Cell migration results from stepwise mechanical and chemical interactions between cells and their extracellular environment. Mechanistic principles that determine single-cell and collective migration modes and their interconversions depend upon the polarization, adhesion, deformability, contractility, and proteolytic ability of cells. Cellular determinants of cell migration respond to extracellular cues, including tissue composition, topography, alignment, and tissue-associated growth factors and cytokines. Both cellular determinants and tissue determinants are interdependent; undergo reciprocal adjustment; and jointly impact cell decision making, navigation, and migration outcome in complex environments. We here review the variability, decision making, and adaptation of cell migration approached by live-cell, in vivo, and in silico strategies, with a focus on cell movements in morphogenesis, repair, immune surveillance, and cancer metastasis.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Aceto N, Bardia A, Miyamoto DT, Donaldson MC, Wittner BS. et al. 2014. Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. Cell 158:1110–22 [Google Scholar]
  2. Alexander S, Koehl GE, Hirschberg M, Geissler EK, Friedl P. 2008. Dynamic imaging of cancer growth and invasion: a modified skin-fold chamber model. Histochem. Cell Biol. 130:1147–54 [Google Scholar]
  3. Alexander S, Weigelin B, Winkler F, Friedl P. 2013. Preclinical intravital microscopy of the tumour-stroma interface: invasion, metastasis, and therapy response. Curr. Opin. Cell Biol. 25:659–71 [Google Scholar]
  4. Andrade DM, Clausen MP, Keller J, Mueller V, Wu C. et al. 2015. Cortical actin networks induce spatio-temporal confinement of phospholipids in the plasma membrane—a minimally invasive investigation by STED-FCS. Sci. Rep. 5:11454 [Google Scholar]
  5. Angeli D, Ferrell JE Jr., Sontag ED. 2004. Detection of multistability, bifurcations, and hysteresis in a large class of biological positive-feedback systems. PNAS 101:1822–27 [Google Scholar]
  6. Bachir AI, Zareno J, Moissoglu K, Plow EF, Gratton E, Horwitz AR. 2014. Integrin-associated complexes form hierarchically with variable stoichiometry in nascent adhesions. Curr. Biol. 24:1845–53 [Google Scholar]
  7. Balcioglu HE, Van Hoorn H, Donato DM, Schmidt T, Danen EH. 2015. The integrin expression profile modulates orientation and dynamics of force transmission at cell-matrix adhesions. J. Cell Sci. 128:1316–26 [Google Scholar]
  8. Batlle E, Wilkinson DG. 2012. Molecular mechanisms of cell segregation and boundary formation in development and tumorigenesis. Cold Spring Harb. Perspect. Biol. 4:a008227 [Google Scholar]
  9. Bazellieres E, Conte V, Elosegui-Artola A, Serra-Picamal X, Bintanel-Morcillo M. et al. 2015. Control of cell-cell forces and collective cell dynamics by the intercellular adhesome. Nat. Cell Biol. 17:409–20 [Google Scholar]
  10. Beningo KA, Dembo M, Kaverina I, Small JV, Wang YL. 2001. Nascent focal adhesions are responsible for the generation of strong propulsive forces in migrating fibroblasts. J. Cell Biol. 153:881–88 [Google Scholar]
  11. Bergert M, Chandradoss SD, Desai RA, Paluch E. 2012. Cell mechanics control rapid transitions between blebs and lamellipodia during migration. PNAS 109:14434–39 [Google Scholar]
  12. Bergert M, Erzberger A, Desai RA, Aspalter IM, Oates AC. et al. 2015. Force transmission during adhesion-independent migration. Nat. Cell Biol. 17:524–29 [Google Scholar]
  13. Bi D, Yang X, Marchetti MC, Manning ML. 2016. Motility-driven glass and jamming transitions in biological tissues. Phys. Rev. X 6:021011 [Google Scholar]
  14. Blanchoin L, Boujemaa-Paterski R, Sykes C, Plastino J. 2014. Actin dynamics, architecture, and mechanics in cell motility. Physiol. Rev. 94:235–63 [Google Scholar]
  15. Byrne KM, Monsefi N, Dawson JC, Degasperi A, Bukowski-Wills J-C. et al. 2016. Bistability in the Rac1, PAK, and RhoA signaling network drives actin cytoskeleton dynamics and cell motility switches. Cell Syst 1:38–48 [Google Scholar]
  16. Cai D, Chen SC, Prasad M, He L, Wang X. et al. 2014. Mechanical feedback through E-cadherin promotes direction sensing during collective cell migration. Cell 157:1146–59 [Google Scholar]
  17. Carlin LM, Stamatiades EG, Auffray C, Hanna RN, Glover L. et al. 2013. Nr4a1-dependent Ly6Clow monocytes monitor endothelial cells and orchestrate their disposal. Cell 153:362–75 [Google Scholar]
  18. Carvalho LO, Aquino EN, Neves AC, Fontes W. 2015. The neutrophil nucleus and its role in neutrophilic function. J. Cell. Biochem. 116:1831–36 [Google Scholar]
  19. Casares L, Vincent R, Zalvidea D, Campillo N, Navajas D. et al. 2015. Hydraulic fracture during epithelial stretching. Nat. Mater. 14:343–51 [Google Scholar]
  20. Case LB, Baird MA, Shtengel G, Campbell SL, Hess HF. et al. 2015. Molecular mechanism of vinculin activation and nanoscale spatial organization in focal adhesions. Nat. Cell Biol. 17:880–92 [Google Scholar]
