]
  59. Germain RN, Robey EA, Cahalan MD. 2012. A decade of imaging cellular motility and interaction dynamics in the immune system. Science 336:1676–81 [Google Scholar]
  60. Germain RN, Schwartzberg PL. 2011. The human condition: an immunological perspective. Nat. Immunol. 12:369–72 [Google Scholar]
  61. Gerner MY, Kastenmüller W, Ifrim I, Kabat J, Germain RN. 2012. Histo-cytometry: a method for highly multiplex quantitative tissue imaging analysis applied to dendritic cell subset microanatomy in lymph nodes. Immunity 37:364–76 [Google Scholar]
  62. Gitlin AD, Shulman Z, Nussenzweig MC. 2014. Clonal selection in the germinal centre by regulated proliferation and hypermutation. Nature 509:637–40 [Google Scholar]
  63. Gonzalez SF, Lukacs-Kornek V, Kuligowski MP, Pitcher LA, Degn SE. et al. 2010. Capture of influenza by medullary dendritic cells via SIGN-R1 is essential for humoral immunity in draining lymph nodes. Nat. Immunol. 11:427–34 [Google Scholar]
  64. Gowans JL, Knight EJ. 1964. The route of re-circulation of lymphocytes in the rat. Proc. R. Soc. Lond. B Biol. Sci. 159:257–82 [Google Scholar]
  65. Gray EE, Friend S, Suzuki K, Phan TG, Cyster JG. 2012. Subcapsular sinus macrophage fragmentation and CD169+ bleb acquisition by closely associated IL-17-committed innate-like lymphocytes. PLOS ONE 7:e38258 [Google Scholar]
  66. Green JA, Cyster JG. 2012. S1PR2 links germinal center confinement and growth regulation. Immunol. Rev. 247:36–51 [Google Scholar]
  67. Green JA, Suzuki K, Cho B, Willison LD, Palmer D. et al. 2011. The sphingosine 1-phosphate receptor S1P2 maintains the homeostasis of germinal center B cells and promotes niche confinement. Nat. Immunol. 12:672–80 [Google Scholar]
  68. Gretz JE, Norbury CC, Anderson AO, Proudfoot AE, Shaw S. 2000. Lymph-borne chemokines and other low molecular weight molecules reach high endothelial venules via specialized conduits while a functional barrier limits access to the lymphocyte microenvironments in lymph node cortex. J. Exp. Med. 192:1425–40 [Google Scholar]
  69. Grigorova IL, Panteleev M, Cyster JG. 2010. Lymph node cortical sinus organization and relationship to lymphocyte egress dynamics and antigen exposure. Proc. Natl. Acad. Sci. USA 107:20447–52 [Google Scholar]
  70. Groom JR, Richmond J, Murooka TT, Sorensen EW, Sung JH. et al. 2012. CXCR3 chemokine receptor-ligand interactions in the lymph node optimize CD4+ T helper 1 cell differentiation. Immunity 37:1091–103 [Google Scholar]
  71. Hannedouche S, Zhang J, Yi T, Shen W, Nguyen D. et al. 2011. Oxysterols direct immune cell migration via EBI2. Nature 475:524–27 [Google Scholar]
  72. Haring JS, Badovinac VP, Harty JT. 2006. Inflaming the CD8+ T cell response. Immunity 25:19–29 [Google Scholar]
  73. Harwood NE, Batista FD. 2008. New insights into the early molecular events underlying B cell activation. Immunity 28:609–19 [Google Scholar]
  74. Hataye J, Moon JJ, Khoruts A, Reilly C, Jenkins MK. 2006. Naive and memory CD4+ T cell survival controlled by clonal abundance. Science 312:114–16 [Google Scholar]
  75. Hauser AE, Junt T, Mempel TR, Sneddon MW, Kleinstein SH. et al. 2007. Definition of germinal-center B cell migration in vivo reveals predominant intrazonal circulation patterns. Immunity 26:655–67 [Google Scholar]
