1932

Abstract

Calcium (Ca2+) is a unique mineral that serves as both a nutrient and a signal in all eukaryotes. To maintain Ca2+ homeostasis for both nutrition and signaling purposes, the tool kit for Ca2+ transport has expanded across kingdoms of eukaryotes to encode specific Ca2+ signals referred to as Ca2+ signatures. In parallel, a large array of Ca2+-binding proteins has evolved as specific sensors to decode Ca2+ signatures. By comparing these coding and decoding mechanisms in fungi, animals, and plants, both unified and divergent themes have emerged, and the underlying complexity will challenge researchers for years to come. Considering the scale and breadth of the subject, instead of a literature survey, in this review we focus on a conceptual framework that aims to introduce readers to the principles and mechanisms of Ca2+ signaling. We finish with several examples of Ca2+-signaling pathways, including polarized cell growth, immunity and symbiosis, and systemic signaling, to piece together specific coding and decoding mechanisms in plants versus animals.

[Erratum, Closure]

An erratum has been published for this article:
Erratum: Calcium Signaling Mechanisms Across Kingdoms
Loading

Article metrics loading...

/content/journals/10.1146/annurev-cellbio-120219-035210
2021-10-06
2024-04-28
Loading full text...

Full text loading...

/deliver/fulltext/cellbio/37/1/annurev-cellbio-120219-035210.html?itemId=/content/journals/10.1146/annurev-cellbio-120219-035210&mimeType=html&fmt=ahah

Literature Cited

  1. Aguayo-Ortiz R, Espinoza-Fonseca LM. 2020. Linking biochemical and structural states of SERCA: achievements, challenges, and new opportunities. Int. J. Mol. Sci. 21:114146
    [Google Scholar]
  2. Anishkin A, Kung C. 2005. Microbial mechanosensation. Curr. Opin. Neurobiol. 15:4397–405
    [Google Scholar]
  3. Aramburu J, Rao A, Klee CB. 2000. Calcineurin: from structure to function. Curr. Top. Cell. Regul. 36:237–95
    [Google Scholar]
  4. Arinaminpathy Y, Biggin PC, Shrivastava IH, Sansom MSP. 2003. A prokaryotic glutamate receptor: homology modelling and molecular dynamics simulations of GluR0. FEBS Lett 553:3321–27
    [Google Scholar]
  5. Arnadóttir J, Chalfie M. 2010. Eukaryotic mechanosensitive channels. Annu. Rev. Biophys. 39:111–37
    [Google Scholar]
  6. Badou A, Jha MK, Matza D, Flavell RA. 2013. Emerging roles of L-type voltage-gated and other calcium channels in T lymphocytes. Front. Immunol. 4:August243
    [Google Scholar]
  7. Bakowski D, Murray F, Parekh AB. 2020. Store-operated Ca2+ channels: mechanism, function, pharmacology, and therapeutic targets. Annu. Rev. Pharmacol. Toxicol. 61:629–54
    [Google Scholar]
  8. Ben-Johny M, Yue DT 2014. Calmodulin regulation (calmodulation) of voltage-gated calcium channels. J. Gen. Physiol. 143:6679–92
    [Google Scholar]
  9. Berridge MJ, Bootman MD, Roderick HL. 2003. Calcium signalling: dynamics, homeostasis and remodelling. Nat. Rev. Mol. Cell Biol. 4:7517–29
    [Google Scholar]
  10. Bhattacharyya M, Karandur D, Kuriyan J. 2020. Structural insights into the regulation of Ca2+/calmodulin-dependent protein kinase II (CaMKII). Cold Spring Harb. Perspect. Biol. 12:6a035147
    [Google Scholar]
  11. Bi G, Su M, Li N, Liang Y, Dang Set al 2021. The ZAR1 resistosome is a calcium-permeable channel triggering plant immune signaling. Cell 184:352841.e12
    [Google Scholar]
  12. Bonilla M, Cunningham KW. 2002. Calcium release and influx in yeast: TRPC and VGCC rule another kingdom. Sci. STKE 2002:127pe17
    [Google Scholar]
  13. Brini M. 2009. Plasma membrane Ca2+-ATPase: from a housekeeping function to a versatile signaling role. Pflugers Arch. Eur. J. Physiol. 457:3657