  21. Cavallaro U, Christofori G. 2004. Cell adhesion and signalling by cadherins and Ig-CAMs in cancer. Nat. Rev. Cancer 4:118–32 [Google Scholar]
  22. Cayrol R, Wosik K, Berard JL, Dodelet-Devillers A, Ifergan I. et al. 2008. Activated leukocyte cell adhesion molecule promotes leukocyte trafficking into the central nervous system. Nat. Immunol. 9:137–45 [Google Scholar]
  23. Chan CJ, Ekpenyong AE, Golfier S, Li W, Chalut KJ. et al. 2015. Myosin II activity softens cells in suspension. Biophys. J. 108:1856–69 [Google Scholar]
  24. Changede R, Xu X, Margadant F, Sheetz MP. 2015. Nascent integrin adhesions form on all matrix rigidities after integrin activation. Dev. Cell 35:614–21 [Google Scholar]
  25. Chaqour B. 2013. Molecular control of vascular development by the matricellular proteins CCN1 (Cyr61) and CCN2 (CTGF). Trends Dev. Biol. 7:59–72 [Google Scholar]
  26. Chen CS, Tan J, Tien J. 2004. Mechanotransduction at cell-matrix and cell-cell contacts. Annu. Rev. Biomed. Eng 6275–302 [Google Scholar]
  27. Cheung KJ, Ewald AJ. 2014. Illuminating breast cancer invasion: diverse roles for cell-cell interactions. Curr. Opin. Cell Biol. 30:99–111 [Google Scholar]
  28. Cheung KJ, Padmanaban V, Silvestri V, Schipper K, Cohen JD. et al. 2016. Polyclonal breast cancer metastases arise from collective dissemination of keratin 14-expressing tumor cell clusters. PNAS 113:E854–63 [Google Scholar]
  29. Chrzanowska-Wodnicka M, Burridge K. 1996. Rho-stimulated contractility drives the formation of stress fibers and focal adhesions. J. Cell Biol. 133:1403–15 [Google Scholar]
  30. Chuai M, Hughes D, Weijer CJ. 2012. Collective epithelial and mesenchymal cell migration during gastrulation. Curr. Genom. 13:267–77 [Google Scholar]
  31. Collins C, Nelson WJ. 2015. Running with neighbors: coordinating cell migration and cell-cell adhesion. Curr. Opin. Cell Biol. 36:62–70 [Google Scholar]
  32. Cooper S, Sadok A, Bousgouni V, Bakal C. 2015. Apolar and polar transitions drive the conversion between amoeboid and mesenchymal shapes in melanoma cells. Mol. Biol. Cell 26:4163–70 [Google Scholar]
  33. Couchman JR. 2010. Transmembrane signaling proteoglycans. Annu. Rev. Cell Dev. Biol. 26:89–114 [Google Scholar]
  34. Cox JH, Dean RA, Roberts CR, Overall CM. 2008. Matrix metalloproteinase processing of CXCL11/I-TAC results in loss of chemoattractant activity and altered glycosaminoglycan binding. J. Biol. Chem. 283:19389–99 [Google Scholar]
  35. Dallon JC, Othmer HG. 2004. How cellular movement determines the collective force generated by the Dictyostelium discoideum slug. J. Theor. Biol. 231:203–22 [Google Scholar]
  36. Danuser G, Allard J, Mogilner A. 2013. Mathematical modeling of eukaryotic cell migration: insights beyond experiments. Annu. Rev. Cell Dev. Biol. 29:501–28 [Google Scholar]
  37. Das S, Rericha EC, Bagorda A, Parent CA. 2011. Direct biochemical measurements of signal relay during Dictyostelium development. J. Biol. Chem. 286:38649–58 [Google Scholar]
  38. Dean RA, Cox JH, Bellac CL, Doucet A, Starr AE, Overall CM. 2008. Macrophage-specific metalloelastase (MMP-12) truncates and inactivates ELR+ CXC chemokines and generates CCL2, -7, -8, and -13 antagonists: potential role of the macrophage in terminating polymorphonuclear leukocyte influx. Blood 112:3455–64 [Google Scholar]
  39. DiMilla PA, Stone JA, Quinn JA, Albelda SM, Lauffenburger DA. 1993. Maximal migration of human smooth muscle cells on fibronectin and type IV collagen occurs at an intermediate attachment strength. J. Cell Biol. 122:729–37 [Google Scholar]
  40. Dona E, Barry JD, Valentin G, Quirin C, Khmelinskii A. et al. 2013. Directional tissue migration through a self-generated chemokine gradient. Nature 503:285–89 [Google Scholar]
  41. Doyle AD, Wang FW, Matsumoto K, Yamada KM. 2009. One-dimensional topography underlies three-dimensional fibrillar cell migration. J. Cell Biol. 184:481–90 [Google Scholar]
  42. Drasdo D, Hohme S. 2005. A single-cell-based model of tumor growth in vitro: monolayers and spheroids. Phys. Biol. 2:133–47 [Google Scholar]
  43. Dunn SJ, Nathke IS, Osborne JM. 2013. Computational models reveal a passive mechanism for cell migration in the crypt. PLOS ONE 8:e80516 [Google Scholar]
  44. Eilken HM, Adams RH. 2010. Dynamics of endothelial cell behavior in sprouting angiogenesis. Curr. Opin. Cell Biol. 22:617–25 [Google Scholar]
  45. Fletcher AG, Osterfield M, Baker RE, Shvartsman SY. 2014. Vertex models of epithelial morphogenesis. Biophys. J. 106:2291–304 [Google Scholar]
  46. Frascoli F, Hughes BD, Zaman MH, Landman KA. 2013. A computational model for collective cellular motion in three dimensions: general framework and case study for cell pair dynamics. PLOS ONE 8:e59249 [Google Scholar]
  47. Friedl P, Alexander S. 2011. Cancer invasion and the microenvironment: plasticity and reciprocity. Cell 147:992–1009 [Google Scholar]
  48. Friedl P, Borgmann S, Brocker EB. 2001. Amoeboid leukocyte crawling through extracellular matrix: lessons from the Dictyostelium paradigm of cell movement. J. Leukoc. Biol. 70:491–509 [Google Scholar]