  76. Haynes NM, Allen CD, Lesley R, Ansel KM, Killeen N, Cyster JG. 2007. Role of CXCR5 and CCR7 in follicular Th cell positioning and appearance of a programmed cell death gene-1High germinal center-associated subpopulation. J. Immunol. 179:5099–108 [Google Scholar]
  77. Heesters BA, Chatterjee P, Kim YA, Gonzalez SF, Kuligowski MP. et al. 2013. Endocytosis and recycling of immune complexes by follicular dendritic cells enhances B cell antigen binding and activation. Immunity 38:1164–75 [Google Scholar]
  78. Henrickson SE, Mempel TR, Mazo IB, Liu B, Artyomov MN. et al. 2008. T cell sensing of antigen dose governs interactive behavior with dendritic cells and sets a threshold for T cell activation. Nat. Immunol. 9:282–91 [Google Scholar]
  79. Hickman HD, Li L, Reynoso GV, Rubin EJ, Skon CN. et al. 2011. Chemokines control naive CD8+ T cell selection of optimal lymph node antigen presenting cells. J. Exp. Med. 208:2511–24 [Google Scholar]
  80. Hickman HD, Takeda K, Skon CN, Murray FR, Hensley SE. et al. 2008. Direct priming of antiviral CD8+ T cells in the peripheral interfollicular region of lymph nodes. Nat. Immunol. 9:155–65 [Google Scholar]
  81. Hocine S, Raymond P, Zenklusen D, Chao JA, Singer RH. 2013. Single-molecule analysis of gene expression using two-color RNA labeling in live yeast. Nat. Methods 10:119–21 [Google Scholar]
  82. Hu JK, Kagari T, Clingan JM, Matloubian M. 2011. Expression of chemokine receptor CXCR3 on T cells affects the balance between effector and memory CD8 T-cell generation. Proc. Natl. Acad. Sci. USA 108:E118–27 [Google Scholar]
  83. Hugues S, Scholer A, Boissonnas A, Nussbaum A, Combadière C. et al. 2007. Dynamic imaging of chemokine-dependent CD8+ T cell help for CD8+ T cell responses. Nat. Immunol. 8:921–30 [Google Scholar]
  84. Iannacone M, Moseman EA, Tonti E, Bosurgi L, Junt T. et al. 2010. Subcapsular sinus macrophages prevent CNS invasion on peripheral infection with a neurotropic virus. Nature 465:1079–83 [Google Scholar]
  85. Jaeger BN, Donadieu J, Cognet C, Bernat C, Ordoñez-Rueda D. et al. 2012. Neutrophil depletion impairs natural killer cell maturation, function, and homeostasis. J. Exp. Med. 209:565–80 [Google Scholar]
  86. Janeway CA Jr, Medzhitov R. 2002. Innate immune recognition. Annu. Rev. Immunol. 20:197–216 [Google Scholar]
  87. Junt T, Moseman EA, Iannacone M, Massberg S, Lang PA. et al. 2007. Subcapsular sinus macrophages in lymph nodes clear lymph-borne viruses and present them to antiviral B cells. Nature 450:110–14 [Google Scholar]
  88. Junt T, Scandella E, Ludewig B. 2008. Form follows function: lymphoid tissue microarchitecture in antimicrobial immune defence. Nat. Rev. Immunol. 8:764–75 [Google Scholar]
  89. Kageyama R, Cannons JL, Zhao F, Yusuf I, Lao C. et al. 2012. The receptor Ly108 functions as a SAP adaptor-dependent on-off switch for T cell help to B cells and NKT cell development. Immunity 36:986–1002 [Google Scholar]
  90. Kang SG, Liu WH, Lu P, Jin HY, Lim HW. et al. 2013. MicroRNAs of the miR-17 approximately 92 family are critical regulators of T(FH) differentiation. Nat. Immunol. 14:849–57 [Google Scholar]
  91. Kastenmüller W, Brandes M, Wang Z, Herz J, Egen JG, Germain RN. 2013. Peripheral prepositioning and local CXCL9 chemokine-mediated guidance orchestrate rapid memory CD8+ T cell responses in the lymph node. Immunity 38:502–13 [Google Scholar]
