1932

Abstract

Selective autophagy is the lysosomal degradation of specific intracellular components sequestered into autophagosomes, late endosomes, or lysosomes through the activity of selective autophagy receptors (SARs). SARs interact with autophagy-related (ATG)8 family proteins via sequence motifs called LC3-interacting region (LIR) motifs in vertebrates and Atg8-interacting motifs (AIMs) in yeast and plants. SARs can be divided into two broad groups: soluble or membrane bound. Cargo or substrate selection may be independent or dependent of ubiquitin labeling of the cargo. In this review, we discuss mechanisms of mammalian selective autophagy with a focus on the unifying principles employed in substrate recognition, interaction with the forming autophagosome via LIR-ATG8 interactions, and the recruitment of core autophagy components for efficient autophagosome formation on the substrate.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cellbio-120219-035530
2021-10-06
2024-12-04
Loading full text...

Full text loading...

/deliver/fulltext/cellbio/37/1/annurev-cellbio-120219-035530.html?itemId=/content/journals/10.1146/annurev-cellbio-120219-035530&mimeType=html&fmt=ahah

Literature Cited

  1. Abreu S, Kriegenburg F, Gómez-Sánchez R, Mari M, Sánchez-Wandelmer J et al. 2017. Conserved Atg8 recognition sites mediate Atg4 association with autophagosomal membranes and Atg8 deconjugation. EMBO Rep 18:5765–80
    [Google Scholar]
  2. Abudu YP, Pankiv S, Mathai BJ, Håkon Lystad A, Bindesbøll C et al. 2019. NIPSNAP1 and NIPSNAP2 act as “eat me” signals for mitophagy. Dev. Cell 49:4509–25.e12
    [Google Scholar]
  3. Agudo-Canalejo J, Schultz SW, Chino H, Migliano SM, Saito C et al. 2021. Wetting regulates autophagy of phase-separated compartments and the cytosol. Nature 591:14246
    [Google Scholar]
  4. Alemu EA, Lamark T, Torgersen KM, Birgisdottir AB, Larsen KB et al. 2012. ATG8 family proteins act as scaffolds for assembly of the ULK complex: sequence requirements for LC3-interacting region (LIR) motifs. J. Biol. Chem. 287:4739275–90
    [Google Scholar]
  5. An H, Ordureau A, Paulo JA, Shoemaker CJ, Denic V, Harper JW. 2019. TEX264 is an endoplasmic reticulum-resident ATG8-interacting protein critical for ER remodeling during nutrient stress. Mol. Cell 74:5891–908.e10
    [Google Scholar]
  6. Argüello RJ, Reverendo M, Gatti E, Pierre P 2016. Regulation of protein synthesis and autophagy in activated dendritic cells: implications for antigen processing and presentation. Immunol. Rev. 272:128–38
    [Google Scholar]
  7. Axe EL, Walker SA, Manifava M, Chandra P, Roderick HL et al. 2008. Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J. Cell Biol. 182:4685–701
    [Google Scholar]
  8. Banani SF, Lee HO, Hyman AA, Rosen MK. 2017. Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 18:285–98
    [Google Scholar]
  9. Bhaskara RM, Grumati P, Garcia-Pardo J, Kalayil S, Covarrubias-Pinto A et al. 2019. Curvature induction and membrane remodeling by FAM134B reticulon homology domain assist selective ER-phagy. Nat. Commun. 10:2370
    [Google Scholar]
  10. Bhujabal Z, Birgisdottir ÅB, Sjøttem E, Brenne HB, Øvervatn A et al. 2017. FKBP8 recruits LC3A to mediate Parkin-independent mitophagy. EMBO Rep 18:6947–61
    [Google Scholar]
  11. Birgisdottir ÅB, Mouilleron S, Bhujabal Z, Wirth M, Sjøttem E et al. 2019. Members of the autophagy class III phosphatidylinositol 3-kinase complex I interact with GABARAP and GABARAPL1 via LIR motifs. Autophagy 15:81333–55