    [Google Scholar]
  14. Cai X, Clapham DE. 2012. Ancestral Ca2+ signaling machinery in early animal and fungal evolution. Mol. Biol. Evol. 29:191–100
    [Google Scholar]
  15. Carafoli E, Krebs J. 2016. Why calcium? How calcium became the best communicator. J. Biol. Chem. 291:4020849–57
    [Google Scholar]
  16. Catterall WA. 2011. Voltage-gated calcium channels. Cold Spring Harb. Perspect. Biol. 3:8a003947
    [Google Scholar]
  17. Charalambous K, Wallace BA. 2011. NaChBac: the long lost sodium channel ancestor. Biochemistry 50:326742–52
    [Google Scholar]
  18. Charpentier M, Sun J, Martins TV, Radhakrishnan GV, Findlay K et al. 2016. Nuclear-localized cyclic nucleotide-gated channels mediate symbiotic calcium oscillations. Science 352:62891102–5
    [Google Scholar]
  19. Chen GQ, Cui C, Mayer ML, Gouaux E. 1999. Functional characterization of a potassium-selective prokaryotic glutamate receptor. Nature 402:6763817–21
    [Google Scholar]
  20. Chin D, Means AR. 2000. Calmodulin: a prototypical calcium sensor. Trends Cell Biol 10:8322–28
    [Google Scholar]
  21. Chiu JC, Brenner ED, DeSalle R, Nitabach MN, Holmes TC, Coruzzi GM. 2002. Phylogenetic and expression analysis of the glutamate-receptor–like gene family in Arabidopsis thaliana. Mol. Biol. Evol. 19:71066–82
    [Google Scholar]
  22. Choi J, Tanaka K, Cao Y, Qi Y, Qiu J et al. 2014. Identification of a plant receptor for extracellular ATP. Science 343:6168290–94
    [Google Scholar]
  23. Choi W-G, Hilleary R, Swanson SJ, Kim S-H, Gilroy S. 2016. Rapid, long-distance electrical and calcium signaling in plants. Annu. Rev. Plant Biol. 67:287–307
    [Google Scholar]
  24. Clapham DE. 2003. TRP channels as cellular sensors. Nature 426:6966517–24
    [Google Scholar]
  25. Clapham DE. 2007. Calcium signaling. Cell 131:61047–58
    [Google Scholar]
  26. Conrad M, Schothorst J, Kankipati HN, Van Zeebroeck G, Rubio-Texeira M, Thevelein JM. 2014. Nutrient sensing and signaling in the yeast Saccharomyces cerevisiae. FEMS Microbiol. Rev. 38:2254–99
    [Google Scholar]
  27. Cyert MS. 2001. Genetic analysis of calmodulin and its targets in Saccharomyces cerevisiae. Annu. Rev. Genet. 35:647–72
    [Google Scholar]
  28. DeFalco TA, Moeder W, Yoshioka K. 2016. Opening the gates: insights into cyclic nucleotide-gated channel-mediated signaling. Trends Plant Sci 21:11903–6
    [Google Scholar]
  29. Denis V, Cyert MS. 2002. Internal Ca2+ release in yeast is triggered by hypertonic shock and mediated by a TRP channel homologue. J. Cell Biol. 156:129–34
    [Google Scholar]
  30. des Georges A, Clarke OB, Zalk R, Yuan Q, Condon KJ et al. 2016. Structural basis for gating and activation of RyR1. Cell 167:1145–57.e17
    [Google Scholar]
  31. Dominguez DC. 2004. Calcium signalling in bacteria. Mol. Microbiol. 54:2291–97
    [Google Scholar]
  32. Dominguez DC, Guragain M, Patrauchan M. 2015. Calcium binding proteins and calcium signaling in prokaryotes. Cell Calcium 57:3151–65
    [Google Scholar]
  33. Dyla M, Kjærgaard M, Poulsen H, Nissen P. 2020. Structure and mechanism of P-type ATPase ion pumps. Annu. Rev. Biochem. 89:583–603
    [Google Scholar]
  34. Ertel EA, Campbell KP, Harpold MM, Hofmann F, Mori Y et al. 2000. Nomenclature of voltage-gated calcium channels. Neuron 25:533–35
    [Google Scholar]
  35. Fahrner M, Grabmayr H, Romanin C. 2020. Mechanism of STIM activation. Curr. Opin. Physiol. 17:74–79
    [Google Scholar]
  36. Fan M, Zhang J, Tsai C-W, Orlando BJ, Rodriguez M et al. 2020. Structure and mechanism of the mitochondrial Ca2+ uniporter holocomplex. Nature 582:7810129–33
    [Google Scholar]
  37. Fang X, Liu B, Shao Q, Huang X, Li Jet al 2021. AtPiezo plays an important role in root cap mechanotransduction. Int. J. Mol. Sci 5:467