  92. Kastenmüller W, Torabi-Parizi P, Subramanian N, Lämmermann T, Germain RN. 2012. A spatially-organized multicellular innate immune response in lymph nodes limits systemic pathogen spread. Cell 150:1235–48 [Google Scholar]
  93. Katakai T, Habiro K, Kinashi T. 2013. Dendritic cells regulate high-speed interstitial T cell migration in the lymph node via LFA-1/ICAM-1. J. Immunol. 191:1188–99 [Google Scholar]
  94. Katakai T, Suto H, Sugai M, Gonda H, Togawa A. et al. 2008. Organizer-like reticular stromal cell layer common to adult secondary lymphoid organs. J. Immunol. 181:6189–200 [Google Scholar]
  95. Kawasaki T, Kawai T, Akira S. 2011. Recognition of nucleic acids by pattern-recognition receptors and its relevance in autoimmunity. Immunol. Rev. 243:61–73 [Google Scholar]
  96. Kelly LM, Pereira JP, Yi T, Xu Y, Cyster JG. 2011. EBI2 guides serial movements of activated B cells and ligand activity is detectable in lymphoid and nonlymphoid tissues. J. Immunol. 187:3026–32 [Google Scholar]
  97. Kerfoot SM, Yaari G, Patel JR, Johnson KL, Gonzalez DG. et al. 2011. Germinal center B cell and T follicular helper cell development initiates in the interfollicular zone. Immunity 34:947–60 [Google Scholar]
  98. Kissenpfennig A, Henri S, Dubois B, Laplace-Builhé C, Perrin P. et al. 2005. Dynamics and function of Langerhans cells in vivo: dermal dendritic cells colonize lymph node areas distinct from slower migrating Langerhans cells. Immunity 22:643–54 [Google Scholar]
  99. Kitano M, Moriyama S, Ando Y, Hikida M, Mori Y. et al. 2011. Bcl6 protein expression shapes pre-germinal center B cell dynamics and follicular helper T cell heterogeneity. Immunity 34:961–72 [Google Scholar]
  100. Klezovich-Bénard M, Corre JP, Jusforgues-Saklani H, Fiole D, Burjek N. et al. 2012. Mechanisms of NK cell-macrophage Bacillus anthracis crosstalk: a balance between stimulation by spores and differential disruption by toxins. PLOS Pathog. 8:e1002481 [Google Scholar]
  101. Kobayashi SD, DeLeo FR. 2009. Role of neutrophils in innate immunity: a systems biology-level approach. Wiley Interdiscip. Rev. Syst. Biol. Med. 1:309–33 [Google Scholar]
  102. Koh TJ, DiPietro LA. 2011. Inflammation and wound healing: the role of the macrophage. Expert Rev. Mol. Med. 13:e23 [Google Scholar]
  103. Kohlmeier JE, Reiley WW, Perona-Wright G, Freeman ML, Yager EJ. et al. 2011. Inflammatory chemokine receptors regulate CD8+ T cell contraction and memory generation following infection. J. Exp. Med. 208:1621–34 [Google Scholar]
  104. Kurachi M, Kurachi J, Suenaga F, Tsukui T, Abe J. et al. 2011. Chemokine receptor CXCR3 facilitates CD8+ T cell differentiation into short-lived effector cells leading to memory degeneration. J. Exp. Med. 208:1605–20 [Google Scholar]
  105. Kwon DS, Gregorio G, Bitton N, Hendrickson WA, Littman DR. 2002. DC-SIGN-mediated internalization of HIV is required for trans-enhancement of T cell infection. Immunity 16:135–44 [Google Scholar]
  106. Lämmermann T, Afonso PV, Angermann BR, Wang JM, Kastenmüller W. et al. 2013. Neutrophil swarms require LTB4 and integrins at sites of cell death in vivo. Nature 498:371–75 [Google Scholar]