    [Google Scholar]
  12. Bjørkøy G, Lamark T, Brech A, Outzen H, Perander M et al. 2005. p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J. Cell Biol. 171:4603–14
    [Google Scholar]
  13. Bozic M, van den Bekerom L, Milne BA, Goodman N, Roberston L et al. 2020. A conserved ATG2-GABARAP family interaction is critical for phagophore formation. EMBO Rep 21:e48412
    [Google Scholar]
  14. Bracha D, Walls MT, Wei MT, Zhu L, Kurian M et al. 2018. Mapping local and global liquid phase behavior in living cells using photo-oligomerizable seeds. Cell 175:61467–80.e13
    [Google Scholar]
  15. Brangwynne CP, Eckmann CR, Courson DS, Rybarska A, Hoege C et al. 2009. Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science 324:59351729–32
    [Google Scholar]
  16. Cha-Molstad H, Sung KS, Hwang J, Kim KA, Yu JE et al. 2015. Amino-terminal arginylation targets endoplasmic reticulum chaperone BiP for autophagy through p62 binding. Nat. Cell Biol. 17:7917–29
    [Google Scholar]
  17. Cha-Molstad H, Yu JE, Feng Z, Lee SH, Kim JG et al. 2017. p62/SQSTM1/Sequestosome-1 is an N-recognin of the N-end rule pathway which modulates autophagosome biogenesis. Nat. Commun. 8:102
    [Google Scholar]
  18. Chan NC, Salazar AM, Pham AH, Sweredoski MJ, Kolawa NJ et al. 2011. Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy. Hum. Mol. Genet. 20:91726–37
    [Google Scholar]
  19. Chauhan S, Kumar S, Jain A, Ponpuak M, Mudd MH et al. 2016. TRIMs and galectins globally cooperate and TRIM16 and Galectin-3 co-direct autophagy in endomembrane damage homeostasis. Dev. Cell 39:113–27
    [Google Scholar]
  20. Chen G, Han Z, Feng D, Chen Y, Chen L et al. 2014. A regulatory signaling loop comprising the PGAM5 phosphatase and CK2 controls receptor-mediated mitophagy. Mol. Cell 54:3362–77
    [Google Scholar]
  21. Chen Q, Xiao Y, Chai P, Zheng P, Teng J, Chen J 2019. ATL3 is a tubular ER-phagy receptor for GABARAP-mediated selective autophagy. Curr. Biol. 29:5846–55.e6
    [Google Scholar]
  22. Chino H, Hatta T, Natsume T, Mizushima N. 2019. Intrinsically disordered protein TEX264 mediates ER-phagy. Mol. Cell 74:5909–21.e6
    [Google Scholar]
  23. Chino H, Mizushima N. 2020. ER-phagy: quality control and turnover of endoplasmic reticulum. Trends Cell Biol 30:5384–98
    [Google Scholar]
  24. Chu CT, Ji J, Dagda RK, Jiang JF, Tyurina YY et al. 2013. Cardiolipin externalization to the outer mitochondrial membrane acts as an elimination signal for mitophagy in neuronal cells. Nat. Cell Biol. 15:101197–205
    [Google Scholar]
  25. Ciuffa R, Lamark T, Tarafder AK, Guesdon A, Rybina S et al. 2015. The selective autophagy receptor p62 forms a flexible filamentous helical scaffold. Cell Rep 11:5748–58
    [Google Scholar]
  26. Cuervo AM, Wong E. 2014. Chaperone-mediated autophagy: roles in disease and aging. Cell Res 24:192–104
    [Google Scholar]
  27. Deosaran E, Larsen KB, Hua R, Sargent G, Wang Y et al. 2013. NBR1 acts as an autophagy receptor for peroxisomes. J. Cell Sci. 126:4939–52
    [Google Scholar]
  28. Dikic I. 2017. Proteasomal and autophagic degradation systems. Annu. Rev. Biochem. 86:193–224
    [Google Scholar]
  29. Dikic I, Elazar Z. 2018. Mechanism and medical implications of mammalian autophagy. Nat. Rev. Mol. Cell Biol. 19:6349–64
    [Google Scholar]