  49. Friedl P, Entschladen F, Conrad C, Niggemann B, Zanker KS. 1998. CD4+ T lymphocytes migrating in three-dimensional collagen lattices lack focal adhesions and utilize β1 integrin–independent strategies for polarization, interaction with collagen fibers and locomotion. Eur. J. Immunol. 28:2331–43 [Google Scholar]
  50. Friedl P, Gilmour D. 2009. Collective cell migration in morphogenesis, regeneration and cancer. Nat. Rev. Mol. Cell Biol. 10:445–57 [Google Scholar]
  51. Friedl P, Locker J, Sahai E, Segall JE. 2012a. Classifying collective cancer cell invasion. Nat. Cell Biol. 14:777–83 [Google Scholar]
  52. Friedl P, Maaser K, Klein CE, Niggemann B, Krohne G, Zanker KS. 1997. Migration of highly aggressive MV3 melanoma cells in 3-dimensional collagen lattices results in local matrix reorganization and shedding of α2 and β1 integrins and CD44. Cancer Res 57:2061–70 [Google Scholar]
  53. Friedl P, Noble PB, Walton PA, Laird DW, Chauvin PJ. et al. 1995. Migration of coordinated cell clusters in mesenchymal and epithelial cancer explants in vitro. Cancer Res 55:4557–60 [Google Scholar]
  54. Friedl P, Sahai E, Weiss S, Yamada KM. 2012b. New dimensions in cell migration. Nat. Rev. Mol. Cell Biol. 13:743–47 [Google Scholar]
  55. Friedl P, Weigelin B. 2008. Interstitial leukocyte migration and immune function. Nat. Immunol. 9:960–69 [Google Scholar]
  56. Friedl P, Wolf K. 2008. Tube travel: the role of proteases in individual and collective cancer cell invasion. Cancer Res 68:7247–49 [Google Scholar]
  57. Friedl P, Wolf K. 2010. Plasticity of cell migration: a multiscale tuning model. J. Cell Biol. 188:11–19 [Google Scholar]
  58. Friedl P, Wolf K, Lammerding J. 2011. Nuclear mechanics during cell migration. Curr. Opin. Cell Biol. 23:55–64 [Google Scholar]
  59. Gad AK, Ronnlund D, Spaar A, Savchenko AA, Petranyi G. et al. 2012. Rho GTPases link cellular contractile force to the density and distribution of nanoscale adhesions. FASEB J 26:2374–82 [Google Scholar]
  60. Gardel ML, Sabass B, Ji L, Danuser G, Schwarz US, Waterman CM. 2008. Traction stress in focal adhesions correlates biphasically with actin retrograde flow speed. J. Cell Biol. 183:999–1005 [Google Scholar]
  61. Geiger B, Spatz JP, Bershadsky AD. 2009. Environmental sensing through focal adhesions. Nat. Rev. Mol. Cell Biol. 10:21–33 [Google Scholar]
  62. Glentis A, Gurchenkov V, Matic Vignjevic D. 2014. Assembly, heterogeneity, and breaching of the basement membranes. Cell Adhes. Migr. 8:236–45 [Google Scholar]
  63. Goudarzi M, Banisch TU, Mobin MB, Maghelli N, Tarbashevich K. et al. 2012. Identification and regulation of a molecular module for bleb-based cell motility. Dev. Cell 23:210–18 [Google Scholar]
  64. Grashoff C, Hoffman BD, Brenner MD, Zhou R, Parsons M. et al. 2010. Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics. Nature 466:263–66 [Google Scholar]
  65. Greiner AM, Klein F, Gudzenko T, Richter B, Striebel T. et al. 2015. Cell type–specific adaptation of cellular and nuclear volume in micro-engineered 3D environments. Biomaterials 69:121–32 [Google Scholar]
  66. Griffith JW, Sokol CL, Luster AD. 2014. Chemokines and chemokine receptors: positioning cells for host defense and immunity. Annu. Rev. Immunol. 32:659–702 [Google Scholar]
  67. Grinnell F, Petroll WM. 2010. Cell motility and mechanics in three-dimensional collagen matrices. Annu. Rev. Cell Dev. Biol. 26:335–61 [Google Scholar]
  68. Haeger A, Krause M, Wolf K, Friedl P. 2014. Cell jamming: collective invasion of mesenchymal tumor cells imposed by tissue confinement. Biochim. Biophys. Acta 1840:2386–95 [Google Scholar]
  69. Haeger A, Wolf K, Zegers MM, Friedl P. 2015. Collective cell migration: guidance principles and hierarchies. Trends Cell Biol 25:556–66 [Google Scholar]
  70. Haigo SL, Bilder D. 2011. Global tissue revolutions in a morphogenetic movement controlling elongation. Science 331:1071–74 [Google Scholar]
  71. Halloran MC, Wolman MA. 2006. Repulsion or adhesion: Receptors make the call. Curr. Opin. Cell Biol. 18:533–40 [Google Scholar]
  72. Harris TJ, Tepass U. 2010. Adherens junctions: from molecules to morphogenesis. Nat. Rev. Mol. Cell Biol. 11:502–14 [Google Scholar]
  73. Hegerfeldt Y, Tusch M, Brocker EB, Friedl P. 2002. Collective cell movement in primary melanoma explants: plasticity of cell-cell interaction, β1-integrin function, and migration strategies. Cancer Res 62:2125–30 [Google Scholar]
  74. Heit B, Tavener S, Raharjo E, Kubes P. 2002. An intracellular signaling hierarchy determines direction of migration in opposing chemotactic gradients. J. Cell Biol. 159:91–102 [Google Scholar]
  75. Helvert VS, Friedl P. 2016. Strain stiffening of fibrillar collagen during individual and collective cell migration identified by AFM force spectroscopy. ACS Appl. Mater. Interfaces. In press; doi: 10.1021/acsami.6b01755 [Google Scholar]
  76. Honda H, Tanemura M, Nagai T. 2004. A three-dimensional vertex dynamics cell model of space-filling polyhedra simulating cell behavior in a cell aggregate. J. Theor. Biol. 226:439–53 [Google Scholar]