  107. Lämmermann T, Bader BL, Monkley SJ, Worbs T, Wedlich-Soldner R. et al. 2008. Rapid leukocyte migration by integrin-independent flowing and squeezing. Nature 453:51–55 [Google Scholar]
  108. Lämmermann T, Sixt M. 2008. The microanatomy of T-cell responses. Immunol. Rev. 221:26–43 [Google Scholar]
  109. Lee M, Mandl JN, Germain RN, Yates AJ. 2012. The race for the prize: T-cell trafficking strategies for optimal surveillance. Blood 120:1432–38 [Google Scholar]
  110. Lindquist RL, Shakhar G, Dudziak D, Wardemann H, Eisenreich T. et al. 2004. Visualizing dendritic cell networks in vivo. Nat. Immunol. 5:1243–50 [Google Scholar]
  111. Liu C, Yang XV, Wu J, Kuei C, Mani NS. et al. 2011. Oxysterols direct B-cell migration through EBI2. Nature 475:519–23 [Google Scholar]
  112. Lodygin D, Odoardi F, Schlager C, Korner H, Kitz A. et al. 2013. A combination of fluorescent NFAT and H2B sensors uncovers dynamics of T cell activation in real time during CNS autoimmunity. Nat. Med. 19:784–90 [Google Scholar]
  113. Loo YM, Gale M Jr. 2011. Immune signaling by RIG-I-like receptors. Immunity 34:680–92 [Google Scholar]
  114. MacLennan IC, Gulbranson-Judge A, Toellner KM, Casamayor-Palleja M, Chan E. et al. 1997. The changing preference of T and B cells for partners as T-dependent antibody responses develop. Immunol. Rev. 156:53–66 [Google Scholar]
  115. Mandl JN, Liou R, Klauschen F, Vrisekoop N, Monteiro JP. et al. 2012. Quantification of lymph node transit times reveals differences in antigen surveillance strategies of naive CD4+ and CD8+ T cells. Proc. Natl. Acad. Sci. USA 109:18036–41 [Google Scholar]
  116. Marangoni F, Murooka TT, Manzo T, Kim EY, Carrizosa E. et al. 2013. The transcription factor NFAT exhibits signal memory during serial T cell interactions with antigen-presenting cells. Immunity 38:237–49 [Google Scholar]
  117. Matloubian M, Lo CG, Cinamon G, Lesneski MJ, Xu Y. et al. 2004. Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature 427:355–60 [Google Scholar]
  118. McDonald B, Pittman K, Menezes GB, Hirota SA, Slaba I. et al. 2010. Intravascular danger signals guide neutrophils to sites of sterile inflammation. Science 330:362–66 [Google Scholar]
  119. Mehta S, Zhang J. 2011. Reporting from the field: Genetically encoded fluorescent reporters uncover signaling dynamics in living biological systems. Annu. Rev. Biochem. 80:375–401 [Google Scholar]
  120. Melichar HJ, Ross JO, Herzmark P, Hogquist KA, Robey EA. 2013. Distinct temporal patterns of T cell receptor signaling during positive versus negative selection in situ. Sci. Signal 6:ra92 [Google Scholar]
  121. Mempel TR, Henrickson SE, von Andrian UH. 2004. T-cell priming by dendritic cells in lymph nodes occurs in three distinct phases. Nature 427:154–59 [Google Scholar]
  122. Merad M, Ginhoux F, Collin M. 2008. Origin, homeostasis and function of Langerhans cells and other langerin-expressing dendritic cells. Nat. Rev. Immunol. 8:935–47 [Google Scholar]
  123. Miller MJ, Safrina O, Parker I, Cahalan MD. 2004. Imaging the single cell dynamics of CD4+ T cell activation by dendritic cells in lymph nodes. J. Exp. Med. 200:847–56 [Google Scholar]
  124. Miller MJ, Wei SH, Cahalan MD, Parker I. 2003. Autonomous T cell trafficking examined in vivo with intravital two-photon microscopy. Proc. Natl. Acad. Sci. USA 100:2604–9 [Google Scholar]