    [Google Scholar]
  38. Farmer EE, Gao Y-Q, Lenzoni G, Wolfender J-L, Wu Q. 2020. Wound- and mechanostimulated electrical signals control hormone responses. New Phytol 227:41037–50
    [Google Scholar]
  39. Feske S, Wulff H, Skolnik EY. 2015. Ion channels in innate and adaptive immunity. Annu. Rev. Immunol. 33:291–353
    [Google Scholar]
  40. Fitzgerald KA, Kagan JC. 2020. Toll-like receptors and the control of immunity. Cell 180:61044–66
    [Google Scholar]
  41. Fric J, Zelante T, Wong AYW, Mertes A, Yu H-B, Ricciardi-Castagnoli P. 2012. NFAT control of innate immunity. Blood 120:71380–89
    [Google Scholar]
  42. Gasperini RJ, Pavez M, Thompson AC, Mitchell CB, Hardy H et al. 2017. How does calcium interact with the cytoskeleton to regulate growth cone motility during axon pathfinding?. Mol. Cell. Neurosci. 84:29–35
    [Google Scholar]
  43. Geisler M, Axelsen KB, Harper JF, Palmgren MG. 2000. Molecular aspects of higher plant P-type Ca2+-ATPases. Biochim. Biophys. Acta 1465:1–252–78
    [Google Scholar]
  44. Gifford JL, Walsh MP, Vogel HJ. 2007. Structures and metal-ion-binding properties of the Ca2+-binding helix–loop–helix EF-hand motifs. Biochem. J. 405:2199–221
    [Google Scholar]
  45. Giorgi C, Marchi S, Pinton P. 2018. The machineries, regulation and cellular functions of mitochondrial calcium. Nat. Rev. Mol. Cell Biol. 19:11713–30
    [Google Scholar]
  46. Gleason C, Chaudhuri S, Yang T, Muñoz A, Poovaiah BW, Oldroyd GED. 2006. Nodulation independent of rhizobia induced by a calcium-activated kinase lacking autoinhibition. Nature 441:70971149–52
    [Google Scholar]
  47. Green MN, Gangwar SP, Michard E, Simon AA, Portes MTet al 2021. Structure of the Arabidopsis thaliana glutamate receptor-like channel GLR3.4. Mol. Cell 81:321626.e8
    [Google Scholar]
  48. Grenzi M, Bonza MC, Alfieri A, Costa A 2020. Structural insights into long-distance signal transduction pathways mediated by plant glutamate receptor-like channels. New Phytol 229:31261–67
    [Google Scholar]
  49. Gu F, Nielsen E. 2013. Targeting and regulation of cell wall synthesis during tip growth in plants. J. Integr. Plant Biol. 55:9835–46
    [Google Scholar]
  50. Guo J, Yang Z 2020. Exocytosis and endocytosis: coordinating and fine-tuning the polar tip growth domain in pollen tubes. J. Exp. Bot. 71:82428–38
    [Google Scholar]
  51. Guo J, Zeng W, Chen Q, Lee C, Chen L et al. 2016. Structure of the voltage-gated two-pore channel TPC1 from Arabidopsis thaliana. Nature 531:7593196–201
    [Google Scholar]
  52. Guo W, Chen L. 2019. Recent progress in structural studies on canonical TRP ion channels. Cell Calcium 83:102075
    [Google Scholar]
  53. Harper JF, Breton G, Harmon A. 2004. Decoding Ca2+ signals through plant protein kinases. Annu. Rev. Plant Biol. 55:263–88
    [Google Scholar]
  54. Harper JF, Harmon A. 2005. Plants, symbiosis and parasites: a calcium signalling connection. Nat. Rev. Mol. Cell Biol. 6:7555–66
    [Google Scholar]
  55. Harrison MJ. 2005. Signaling in the arbuscular mycorrhizal symbiosis. Annu. Rev. Microbiol. 59:19–42
    [Google Scholar]
  56. Hedrich R, Mueller TD, Becker D, Marten I 2018. Structure and function of TPC1 vacuole SV channel gains shape. Mol. Plant 11:6764–75
    [Google Scholar]
  57. Helliwell KE, Chrachri A, Koester JA, Wharam S, Verret F et al. 2019. Alternative mechanisms for fast Na+/Ca2+ signaling in eukaryotes via a novel class of single-domain voltage-gated channels. Curr. Biol. 29:91503–11.e6
    [Google Scholar]
  58. Hepler PK, Kunkel JG, Rounds CM, Winship LJ. 2012. Calcium entry into pollen tubes. Trends Plant Sci 17:132–38
    [Google Scholar]