  77. Huang B, Jolly MK, Lu M, Tsarfaty I, Ben-Jacob E, Onuchic JN. 2015. Modeling the transitions between collective and solitary migration phenotypes in cancer metastasis. Sci. Rep. 5:17379 [Google Scholar]
  78. Hung WC, Chen SH, Paul CD, Stroka KM, Lo YC. et al. 2013. Distinct signaling mechanisms regulate migration in unconfined versus confined spaces. J. Cell Biol. 202:807–24 [Google Scholar]
  79. Ilina O, Bakker GJ, Vasaturo A, Hofmann RM, Friedl P. 2011. Two-photon laser-generated microtracks in 3D collagen lattices: principles of MMP-dependent and -independent collective cancer cell invasion. Phys. Biol. 8:015010 [Google Scholar]
  80. Ilina O, Friedl P. 2009. Mechanisms of collective cell migration at a glance. J. Cell Sci. 122:3203–8 [Google Scholar]
  81. Ingber DE. 2003. Tensegrity. I. Cell structure and hierarchical systems biology. J. Cell Sci. 116:1157–73 [Google Scholar]
  82. Jansen KA, Bacabac RG, Piechocka IK, Koenderink GH. 2013. Cells actively stiffen fibrin networks by generating contractile stress. Biophys. J. 105:2240–51 [Google Scholar]
  83. Jiang G, Huang AH, Cai Y, Tanase M, Sheetz MP. 2006. Rigidity sensing at the leading edge through αvβ3 integrins and RPTPα. . Biophys. J. 90:1804–9 [Google Scholar]
  84. Joslin EJ, Opresko LK, Wells A, Wiley HS, Lauffenburger DA. 2007. EGF-receptor-mediated mammary epithelial cell migration is driven by sustained ERK signaling from autocrine stimulation. J. Cell Sci. 120:3688–99 [Google Scholar]
  85. Kania A, Klein R. 2016. Mechanisms of ephrin-Eph signalling in development, physiology and disease. Nat. Rev. Mol. Cell Biol. 170:240–56 [Google Scholar]
  86. Kardash E, Reichman-Fried M, Maitre JL, Boldajipour B, Papusheva E. et al. 2010. A role for Rho GTPases and cell-cell adhesion in single-cell motility in vivo. Nat. Cell Biol. 12:47–53; suppl. 1–11 [Google Scholar]
  87. Kariya Y, Sato H, Katou N, Kariya Y, Miyazaki K. 2012. Polymerized laminin-332 matrix supports rapid and tight adhesion of keratinocytes, suppressing cell migration. PLOS ONE 7:e35546 [Google Scholar]
  88. Kienast Y, Von Baumgarten L, Fuhrmann M, Klinkert WE, Goldbrunner R. et al. 2010. Real-time imaging reveals the single steps of brain metastasis formation. Nat. Med. 16:116–22 [Google Scholar]
  89. Kim JH, Serra-Picamal X, Tambe DT, Zhou EH, Park CY. et al. 2013. Propulsion and navigation within the advancing monolayer sheet. Nat. Mater. 12:856–63 [Google Scholar]
  90. Kim Y, Kumar S. 2014. CD44-mediated adhesion to hyaluronic acid contributes to mechanosensing and invasive motility. Mol. Cancer Res. 12:1416–29 [Google Scholar]
  91. Klotzsch E, Smith ML, Kubow KE, Muntwyler S, Little WC. et al. 2009. Fibronectin forms the most extensible biological fibers displaying switchable force-exposed cryptic binding sites. PNAS 106:18267–72 [Google Scholar]
  92. Koch TM, Munster S, Bonakdar N, Butler JP, Fabry B. 2012. 3D traction forces in cancer cell invasion. PLOS ONE 7:e33476 [Google Scholar]
  93. Kolsch V, Charest PG, Firtel RA. 2008. The regulation of cell motility and chemotaxis by phospholipid signaling. J. Cell Sci. 121:551–59 [Google Scholar]
  94. Kozlov MM, Mogilner A. 2007. Model of polarization and bistability of cell fragments. Biophys. J. 93:3811–19 [Google Scholar]
  95. Kroeze KL, Boink MA, Sampat-Sardjoepersad SC, Waaijman T, Scheper RJ, Gibbs S. 2012. Autocrine regulation of re-epithelialization after wounding by chemokine receptors CCR1, CCR10, CXCR1, CXCR2, and CXCR3. J. Investig. Dermatol. 132:216–25 [Google Scholar]
  96. Kubow KE, Conrad SK, Horwitz AR. 2013. Matrix microarchitecture and myosin II determine adhesion in 3D matrices. Curr. Biol. 23:1607–19 [Google Scholar]
  97. Lammermann T, Afonso PV, Angermann BR, Wang JM, Kastenmuller W. et al. 2013. Neutrophil swarms require LTB4 and integrins at sites of cell death in vivo. Nature 498:371–75 [Google Scholar]
  98. Larsen M, Wei C, Yamada KM. 2006. Cell and fibronectin dynamics during branching morphogenesis. J. Cell Sci. 119:3376–84 [Google Scholar]
  99. Lebreton G, Casanova J. 2014. Specification of leading and trailing cell features during collective migration in the Drosophila trachea. J. Cell Sci. 127:465–74 [Google Scholar]
  100. Li R, Gundersen GG. 2008. Beyond polymer polarity: how the cytoskeleton builds a polarized cell. Nat. Rev. Mol. Cell Biol. 9:860–73 [Google Scholar]
  101. Licup AJ, Munster S, Sharma A, Sheinman M, Jawerth LM. et al. 2015. Stress controls the mechanics of collagen networks. PNAS 112:9573–78 [Google Scholar]
  102. Liu H, Wen J, Xiao Y, Liu J, Hopyan S. et al. 2014. In situ mechanical characterization of the cell nucleus by atomic force microscopy. ACS Nano 8:3821–28 [Google Scholar]
  103. Liu YJ, Le Berre M, Lautenschlaeger F, Maiuri P, Callan-Jones A. et al. 2015. Confinement and low adhesion induce fast amoeboid migration of slow mesenchymal cells. Cell 160:659–72 [Google Scholar]