  125. Miller MJ, Wei SH, Parker I, Cahalan MD. 2002. Two-photon imaging of lymphocyte motility and antigen response in intact lymph node. Science 296:1869–73 [Google Scholar]
  126. Moriyama S, Takahashi N, Green JA, Hori S, Kubo M. et al. 2014. Sphingosine-1-phosphate receptor 2 is critical for follicular helper T cell retention in germinal centers. J. Exp. Med. 7:1297–305 [Google Scholar]
  127. Mueller SN, Gebhardt T, Carbone FR, Heath WR. 2013. Memory T cell subsets, migration patterns, and tissue residence. Annu. Rev. Immunol. 31:137–61 [Google Scholar]
  128. Norbury CC, Malide D, Gibbs JS, Bennink JR, Yewdell JW. 2002. Visualizing priming of virus-specific CD8+ T cells by infected dendritic cells in vivo. Nat. Immunol. 3:265–71 [Google Scholar]
  129. Okada T, Miller MJ, Parker I, Krummel MF, Neighbors M. et al. 2005. Antigen-engaged B cells undergo chemotaxis toward the T zone and form motile conjugates with helper T cells. PLOS Biol. 3:e150 [Google Scholar]
  130. Pancer Z, Cooper MD. 2006. The evolution of adaptive immunity. Annu. Rev. Immunol. 24:497–518 [Google Scholar]
  131. Pereira JP, Kelly LM, Xu Y, Cyster JG. 2009. EBI2 mediates B cell segregation between the outer and centre follicle. Nature 460:1122–26 [Google Scholar]
  132. Pham TH, Baluk P, Xu Y, Grigorova I, Bankovich AJ. et al. 2010. Lymphatic endothelial cell sphingosine kinase activity is required for lymphocyte egress and lymphatic patterning. J. Exp. Med. 207:17–27 [Google Scholar]
  133. Phan TG, Grigorova I, Okada T, Cyster JG. 2007. Subcapsular encounter and complement-dependent transport of immune complexes by lymph node B cells. Nat. Immunol. 8:992–1000 [Google Scholar]
  134. Pittman K, Kubes P. 2013. Damage-associated molecular patterns control neutrophil recruitment. J. Innate Immun. 5:315–23 [Google Scholar]
  135. Qi H. 2012. From SAP-less T cells to helpless B cells and back: Dynamic T-B cell interactions underlie germinal center development and function. Immunol. Rev. 247:24–35 [Google Scholar]
  136. Qi H, Cannons JL, Klauschen F, Schwartzberg PL, Germain RN. 2008. SAP-controlled T-B cell interactions underlie germinal centre formation. Nature 455:764–69 [Google Scholar]
  137. Qi H, Egen JG, Huang AY, Germain RN. 2006. Extrafollicular activation of lymph node B cells by antigen-bearing dendritic cells. Science 312:1672–76 [Google Scholar]
  138. Randolph GJ, Angeli V, Swartz MA. 2005. Dendritic-cell trafficking to lymph nodes through lymphatic vessels. Nat. Rev. Immunol. 5:617–28 [Google Scholar]
  139. Reif K, Ekland EH, Ohl L, Nakano H, Lipp M. et al. 2002. Balanced responsiveness to chemoattractants from adjacent zones determines B-cell position. Nature 416:94–99 [Google Scholar]
  140. Roozendaal R, Mebius RE, Kraal G. 2008. The conduit system of the lymph node. Int. Immunol. 20:1483–87 [Google Scholar]
  141. Roozendaal R, Mempel TR, Pitcher LA, Gonzalez SF, Verschoor A. et al. 2009. Conduits mediate transport of low-molecular-weight antigen to lymph node follicles. Immunity 30:264–76 [Google Scholar]
  142. Schwickert TA, Lindquist RL, Shakhar G, Livshits G, Skokos D. et al. 2007. In vivo imaging of germinal centres reveals a dynamic open structure. Nature 446:83–87 [Google Scholar]