  59. Hille B. 2001. Ion Channels of Excitable Membranes Sunderland, MA: Sinauer, 3rd ed..
  60. Hilleary R, Gilroy S. 2018. Systemic signaling in response to wounding and pathogens. Curr. Opin. Plant Biol. 43:57–62
    [Google Scholar]
  61. Hilleary R, Paez-Valencia J, Vens C, Toyota M, Palmgren M, Gilroy S 2020. Tonoplast-localized Ca2+ pumps regulate Ca2+ signals during pattern-triggered immunity in Arabidopsis thaliana. PNAS 117:3118849–57
    [Google Scholar]
  62. Hogan PG. 2017. Calcium-NFAT transcriptional signalling in T cell activation and T cell exhaustion. Cell Calcium 63:66–69
    [Google Scholar]
  63. Hogan PG, Chen L, Nardone J, Rao A. 2003. Transcriptional regulation by calcium, calcineurin, and NFAT. Genes Dev 17:182205–32
    [Google Scholar]
  64. Hou C, Tian W, Kleist T, He K, Garcia V et al. 2014. DUF221 proteins are a family of osmosensitive calcium-permeable cation channels conserved across eukaryotes. Cell Res 24:5632–35
    [Google Scholar]
  65. Hrabak EM, Chan CWM, Gribskov M, Harper JF, Choi JH et al. 2003. The Arabidopsis CDPK-SnRK superfamily of protein kinases. Plant Physiol 132:2666–80
    [Google Scholar]
  66. Hudmon A, Schulman H. 2002. Neuronal Ca2+/calmodulin-dependent protein kinase II: the role of structure and autoregulation in cellular function. Annu. Rev. Biochem. 71:473–510
    [Google Scholar]
  67. Jacob P, Kim NH, Wu F, El-Kasmi F, Chi Yet al 2021. Plant “helper” immune receptors are Ca2+-permeable nonselective cation channels. Science 373:42025
    [Google Scholar]
  68. Jaiswal JK. 2001. Calcium—how and why?. J. Biosci. 26:3357–63
    [Google Scholar]
  69. James ZM, Zagotta WN. 2018. Structural insights into the mechanisms of CNBD channel function. J. Gen. Physiol. 150:2225–44
    [Google Scholar]
  70. Jones JDG, Vance RE, Dangl JL. 2016. Intracellular innate immune surveillance devices in plants and animals. Science 354:6316aaf6395
    [Google Scholar]
  71. Julius D 2013. TRP channels and pain. Annu. Rev. Cell Dev. Biol. 29:355–84
    [Google Scholar]
  72. Kamalova A, Nakagawa T. 2021. AMPA receptor structure and auxiliary subunits. J. Physiol. 599:2453–69
    [Google Scholar]
  73. Kefauver JM, Ward AB, Patapoutian A. 2020. Discoveries in structure and physiology of mechanically activated ion channels. Nature 587:7835567–76
    [Google Scholar]
  74. Kennedy MB. 2013. Synaptic signaling in learning and memory. Cold Spring Harb. Perspect. Biol. 8:2a016824
    [Google Scholar]
  75. Kerstein PC, Patel KM, Gomez TM. 2017. Calpain-mediated proteolysis of talin and FAK regulates adhesion dynamics necessary for axon guidance. J. Neurosci. 37:61568–80
    [Google Scholar]
  76. Khananshvili D. 2020. Basic and editing mechanisms underlying ion transport and regulation in NCX variants. Cell Calcium 85:102131
    [Google Scholar]
  77. Kim S, Zeng W, Bernard S, Liao J, Venkateshwaran M, Ane J-M, Jiang Y. 2019. Ca2+-regulated Ca2+ channels with an RCK gating ring control plant symbiotic associations. Nat. Commun. 10:3703
    [Google Scholar]
  78. Kintzer AF, Stroud RM. 2016. Structure, inhibition and regulation of two-pore channel TPC1 from Arabidopsis thaliana. Nature 531:7593258–62
    [Google Scholar]
  79. Klee CB, Ren H, Wang X. 1998. Regulation of the calmodulin-stimulated protein phosphatase, calcineurin. J. Biol. Chem 273:2213367–70
    [Google Scholar]
  80. Konrad KR, Wudick MM, Feijó JA. 2011. Calcium regulation of tip growth: new genes for old mechanisms. Curr. Opin. Plant Biol. 14:6721–30
    [Google Scholar]
  81. Krebs J. 2017. The plasma membrane calcium pump (PMCA): regulation of cytosolic Ca2+, genetic diversities and its role in sub-plasma membrane microdomains. Adv. Exp. Med. Biol. 981:3–21
    [Google Scholar]
  82. Kudla J, Xu Q, Harter K, Gruissem W, Luan S. 1999. Genes for calcineurin B-like proteins in Arabidopsis are differentially regulated by stress signals. PNAS 96:84718–23
    [Google Scholar]
  83. La Verde V, Dominici P, Astegno A 2018. Towards understanding plant calcium signaling through calmodulin-like proteins: a biochemical and structural perspective. Int. J. Mol. Sci. 19:51331