  104. Lomakin AJ, Lee KC, Han SJ, Bui DA, Davidson M. et al. 2015. Competition for actin between two distinct F-actin networks defines a bistable switch for cell polarization. Nat. Cell Biol. 17:1435–45 [Google Scholar]
  105. Maaser K, Wolf K, Klein CE, Niggemann B, Zanker KS. et al. 1999. Functional hierarchy of simultaneously expressed adhesion receptors: Integrin α2β1 but not CD44 mediates MV3 melanoma cell migration and matrix reorganization within three-dimensional hyaluronan-containing collagen matrices. Mol. Biol. Cell 10:3067–79 [Google Scholar]
  106. Malawista SE, de Boisfleury Chevance A. 1997. Random locomotion and chemotaxis of human blood polymorphonuclear leukocytes (PMN) in the presence of EDTA: PMN in close quarters require neither leukocyte integrins nor external divalent cations. PNAS 94:11577–82 [Google Scholar]
  107. Manhart A, Oelz D, Schmeiser C, Sfakianakis N. 2015. An extended filament based lamellipodium model produces various moving cell shapes in the presence of chemotactic signals. J. Theor. Biol. 382:244–58 [Google Scholar]
  108. Masuzzo P, Van Troys M, Ampe C, Martens L. 2016. Taking aim at moving targets in computational cell migration. Trends Cell Biol 26:88–110 [Google Scholar]
  109. Meineke FA, Potten CS, Loeffler M. 2001. Cell migration and organization in the intestinal crypt using a lattice-free model. Cell Prolif 34:253–66 [Google Scholar]
  110. Meng W, Takeichi M. 2009. Adherens junction: molecular architecture and regulation. Cold Spring Harb. Perspect. Biol. 1:a002899 [Google Scholar]
  111. Milde F, Tauriello G, Haberkern H, Koumoutsakos P. 2014. SEM++: a particle model of cellular growth, signaling and migration. Comput. Part. Mech. 1:211–27 [Google Scholar]
  112. Miller MA, Meyer AS, Beste MT, Lasisi Z, Reddy S. et al. 2013. ADAM-10 and -17 regulate endometriotic cell migration via concerted ligand and receptor shedding feedback on kinase signaling. PNAS 110:E2074–83 [Google Scholar]
  113. Moali C, Hulmes DJ. 2009. Extracellular and cell surface proteases in wound healing: New players are still emerging. Eur. J. Dermatol. 19:552–64 [Google Scholar]
  114. Monneau Y, Arenzana-Seisdedos F, Lortat-Jacob H. 2016. The sweet spot: how GAGs help chemokines guide migrating cells. J. Leukoc. Biol. 99:935–53 [Google Scholar]
  115. Moon JJ, Matsumoto M, Patel S, Lee L, Guan JL, Li S. 2005. Role of cell surface heparan sulfate proteoglycans in endothelial cell migration and mechanotransduction. J. Cell Physiol. 203:166–76 [Google Scholar]
  116. Morrissey MA, Sherwood DR. 2015. An active role for basement membrane assembly and modification in tissue sculpting. J. Cell Sci. 128:1661–68 [Google Scholar]
  117. Mythreye K, Blobe GC. 2009. Proteoglycan signaling co-receptors: roles in cell adhesion, migration and invasion. Cell. Signal. 21:1548–58 [Google Scholar]
  118. Nguyen-Ngoc KV, Cheung KJ, Brenot A, Shamir ER, Gray RS. et al. 2012. ECM microenvironment regulates collective migration and local dissemination in normal and malignant mammary epithelium. PNAS 109:E2595–604 [Google Scholar]
  119. Nieto MA. 2011. The ins and outs of the epithelial to mesenchymal transition in health and disease. Annu. Rev. Cell Dev. Biol. 27:347–76 [Google Scholar]
  120. Nourshargh S, Hordijk PL, Sixt M. 2010. Breaching multiple barriers: leukocyte motility through venular walls and the interstitium. Nat. Rev. Mol. Cell Biol. 11:366–78 [Google Scholar]
  121. Oelz D, Schmeiser C. 2012. Simulation of lamellipodial fragments. J. Math. Biol. 64:513–28 [Google Scholar]
  122. Orgaz JL, Pandya P, Dalmeida R, Karagiannis P, Sanchez-Laorden B. et al. 2014. Diverse matrix metalloproteinase functions regulate cancer amoeboid migration. Nat. Commun. 5:4255 [Google Scholar]
  123. Osswald M, Jung E, Sahm F, Solecki G, Venkataramani V. et al. 2015. Brain tumour cells interconnect to a functional and resistant network. Nature 528:93–98 [Google Scholar]
  124. Paksa A, Raz E. 2015. Zebrafish germ cells: motility and guided migration. Curr. Opin. Cell Biol. 36:80–85 [Google Scholar]
  125. Palsson E, Othmer HG. 2000. A model for individual and collective cell movement in Dictyostelium discoideum. . PNAS 97:10448–53 [Google Scholar]
  126. Paluch EK, Raz E. 2013. The role and regulation of blebs in cell migration. Curr. Opin. Cell Biol. 25:582–90 [Google Scholar]
  127. Park JA, Kim JH, Bi D, Mitchel JA, Qazvini NT. et al. 2015. Unjamming and cell shape in the asthmatic airway epithelium. Nat. Mater. 14:1040–48 [Google Scholar]
  128. Parri M, Taddei ML, Bianchini F, Calorini L, Chiarugi P. 2009. EphA2 reexpression prompts invasion of melanoma cells shifting from mesenchymal to amoeboid-like motility style. Cancer Res 69:2072–81 [Google Scholar]
  129. Parsons JT, Horwitz AR, Schwartz MA. 2010. Cell adhesion: integrating cytoskeletal dynamics and cellular tension. Nat. Rev. Mol. Cell Biol. 11:633–43 [Google Scholar]
  130. Peglion F, Llense F, Etienne-Manneville S. 2014. Adherens junction treadmilling during collective migration. Nat. Cell Biol. 16:639–51 [Google Scholar]