  143. Semmling V, Lukacs-Kornek V, Thaiss CA, Quast T, Hochheiser K. et al. 2010. Alternative cross-priming through CCL17-CCR4-mediated attraction of CTLs toward NKT cell-licensed DCs. Nat. Immunol. 11:313–20 [Google Scholar]
  144. Shiow LR, Rosen DB, Brdičková N, Xu Y, An J. et al. 2006. CD69 acts downstream of interferon-α/β to inhibit S1P1 and lymphocyte egress from lymphoid organs. Nature 440:540–44 [Google Scholar]
  145. Shulman Z, Gitlin AD, Targ S, Jankovic M, Pasqual G. et al. 2013. T follicular helper cell dynamics in germinal centers. Science 341:673–77 [Google Scholar]
  146. Sinha RK, Park C, Hwang IY, Davis MD, Kehrl JH. 2009. B lymphocytes exit lymph nodes through cortical lymphatic sinusoids by a mechanism independent of sphingosine-1-phosphate-mediated chemotaxis. Immunity 30:434–46 [Google Scholar]
  147. Sixt M, Kanazawa N, Selg M, Samson T, Roos G. et al. 2005. The conduit system transports soluble antigens from the afferent lymph to resident dendritic cells in the T cell area of the lymph node. Immunity 22:19–29 [Google Scholar]
  148. Stachowiak AN, Wang Y, Huang YC, Irvine DJ. 2006. Homeostatic lymphoid chemokines synergize with adhesion ligands to trigger T and B lymphocyte chemokinesis. J. Immunol. 177:2340–48 [Google Scholar]
  149. Steinman RM. 2012. Decisions about dendritic cells: past, present, and future. Annu. Rev. Immunol. 30:1–22 [Google Scholar]
  150. Stoll S, Delon J, Brotz TM, Germain RN. 2002. Dynamic imaging of T cell-dendritic cell interactions in lymph nodes. Science 296:1873–76 [Google Scholar]
  151. Sumaria N, Roediger B, Ng LG, Qin J, Pinto R. et al. 2011. Cutaneous immunosurveillance by self-renewing dermal γδ T cells. J. Exp. Med. 208:505–18 [Google Scholar]
  152. Sung JH, Zhang H, Moseman EA, Alvarez D, Iannacone M. et al. 2012. Chemokine guidance of central memory T cells is critical for antiviral recall responses in lymph nodes. Cell 150:1249–63 [Google Scholar]
  153. Suzuki K, Grigorova I, Phan TG, Kelly LM, Cyster JG. 2009. Visualizing B cell capture of cognate antigen from follicular dendritic cells. J. Exp. Med. 206:1485–93 [Google Scholar]
  154. Szakal AK, Holmes KL, Tew JG. 1983. Transport of immune complexes from the subcapsular sinus to lymph node follicles on the surface of nonphagocytic cells, including cells with dendritic morphology. J. Immunol. 131:1714–27 [Google Scholar]
  155. Taylor PR, Martinez-Pomares L, Stacey M, Lin HH, Brown GD, Gordon S. 2005. Macrophage receptors and immune recognition. Annu. Rev. Immunol. 23:901–44 [Google Scholar]
  156. Tian L, Hires SA, Looger LL. 2012. Imaging neuronal activity with genetically encoded calcium indicators. Cold Spring Harb. Protoc. 2012:647–56 [Google Scholar]
  157. Tomer R, Khairy K, Keller PJ. 2013. Light sheet microscopy in cell biology. Methods Mol. Biol. 931:123–37 [Google Scholar]
  158. Tomura M, Yoshida N, Tanaka J, Karasawa S, Miwa Y. et al. 2008. Monitoring cellular movement in vivo with photoconvertible fluorescence protein “Kaede” transgenic mice. Proc. Natl. Acad. Sci. USA 105:10871–76 [Google Scholar]
  159. Ulvmar MH, Werth K, Braun A, Kelay P, Hub E. et al. 2014. The atypical chemokine receptor CCRL1 shapes functional CCL21 gradients in lymph nodes. Nat. Immunol. 15:623–30 [Google Scholar]