    [Google Scholar]
  84. Lai HC, Jan LY 2006. The distribution and targeting of neuronal voltage-gated ion channels. Nat. Rev. Neurosci. 7:7548–62
    [Google Scholar]
  85. Lee SM, Kim HS, Han HJ, Moon BC, Kim CY et al. 2007. Identification of a calmodulin-regulated autoinhibited Ca2+-ATPase (ACA11) that is localized to vacuole membranes in Arabidopsis. FEBS Lett 581:213943–49
    [Google Scholar]
  86. Lévy J, Bres C, Geurts R, Chalhoub B, Kulikova O et al. 2004. A putative Ca2+ and calmodulin-dependent protein kinase required for bacterial and fungal symbioses. Science 303:56621361–64
    [Google Scholar]
  87. Lewis RS. 2011. Store-operated calcium channels: new perspectives on mechanism and function. Cold Spring Harb. Perspect. Biol. 3:12a003970
    [Google Scholar]
  88. Li H-J, Meng J-G, Yang W-C 2018. Multilayered signaling pathways for pollen tube growth and guidance. Plant Reprod 31:131–41
    [Google Scholar]
  89. Lu S, Li Z, Gorfe AA, Zheng L 2020. Intracellular Ca2+ regulation of H+/Ca2+ antiporter YfkE mediated by a Ca2+ mini-sensor. PNAS 117:1910313–21
    [Google Scholar]
  90. Luan S. 2009. The CBL-CIPK network in plant calcium signaling. Trends Plant Sci 14:137–42
    [Google Scholar]
  91. Luan S, Kudla J, Rodriguez-Concepcion M, Yalovsky S, Gruissem W. 2002. Calmodulins and calcineurin B–like proteins: calcium sensors for specific signal response coupling in plants. Plant Cell 14:Suppl. 1S389–400
    [Google Scholar]
  92. Mateos-Aparicio P, Rodríguez-Moreno A. 2020. Calcium dynamics and synaptic plasticity. Adv. Exp. Med. Biol. 1131:965–84
    [Google Scholar]
  93. Mayer ML, Olson R, Gouaux E. 2001. Crystal structure of the glur0 ligand binding core complex with L-glutamate. Worldwide Protein Data Bank https://doi.org/10.2210/pdb1ii5/pdb
    [Crossref] [Google Scholar]
  94. McCormack E, Tsai Y-C, Braam J. 2005. Handling calcium signaling: Arabidopsis CaMs and CMLs. Trends Plant Sci 10:8383–89
    [Google Scholar]
  95. McCormick LE, Gupton SL. 2020. Mechanistic advances in axon pathfinding. Curr. Opin. Cell Biol. 63:11–19
    [Google Scholar]
  96. Mochida S. 2018. Presynaptic calcium channels. Neurosci. Res. 127:33–44
    [Google Scholar]
  97. Moeder W, Phan V, Yoshioka K. 2019. Ca2+ to the rescue – Ca2+ channels and signaling in plant immunity. Plant Sci 279:19–26
    [Google Scholar]
  98. Montell C. 2005. The TRP superfamily of cation channels. Sci. STKE 2005:272re3
    [Google Scholar]
  99. Mousavi SAR, Chauvin A, Pascaud F, Kellenberger S, Farmer EE. 2013. GLUTAMATE RECEPTOR-LIKE genes mediate leaf-to-leaf wound signalling. Nature 500:7463422–26
    [Google Scholar]
  100. Mousavi SAR, Dubin AE, Zeng WZ, Coombs AM, Do Ket al 2021. PIEZO ion channel is required for root mechanotransduction in Arabidopsis thaliana. PNAS 118:e2102188118
    [Google Scholar]
  101. Murthy SE, Dubin AE, Patapoutian A. 2017. Piezos thrive under pressure: mechanically activated ion channels in health and disease. Nat. Rev. Mol. Cell Biol. 18:12771–83
    [Google Scholar]
  102. Nelson MR, Chazin WJ. 1998. An interaction-based analysis of calcium-induced conformational changes in Ca2+ sensor proteins. Protein Sci 7:2270–82
    [Google Scholar]
  103. Nelson MR, Thulin E, Fagan PA, Forsén S, Chazin WJ. 2002. The EF-hand domain: a globally cooperative structural unit. Protein Sci 11:2198–205
    [Google Scholar]
  104. Nguyen CT, Kurenda A, Stolz S, Chételat A, Farmer EE 2018. Identification of cell populations necessary for leaf-to-leaf electrical signaling in a wounded plant. PNAS 115:4010178–83
    [Google Scholar]
  105. Nicoll DA, Ottolia M, Goldhaber JI, Philipson KD. 2013. 20 years from NCX purification and cloning: milestones. Adv. Exp. Med. Biol. 961:17–23
    [Google Scholar]
  106. Oldroyd GED. 2013. Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. Nat. Rev. Microbiol. 11:4252–63
    [Google Scholar]
  107. Pan Y, Chai X, Gao Q, Zhou L, Zhang S et al. 2019. Dynamic interactions of plant CNGC subunits and calmodulins drive oscillatory Ca2+ channel activities. Dev. Cell 48:5710–25.e5