  131. Pegoraro AF, Fredberg JJ, Park JA. 2016. Problems in biology with many scales of length: cell-cell adhesion and cell jamming in collective cellular migration. Exp. Cell Res. 343:54–59 [Google Scholar]
  132. Petrie RJ, Yamada KM. 2012. At the leading edge of three-dimensional cell migration. J. Cell Sci. 125:5917–26 [Google Scholar]
  133. Phillipson M, Kubes P. 2011. The neutrophil in vascular inflammation. Nat. Med. 17:1381–90 [Google Scholar]
  134. Plotnikov SV, Pasapera AM, Sabass B, Waterman CM. 2012. Force fluctuations within focal adhesions mediate ECM-rigidity sensing to guide directed cell migration. Cell 151:1513–27 [Google Scholar]
  135. Pokutta S, Weis WI. 2007. Structure and mechanism of cadherins and catenins in cell-cell contacts. Annu. Rev. Cell Dev. Biol. 23:237–61 [Google Scholar]
  136. Pollard TD, Borisy GG. 2003. Cellular motility driven by assembly and disassembly of actin filaments. Cell 112:453–65 [Google Scholar]
  137. Proebstl D, Voisin MB, Woodfin A, Whiteford J, D'Acquisto F. et al. 2012. Pericytes support neutrophil subendothelial cell crawling and breaching of venular walls in vivo. J. Exp. Med. 209:1219–34 [Google Scholar]
  138. Razafsky D, Hodzic D. 2009. Bringing KASH under the SUN: the many faces of nucleo-cytoskeletal connections. J. Cell Biol. 186:461–72 [Google Scholar]
  139. Reffay M, Parrini MC, Cochet-Escartin O, Ladoux B, Buguin A. et al. 2014. Interplay of RhoA and mechanical forces in collective cell migration driven by leader cells. Nat. Cell Biol. 16:217–23 [Google Scholar]
  140. Renkawitz J, Schumann K, Weber M, Lammermann T, Pflicke H. et al. 2009. Adaptive force transmission in amoeboid cell migration. Nat. Cell Biol. 11:1438–43 [Google Scholar]
  141. Rhee S. 2009. Fibroblasts in three dimensional matrices: cell migration and matrix remodeling. Exp. Mol. Med. 41:858–65 [Google Scholar]
  142. Ridley AJ, Schwartz MA, Burridge K, Firtel RA, Ginsberg MH. et al. 2003. Cell migration: integrating signals from front to back. Science 302:1704–9 [Google Scholar]
  143. Ritsma L, Ellenbroek SI, Zomer A, Snippert HJ, de Sauvage FJ. et al. 2014. Intestinal crypt homeostasis revealed at single-stem-cell level by in vivo live imaging. Nature 507:362–65 [Google Scholar]
  144. Roca-Cusachs P, Del Rio A, Puklin-Faucher E, Gauthier NC, Biais N, Sheetz MP. 2013. Integrin-dependent force transmission to the extracellular matrix by alpha-actinin triggers adhesion maturation. PNAS 110:E1361–70 [Google Scholar]
  145. Rohani N, Parmeggiani A, Winklbauer R, Fagotto F. 2014. Variable combinations of specific ephrin ligand/Eph receptor pairs control embryonic tissue separation. PLOS Biol 12:e1001955 [Google Scholar]
  146. Roubinet C, Tran PT, Piel M. 2012. Common mechanisms regulating cell cortex properties during cell division and cell migration. Cytoskeleton 69:957–72 [Google Scholar]
  147. Rowe RG, Weiss SJ. 2009. Navigating ECM barriers at the invasive front: the cancer cell–stroma interface. Annu. Rev. Cell Dev. Biol. 25:567–95 [Google Scholar]
  148. Rozario T, Desimone DW. 2010. The extracellular matrix in development and morphogenesis: a dynamic view. Dev. Biol. 341:126–40 [Google Scholar]
  149. Ruprecht V, Wieser S, Callan-Jones A, Smutny M, Morita H. et al. 2015. Cortical contractility triggers a stochastic switch to fast amoeboid cell motility. Cell 160:673–85 [Google Scholar]
  150. Sabeh F, Shimizu-Hirota R, Weiss SJ. 2009. Protease-dependent versus -independent cancer cell invasion programs: three-dimensional amoeboid movement revisited. J. Cell Biol. 185:11–19 [Google Scholar]
  151. Sadati M, Nourhani A, Fredberg JJ, Taheri Qazvini N. 2014. Glass-like dynamics in the cell and in cellular collectives. Wiley Interdiscip. Rev. Syst. Biol. Med. 6:137–49 [Google Scholar]
  152. Sahai E, Marshall CJ. 2003. Differing modes of tumour cell invasion have distinct requirements for Rho/ROCK signalling and extracellular proteolysis. Nat. Cell Biol. 5:711–19 [Google Scholar]
  153. Sakai T, Larsen M, Yamada KM. 2003. Fibronectin requirement in branching morphogenesis. Nature 423:876–81 [Google Scholar]
  154. Salmon H, Franciszkiewicz K, Damotte D, Dieu-Nosjean MC, Validire P. et al. 2012. Matrix architecture defines the preferential localization and migration of T cells into the stroma of human lung tumors. J. Clin. Investig. 122:899–910 [Google Scholar]
  155. Sanz-Moreno V, Gadea G, Ahn J, Paterson H, Marra P. et al. 2008. Rac activation and inactivation control plasticity of tumor cell movement. Cell 135:510–23 [Google Scholar]
  156. Sandersius SA, Newman TJ. 2008. Modeling cell rheology with the Subcellular Element Model. Phys. Biol. 5:015002 [Google Scholar]
  157. Sarmiento C, Wang W, Dovas A, Yamaguchi H, Sidani M. et al. 2008. WASP family members and formin proteins coordinate regulation of cell protrusions in carcinoma cells. J. Cell Biol. 180:1245–60 [Google Scholar]
  158. Scarpa E, Mayor R. 2016. Collective cell migration in development. J. Cell Biol. 212:143–55 [Google Scholar]
  159. Schaefer L, Schaefer RM. 2010. Proteoglycans: from structural compounds to signaling molecules. Cell Tissue Res 339:237–46 [Google Scholar]