  160. van Heijst JW, Gerlach C, Swart E, Sie D, Nunes-Alves C. et al. 2009. Recruitment of antigen-specific CD8+ T cells in response to infection is markedly efficient. Science 325:1265–69 [Google Scholar]
  161. Velázquez P, Cameron TO, Kinjo Y, Nagarajan N, Kronenberg M, Dustin ML. 2008. Cutting edge: Activation by innate cytokines or microbial antigens can cause arrest of natural killer T cell patrolling of liver sinusoids. J. Immunol. 180:2024–28 [Google Scholar]
  162. Victora GD, Nussenzweig MC. 2012. Germinal centers. Annu. Rev. Immunol. 30:429–57 [Google Scholar]
  163. Victora GD, Schwickert TA, Fooksman DR, Kamphorst AO, Meyer-Hermann M. et al. 2010. Germinal center dynamics revealed by multiphoton microscopy with a photoactivatable fluorescent reporter. Cell 143:592–605 [Google Scholar]
  164. Vinuesa CG, Cyster JG. 2011. How T cells earn the follicular rite of passage. Immunity 35:671–80 [Google Scholar]
  165. von Andrian UH, Mempel TR. 2003. Homing and cellular traffic in lymph nodes. Nat. Rev. Immunol. 3:867–78 [Google Scholar]
  166. Westermann J, Puskas Z, Pabst R. 1988. Blood transit and recirculation kinetics of lymphocyte subsets in normal rats. Scand. J. Immunol. 28:203–10 [Google Scholar]
  167. Wiesel M, Oxenius A. 2012. From crucial to negligible: functional CD8+ T-cell responses and their dependence on CD4+ T-cell help. Eur. J. Immunol. 42:1080–88 [Google Scholar]
  168. Woolf E, Grigorova I, Sagiv A, Grabovsky V, Feigelson SW. et al. 2007. Lymph node chemokines promote sustained T lymphocyte motility without triggering stable integrin adhesiveness in the absence of shear forces. Nat. Immunol. 8:1076–85 [Google Scholar]
  169. Worbs T, Mempel TR, Bölter J, von Andrian UH, Förster R. 2007. CCR7 ligands stimulate the intranodal motility of T lymphocytes in vivo. J. Exp. Med. 204:489–95 [Google Scholar]
  170. Xu H, Li X, Liu D, Li J, Zhang X. et al. 2013. Follicular T-helper cell recruitment governed by bystander B cells and ICOS-driven motility. Nature 496:523–27 [Google Scholar]
  171. Ye P, Rodriguez FH, Kanaly S, Stocking KL, Schurr J. et al. 2001. Requirement of interleukin 17 receptor signaling for lung CXC chemokine and granulocyte colony-stimulating factor expression, neutrophil recruitment, and host defense. J. Exp. Med. 194:519–27 [Google Scholar]
  172. Yi T, Cyster JG. 2013. EBI2-mediated bridging channel positioning supports splenic dendritic cell homeostasis and particulate antigen capture. eLife 2:e00757 [Google Scholar]
  173. Yi T, Wang X, Kelly LM, An J, Xu Y. et al. 2012. Oxysterol gradient generation by lymphoid stromal cells guides activated B cell movement during humoral responses. Immunity 37:535–48 [Google Scholar]
  174. Yu D, Tan AH, Hu X, Athanasopoulos V, Simpson N. et al. 2007. Roquin represses autoimmunity by limiting inducible T-cell co-stimulator messenger RNA. Nature 450:299–303 [Google Scholar]
  175. Zelenay S, Reis e Sousa C. 2013. Adaptive immunity after cell death. Trends Immunol. 34:329–35 [Google Scholar]
  176. Zhu J, Paul WE. 2010. Peripheral CD4+ T-cell differentiation regulated by networks of cytokines and transcription factors. Immunol. Rev. 238:247–62 [Google Scholar]
/content/journals/10.1146/annurev-cellbio-100913-013254
Loading
/content/journals/10.1146/annurev-cellbio-100913-013254
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error