    [Google Scholar]
  108. Pankratov Y, Lalo U. 2014. Calcium permeability of ligand-gated Ca2+ channels. Eur. J. Pharmacol. 739:60–73
    [Google Scholar]
  109. Park H-S, Lee SC, Cardenas ME, Heitman J. 2019. Calcium-calmodulin-calcineurin signaling: a globally conserved virulence cascade in eukaryotic microbial pathogens. Cell Host Microbe 26:4453–62
    [Google Scholar]
  110. Parniske M. 2008. Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat. Rev. Microbiol. 6:10763–75
    [Google Scholar]
  111. Peiter E, Maathuis FJM, Mills LN, Knight H, Pelloux J et al. 2005. The vacuolar Ca2+-activated channel TPC1 regulates germination and stomatal movement. Nature 434:7031404–8
    [Google Scholar]
  112. Pimprikar P, Carbonnel S, Paries M, Katzer K, Klingl V et al. 2016. A CCaMK-CYCLOPS-DELLA complex activates transcription of RAM1 to regulate arbuscule branching. Curr. Biol. 26:8987–98
    [Google Scholar]
  113. Pittis AA, Goh V, Cebrian-Serrano A, Wettmarshausen J, Perocchi F, Gabaldón T. 2020. Discovery of EMRE in fungi resolves the true evolutionary history of the mitochondrial calcium uniporter. Nat. Commun. 11:4031
    [Google Scholar]
  114. Pittman JK, Hirschi KD. 2016. CAX-ing a wide net: cation/H+ transporters in metal remediation and abiotic stress signalling. Plant Biol 18:5741–49
    [Google Scholar]
  115. Plattner H, Verkhratsky A. 2015. The ancient roots of calcium signalling evolutionary tree. Cell Calcium 57:3123–32
    [Google Scholar]
  116. Primeau JO, Armanious GP, Fisher ME, Young HS. 2018. The sarcoendoplasmic reticulum calcium ATPase. Subcell. Biochem. 87:229–58
    [Google Scholar]
  117. Putney JW. 2017. Store-operated calcium entry: an historical overview. Adv. Exp. Med. Biol. 981:205–14
    [Google Scholar]
  118. Radin I, Richardson RA, Coomey JH, Weiner ER, Bascom CSet al 2021. Plant PIEZO homologs modulate vacuole morphology during tip growth. Science 373:58690
    [Google Scholar]
  119. Reiner A, Levitz J. 2018. Glutamatergic signaling in the central nervous system: ionotropic and metabotropic receptors in concert. Neuron 98:61080–98
    [Google Scholar]
  120. Riera Romo M, Pérez-Martínez D, Ferrer CC 2016. Innate immunity in vertebrates: an overview. Immunology 148:2125–39
    [Google Scholar]
  121. Rizzuto R, De Stefani D, Raffaello A, Mammucari C. 2012. Mitochondria as sensors and regulators of calcium signalling. Nat. Rev. Mol. Cell Biol. 13:9566–78
    [Google Scholar]
  122. Santulli G, Nakashima R, Yuan Q, Marks AR. 2017. Intracellular calcium release channels: an update. J. Physiol. 595:103041–51
    [Google Scholar]
  123. Schmid R, Evans RJ. 2019. ATP-gated P2X receptor channels: molecular insights into functional roles. Annu. Rev. Physiol. 81:43–62
    [Google Scholar]
  124. Shao Q, Gao Q, Lhamo D, Zhang H, Luan S. 2020. Two glutamate- and pH-regulated Ca2+ channels are required for systemic wound signaling in Arabidopsis. Sci. Signal. 13:640eaba1453
    [Google Scholar]
  125. She J, Guo J, Chen Q, Zeng W, Jiang Y, Bai X-C. 2018. Structural insights into the voltage and phospholipid activation of the mammalian TPC1 channel. Nature 556:7699130–34
    [Google Scholar]
  126. She J, Zeng W, Guo J, Chen Q, Bai X-C, Jiang Y 2019. Structural mechanisms of phospholipid activation of the human TPC2 channel. eLife 8:e45222
    [Google Scholar]
  127. Shi J, Kim K-N, Ritz O, Albrecht V, Gupta R et al. 1999. Novel protein kinases associated with calcineurin B–like calcium sensors in Arabidopsis. Plant Cell 11:122393–405
    [Google Scholar]
  128. Shimomura T, Yonekawa Y, Nagura H, Tateyama M, Fujiyoshi Y, Irie K 2020. A native prokaryotic voltage-dependent calcium channel with a novel selectivity filter sequence. eLife 9:e52828
    [Google Scholar]
  129. Singh S, Katzer K, Lambert J, Cerri M, Parniske M. 2014. CYCLOPS, a DNA-binding transcriptional activator, orchestrates symbiotic root nodule development. Cell Host Microbe 15:2139–52
    [Google Scholar]
  130. Singh S, Parniske M. 2012. Activation of calcium- and calmodulin-dependent protein kinase (CCaMK), the central regulator of plant root endosymbiosis. Curr. Opin. Plant Biol. 15:4444–53