  160. Schmeiser C, Winkler C. 2015. The flatness of lamellipodia explained by the interaction between actin dynamics and membrane deformation. J. Theor. Biol. 380:144–55 [Google Scholar]
  161. Schmidt S, Friedl P. 2010. Interstitial cell migration: integrin-dependent and alternative adhesion mechanisms. Cell Tissue Res 339:83–92 [Google Scholar]
  162. Scianna M, Munaron L, Preziosi L. 2011. A multiscale hybrid approach for vasculogenesis and related potential blocking therapies. Prog. Biophys. Mol. Biol. 106:450–62 [Google Scholar]
  163. Scianna M, Preziosi L. 2013. Modeling the influence of nucleus elasticity on cell invasion in fiber networks and microchannels. J. Theor. Biol. 317:394–406 [Google Scholar]
  164. Scianna M, Preziosi L, Wolf K. 2013. A cellular Potts model simulating cell migration on and in matrix environments. Math. Biosci. Eng. 10:235–61 [Google Scholar]
  165. Semplice M, Veglio A, Naldi G, Serini G, Gamba A. 2012. A bistable model of cell polarity. PLOS ONE 7:e30977 [Google Scholar]
  166. Shafqat-Abbasi H, Kowalewski JM, Kiss A, Gong X, Hernandez-Varas P. et al. 2016. An analysis toolbox to explore mesenchymal migration heterogeneity reveals adaptive switching between distinct modes. eLife 5:e11384 [Google Scholar]
  167. Shih W, Yamada S. 2012. N-cadherin-mediated cell-cell adhesion promotes cell migration in a three-dimensional matrix. J. Cell Sci. 125:3661–70 [Google Scholar]
  168. Shintani Y, Fukumoto Y, Chaika N, Svoboda R, Wheelock MJ, Johnson KR. 2008. Collagen I–mediated up-regulation of N-cadherin requires cooperative signals from integrins and discoidin domain receptor 1. J. Cell Biol. 180:1277–89 [Google Scholar]
  169. Smith ML, Gourdon D, Little WC, Kubow KE, Eguiluz RA. et al. 2007. Force-induced unfolding of fibronectin in the extracellular matrix of living cells. PLOS Biol 5:e268 [Google Scholar]
  170. Sonnemann KJ, Bement WM. 2011. Wound repair: toward understanding and integration of single-cell and multicellular wound responses. Annu. Rev. Cell Dev. Biol. 27:237–63 [Google Scholar]
  171. Starke J, Wehrle-Haller B, Friedl P. 2014. Plasticity of the actin cytoskeleton in response to extracellular matrix nanostructure and dimensionality. Biochem. Soc. Trans. 42:1356–66 [Google Scholar]
  172. Steinwachs J, Metzner C, Skodzek K, Lang N, Thievessen I. et al. 2016. Three-dimensional force microscopy of cells in biopolymer networks. Nat. Methods 13:171–76 [Google Scholar]
  173. Sternlicht MD, Werb Z. 2001. How matrix metalloproteinases regulate cell behavior. Annu. Rev. Cell Dev. Biol. 17:463–516 [Google Scholar]
  174. Storm C, Pastore JJ, Mackintosh FC, Lubensky TC, Janmey PA. 2005. Nonlinear elasticity in biological gels. Nature 435:191–94 [Google Scholar]
  175. Stroka KM, Jiang H, Chen SH, Tong Z, Wirtz D. et al. 2014. Water permeation drives tumor cell migration in confined microenvironments. Cell 157:611–23 [Google Scholar]
  176. Swaminathan V, Fischer RS, Waterman CM. 2016. The FAK-Arp2/3 interaction promotes leading edge advance and haptosensing by coupling nascent adhesions to lamellipodia actin. Mol. Biol. Cell 27:1085–100 [Google Scholar]
  177. Swat MH, Thomas GL, Belmonte JM, Shirinifard A, Hmeljak D, Glazier JA. 2012. Multi-scale modeling of tissues using CompuCell3D. Methods Cell Biol 110:325–66 [Google Scholar]
  178. Taddei ML, Giannoni E, Morandi A, Ippolito L, Ramazzotti M. et al. 2014. Mesenchymal to amoeboid transition is associated with stem-like features of melanoma cells. Cell Commun. Signal. 12:24 [Google Scholar]
  179. Taddei ML, Parri M, Angelucci A, Bianchini F, Marconi C. et al. 2011. EphA2 induces metastatic growth regulating amoeboid motility and clonogenic potential in prostate carcinoma cells. Mol. Cancer Res. 9:149–60 [Google Scholar]
  180. Theveneau E, Marchant L, Kuriyama S, Gull M, Moepps B. et al. 2010. Collective chemotaxis requires contact-dependent cell polarity. Dev. Cell 19:39–53 [Google Scholar]
  181. Theveneau E, Mayor R. 2010. Integrating chemotaxis and contact-inhibition during collective cell migration: small GTPases at work. Small GTPases 1:113–17 [Google Scholar]
  182. Theveneau E, Mayor R. 2012. Cadherins in collective cell migration of mesenchymal cells. Curr. Opin. Cell Biol. 24:677–84 [Google Scholar]
  183. Tornavaca O, Chia M, Dufton N, Almagro LO, Conway DE. et al. 2015. ZO-1 controls endothelial adherens junctions, cell-cell tension, angiogenesis, and barrier formation. J. Cell Biol. 208:821–38 [Google Scholar]
  184. Tozluoglu M, Tournier AL, Jenkins RP, Hooper S, Bates PA, Sahai E. 2013. Matrix geometry determines optimal cancer cell migration strategy and modulates response to interventions. Nat. Cell Biol. 15:751–62 [Google Scholar]
  185. Tseng Y, Fedorov E, McCaffery JM, Almo SC, Wirtz D. 2001. Micromechanics and ultrastructure of actin filament networks crosslinked by human fascin: a comparison with α-actinin. J. Mol. Biol. 310:351–66 [Google Scholar]