    [Google Scholar]
  131. Sobolevsky AI. 2015. Structure and gating of tetrameric glutamate receptors. J. Physiol. 593:129–38
    [Google Scholar]
  132. Sokol CL, Luster AD. 2015. The chemokine system in innate immunity. Cold Spring Harb. Perspect. Biol. 7:5a016303
    [Google Scholar]
  133. Steinhorst L, Mähs A, Ischebeck T, Zhang C, Zhang X et al. 2015. Vacuolar CBL-CIPK12 Ca2+-sensor-kinase complexes are required for polarized pollen tube growth. Curr. Biol. 25:111475–82
    [Google Scholar]
  134. Stoeckli ET. 2018. Understanding axon guidance: are we nearly there yet?. Development 145:10dev151415
    [Google Scholar]
  135. Strehler EE. 2015. Plasma membrane calcium ATPases: from generic Ca2+ sump pumps to versatile systems for fine-tuning cellular Ca2+. Biochem. Biophys. Res. Commun. 460:126–33
    [Google Scholar]
  136. Südhof TC. 2012. Calcium control of neurotransmitter release. Cold Spring Harb. Perspect. Biol. 4:1a011353
    [Google Scholar]
  137. Surprenant A, North RA. 2009. Signaling at purinergic P2X receptors. Annu. Rev. Physiol. 71:333–59
    [Google Scholar]
  138. Sutherland DJ, Pujic Z, Goodhill GJ. 2014. Calcium signaling in axon guidance. Trends Neurosci 37:8424–32
    [Google Scholar]
  139. Sze H, Liang F, Hwang I, Curran AC, Harper JF. 2000. Diversity and regulation of plant Ca2+ pumps: insights from expression in yeast. Annu. Rev. Plant Physiol. Plant Mol. Biol. 51:433–62
    [Google Scholar]
  140. Takahashi F, Kuromori T, Urano K, Yamaguchi-Shinozaki K, Shinozaki K. 2020. Drought stress responses and resistance in plants: from cellular responses to long-distance intercellular communication. Front. Plant Sci. 11:556972
    [Google Scholar]
  141. Takemoto-Kimura S, Suzuki K, Horigane S-I, Kamijo S, Inoue M et al. 2017. Calmodulin kinases: essential regulators in health and disease. J. Neurochem. 141:6808–18
    [Google Scholar]
  142. Takezawa D, Ramachandiran S, Paranjape V, Poovaiah BW. 1996. Dual regulation of a chimeric plant serine/threonine kinase by calcium and calcium/calmodulin. J. Biol. Chem. 271:148126–32
    [Google Scholar]
  143. Tang R-J, Wang C, Li K, Luan S. 2020. The CBL-CIPK calcium signaling network: unified paradigm from 20 years of discoveries. Trends Plant Sci 25:6604–17
    [Google Scholar]
  144. Teardo E, Carraretto L, Moscatiello R, Cortese E, Vicario M et al. 2019. A chloroplast-localized mitochondrial calcium uniporter transduces osmotic stress in Arabidopsis. Nat. Plants 5:6581–88
    [Google Scholar]
  145. Thor K, Jiang S, Michard E, George J, Scherzer S et al. 2020. The calcium-permeable channel OSCA1.3 regulates plant stomatal immunity. Nature 585:7826569–73
    [Google Scholar]
  146. Tian W, Hou C, Ren Z, Wang C, Zhao F et al. 2019. A calmodulin-gated calcium channel links pathogen patterns to plant immunity. Nature 572:7767131–35
    [Google Scholar]
  147. Tian W, Wang C, Gao Q, Li L, Luan S. 2020. Calcium spikes, waves and oscillations in plant development and biotic interactions. Nat. Plants 6:7750–59
    [Google Scholar]
  148. Topolnik L, Camiré O. 2019. Non-linear calcium signalling and synaptic plasticity in interneurons. Curr. Opin. Neurobiol. 54:98–103
    [Google Scholar]
  149. Toyota M, Spencer D, Sawai-Toyota S, Jiaqi W, Zhang T et al. 2018. Glutamate triggers long-distance, calcium-based plant defense signaling. Science 361:64071112–15
    [Google Scholar]
  150. Trebak M, Kinet J-P. 2019. Calcium signalling in T cells. Nat. Rev. Immunol. 19:3154–69
    [Google Scholar]
  151. Trudeau MC, Zagotta WN. 2003. Calcium/calmodulin modulation of olfactory and rod cyclic nucleotide-gated ion channels. J. Biol. Chem. 278:2118705–8
    [Google Scholar]
  152. Vaeth M, Kahlfuss S, Feske S. 2020. CRAC channels and calcium signaling in T cell-mediated immunity. Trends Immunol 41:10878–901
    [Google Scholar]
  153. Verret F, Wheeler G, Taylor AR, Farnham G, Brownlee C. 2010. Calcium channels in photosynthetic eukaryotes: implications for evolution of calcium-based signalling. New Phytol 187:123–43
    [Google Scholar]
  154. Wang J, Liu X, Zhang A, Ren Y, Wu F et al. 2019. A cyclic nucleotide-gated channel mediates cytoplasmic calcium elevation and disease resistance in rice. Cell Res 29:10820–31
    [Google Scholar]
  155. Williams RJP. 2002. Calcium. Methods Mol. Biol 172:21–49
    [Google Scholar]
  156. Wudick MM, Michard E, Nunes CO, Feijó JA. 2018. Comparing plant and animal glutamate receptors: common traits but different fates?. J. Exp. Bot. 69:174151–63
    [Google Scholar]
  157. Yan C, Fan M, Yang M, Zhao J, Zhang W et al. 2018. Injury activates Ca2+/calmodulin-dependent phosphorylation of JAV1-JAZ8-WRKY51 complex for jasmonate biosynthesis. Mol. Cell 70:1136–49.e7
    [Google Scholar]
  158. Yano K, Yoshida S, Müller J, Singh S, Banba M et al. 2008. CYCLOPS, a mediator of symbiotic intracellular accommodation. PNAS 105:5120540–45
    [Google Scholar]
  159. Yau KW, Baylor DA. 1989. Cyclic GMP-activated conductance of retinal photoreceptor cells. Annu. Rev. Neurosci. 12:289–327
    [Google Scholar]
  160. Yip Delormel T, Boudsocq M 2019. Properties and functions of calcium-dependent protein kinases and their relatives in Arabidopsis thaliana. New Phytol 224:2585–604
    [Google Scholar]
  161. Yu X, Feng B, He P, Shan L. 2017. From chaos to harmony: responses and signaling upon microbial pattern recognition. Annu. Rev. Phytopathol. 55:109–37
    [Google Scholar]
  162. Yuan F, Yang H, Xue Y, Kong D, Ye R et al. 2014. OSCA1 mediates osmotic-stress-evoked Ca2+ increases vital for osmosensing in Arabidopsis. Nature 514:7522367–71
    [Google Scholar]
  163. Yuan P, Jauregui E, Du L, Tanaka K, Poovaiah BW. 2017. Calcium signatures and signaling events orchestrate plant-microbe interactions. Curr. Opin. Plant Biol. 38:173–83
    [Google Scholar]
  164. Zeb Q, Wang X, Hou C, Zhang X, Dong M et al. 2020. The interaction of CaM7 and CNGC14 regulates root hair growth in Arabidopsis. J. Integr. Plant Biol. 62:7887–96
    [Google Scholar]
  165. Zelman AK, Dawe A, Gehring C, Berkowitz GA. 2012. Evolutionary and structural perspectives of plant cyclic nucleotide-gated cation channels. Front. Plant Sci. 3:95
    [Google Scholar]
  166. Zhang J, Coaker G, Zhou J-M, Dong X 2020. Plant immune mechanisms: from reductionistic to holistic points of view. Mol. Plant 13:101358–78
    [Google Scholar]
  167. Zhang M, Tanaka T, Ikura M. 1995. Calcium-induced conformational transition revealed by the solution structure of Apo calmodulin. Nat. Struct. Biol. 2:9758–67
    [Google Scholar]
  168. Zhang M, Yuan T. 1998. Molecular mechanisms of calmodulin's functional versatility. Biochem. Cell Biol. 76:2–3313–23
    [Google Scholar]
  169. Zheng J. 2013. Molecular mechanism of TRP channels. Compr. Physiol. 3:1221–42
    [Google Scholar]
  170. Zhong S, Qu L-J. 2019. Peptide/receptor-like kinase-mediated signaling involved in male-female interactions. Curr. Opin. Plant Biol. 51:7–14
    [Google Scholar]
  171. Zhou L, Lan W, Chen B, Fang W, Luan S. 2015. A calcium sensor-regulated protein kinase, CALCINEURIN B-LIKE PROTEIN-INTERACTING PROTEIN KINASE19, is required for pollen tube growth and polarity. Plant Physiol 167:41351–60
    [Google Scholar]
  172. Zhou L, Lan W, Jiang Y, Fang W, Luan S. 2014. A calcium-dependent protein kinase interacts with and activates a calcium channel to regulate pollen tube growth. Mol. Plant 7:2369–76
    [Google Scholar]
  173. Zhou L-Z, Dresselhaus T. 2019. Friend or foe: signaling mechanisms during double fertilization in flowering seed plants. Curr. Top. Dev. Biol. 131:453–96
    [Google Scholar]
  174. Zhu MX, Ma J, Parrington J, Calcraft PJ, Galione A, Evans AM. 2010. Calcium signaling via two-pore channels: local or global, that is the question. Cell Physiol 298:3C430–41
    [Google Scholar]
  175. Zipfel C, Oldroyd GED. 2017. Plant signalling in symbiosis and immunity. Nature 543:7645328–36
    [Google Scholar]
/content/journals/10.1146/annurev-cellbio-120219-035210
Loading
/content/journals/10.1146/annurev-cellbio-120219-035210
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error