  186. Tyson RA, Zatulovskiy E, Kay RR, Bretschneider T. 2014. How blebs and pseudopods cooperate during chemotaxis. PNAS 111:11703–8 [Google Scholar]
  187. Vaskovicova K, Szabadosova E, Cermak V, Gandalovicova A, Kasalova L. et al. 2015. PKCα promotes the mesenchymal to amoeboid transition and increases cancer cell invasiveness. BMC Cancer 15:326 [Google Scholar]
  188. Verkhovsky AB, Svitkina TM, Borisy GG. 1999. Self-polarization and directional motility of cytoplasm. Curr. Biol. 9:11–20 [Google Scholar]
  189. Wai Wong C, Dye DE, Coombe DR. 2012. The role of immunoglobulin superfamily cell adhesion molecules in cancer metastasis. Int J. Cell Biol. 2012:340296 [Google Scholar]
  190. Wang X, He L, Wu YI, Hahn KM, Montell DJ. 2010. Light-mediated activation reveals a key role for Rac in collective guidance of cell movement in vivo. Nat. Cell Biol. 12:591–97 [Google Scholar]
  191. Watkins S, Sontheimer H. 2011. Hydrodynamic cellular volume changes enable glioma cell invasion. J. Neurosci. 31:17250–59 [Google Scholar]
  192. Weaver SA, Wolters B, Ito N, Woskowicz AM, Kaneko K. et al. 2014. Basal localization of MT1-MMP is essential for epithelial cell morphogenesis in 3D collagen matrix. J. Cell Sci. 127:1203–13 [Google Scholar]
  193. Weber M, Hauschild R, Schwarz J, Moussion C, de Vries I. et al. 2013. Interstitial dendritic cell guidance by haptotactic chemokine gradients. Science 339:328–32 [Google Scholar]
  194. Weigelin B, Bakker G-J, Friedl P. 2012. Intravital third harmonic generation microscopy of collective melanoma cell invasion: principles of interface guidance and microvesicle dynamics. Intravital 1:32–43 [Google Scholar]
  195. Weigelin B, Bakker G-J, Friedl P. 2016. Third harmonic generation microscopy of cells and tissue organization. J. Cell Sci. 129:245–55 [Google Scholar]
  196. Wolf K, Alexander S, Schacht V, Coussens LM, Von Andrian UH. et al. 2009. Collagen-based cell migration models in vitro and in vivo. Semin. Cell Dev. Biol. 20:931–41 [Google Scholar]
  197. Wolf K, Friedl P. 2009. Mapping proteolytic cancer cell–extracellular matrix interfaces. Clin. Exp. Metastasis 26:289–98 [Google Scholar]
  198. Wolf K, Friedl P. 2011. Extracellular matrix determinants of proteolytic and non-proteolytic cell migration. Trends Cell Biol 21:736–44 [Google Scholar]
  199. Wolf K, Mazo I, Leung H, Engelke K, Von Andrian UH. et al. 2003a. Compensation mechanism in tumor cell migration: mesenchymal-amoeboid transition after blocking of pericellular proteolysis. J. Cell Biol. 160:267–77 [Google Scholar]
  200. Wolf K, Muller R, Borgmann S, Brocker EB, Friedl P. 2003b. Amoeboid shape change and contact guidance: T-lymphocyte crawling through fibrillar collagen is independent of matrix remodeling by MMPs and other proteases. Blood 102:3262–69 [Google Scholar]
  201. Wolf K, te Lindert M, Krause M, Alexander S, te Riet J. et al. 2013. Physical limits of cell migration: control by ECM space and nuclear deformation and tuning by proteolysis and traction force. J. Cell Biol. 201:1069–84 [Google Scholar]
  202. Wolf K, Wu YI, Liu Y, Geiger J, Tam E. et al. 2007. Multi-step pericellular proteolysis controls the transition from individual to collective cancer cell invasion. Nat. Cell Biol. 9:893–904 [Google Scholar]
  203. Wong IY, Javaid S, Wong EA, Perk S, Haber DA. et al. 2014. Collective and individual migration following the epithelial-mesenchymal transition. Nat. Mater. 13:1063–71 [Google Scholar]
  204. Wu SK, Gomez GA, Michael M, Verma S, Cox HL. et al. 2014. Cortical F-actin stabilization generates apical-lateral patterns of junctional contractility that integrate cells into epithelia. Nat. Cell Biol. 16:167–78 [Google Scholar]
  205. Xu C, Hasan SS, Schmidt I, Rocha SF, Pitulescu ME. et al. 2014. Arteries are formed by vein-derived endothelial tip cells. Nat. Commun. 5:5758 [Google Scholar]
  206. Xu H, Bihan D, Chang F, Huang PH, Farndale RW, Leitinger B. 2012. Discoidin domain receptors promote α1β1- and α2β1-integrin mediated cell adhesion to collagen by enhancing integrin activation. PLOS ONE 7:e52209 [Google Scholar]
  207. Xu J, Wang F, Van Keymeulen A, Herzmark P, Straight A. et al. 2003. Divergent signals and cytoskeletal assemblies regulate self-organizing polarity in neutrophils. Cell 114:201–14 [Google Scholar]
  208. Zaman MH, Trapani LM, Sieminski AL, MacKellar D, Gong H. et al. 2006. Migration of tumor cells in 3D matrices is governed by matrix stiffness along with cell-matrix adhesion and proteolysis. PNAS 103:10889–94 [Google Scholar]
  209. Zhong C, Chrzanowska-Wodnicka M, Brown J, Shaub A, Belkin AM, Burridge K. 1998. Rho-mediated contractility exposes a cryptic site in fibronectin and induces fibronectin matrix assembly. J. Cell Biol. 141:539–51 [Google Scholar]
  210. Zijlstra A, Lewis J, Degryse B, Stuhlmann H, Quigley JP. 2008. The inhibition of tumor cell intravasation and subsequent metastasis via regulation of in vivo tumor cell motility by the tetraspanin CD151. Cancer Cell 13:221–34 [Google Scholar]

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error