  30. Ding WX, Ni HM, Li M, Liao Y, Chen X et al. 2010. Nix is critical to two distinct phases of mitophagy, reactive oxygen species-mediated autophagy induction and Parkin-ubiquitin-p62-mediated mitochondrial priming. J. Biol. Chem. 285:3627879–90
    [Google Scholar]
  31. Dou Z, Xu C, Donahue G, Shimi T, Pan J-A et al. 2015. Autophagy mediates degradation of nuclear lamina. Nature 527:7576105–9
    [Google Scholar]
  32. Dowdle WE, Nyfeler B, Nagel J, Elling RA, Liu S et al. 2014. Selective VPS34 inhibitor blocks autophagy and uncovers a role for NCOA4 in ferritin degradation and iron homeostasis in vivo. Nat. Cell Biol. 16:111069–79
    [Google Scholar]
  33. Fernandez-Fernandez MR, Gragera M, Ochoa-Ibarrola L, Quintana-Gallardo L, Valpuesta JM. 2017. Hsp70– a master regulator in protein degradation. FEBS Lett 591:172648–60
    [Google Scholar]
  34. Forrester A, De Leonibus C, Grumati P, Fasana E, Piemontese M et al. 2019. A selective ER-phagy exerts procollagen quality control via a Calnexin-FAM 134B complex. EMBO J 38:e99847
    [Google Scholar]
  35. Fracchiolla D, Sawa-Makarska J, Zens B, Ruiter A, Zaffagnini G et al. 2016. Mechanism of cargo-directed Atg8 conjugation during selective autophagy. eLife 5:e18544
    [Google Scholar]
  36. Fregno I, Fasana E, Bergmann TJ, Raimondi A, Loi M et al. 2018. ER-to-lysosome-associated degradation of proteasome-resistant ATZ polymers occurs via receptor-mediated vesicular transport. EMBO J 37:e99259
    [Google Scholar]
  37. Fujioka Y, Alam JM, Noshiro D, Mouri K, Ando T et al. 2020. Phase separation organizes the site of autophagosome formation. Nature 578:7794301–5
    [Google Scholar]
  38. Fumagalli F, Noack J, Bergmann TJ, Cebollero E, Pisoni GB et al. 2016. Translocon component Sec62 acts in endoplasmic reticulum turnover during stress recovery. Nat. Cell Biol. 18:111173–84
    [Google Scholar]
  39. Gamerdinger M, Hajieva P, Kaya AM, Wolfrum U, Hartl FU, Behl C. 2009. Protein quality control during aging involves recruitment of the macroautophagy pathway by BAG3. EMBO J 28:7889–901
    [Google Scholar]
  40. Gómez-Sánchez R, Rose J, Guimarães R, Mari M, Papinski D et al. 2018. Atg9 establishes Atg2-dependent contact sites between the endoplasmic reticulum and phagophores. J. Cell Biol. 217:82743–63
    [Google Scholar]
  41. Goodwin JM, Dowdle WE, DeJesus R, Wang Z, Bergman P et al. 2017. Autophagy-independent lysosomal targeting regulated by ULK1/2-FIP200 and ATG9. Cell Rep 20:102341–56
    [Google Scholar]
  42. Grasso D, Ropolo A, Lo Ré A, Boggio V, Molejón MI et al. 2011. Zymophagy, a novel selective autophagy pathway mediated by VMP1-USP9x-p62, prevents pancreatic cell death. J. Biol. Chem. 286:108308–24
    [Google Scholar]
  43. Grumati P, Morozzi G, Hölper S, Mari M, Harwardt MI et al. 2017. Full length RTN3 regulates turnover of tubular endoplasmic reticulum via selective autophagy. eLife 6:e25555
    [Google Scholar]
  44. Hamacher-Brady A, Brady NR. 2016. Mitophagy programs: mechanisms and physiological implications of mitochondrial targeting by autophagy. Cell. Mol. Life Sci. 73:4775–95
    [Google Scholar]
  45. Hanna RA, Quinsay MN, Orogo AM, Giang K, Rikka S, Gustafsson AB. 2012. Microtubule-associated protein 1 light chain 3 (LC3) interacts with Bnip3 protein to selectively remove endoplasmic reticulum and mitochondria via autophagy. J. Biol. Chem. 287:2319094–104
    [Google Scholar]
  46. Heo JM, Ordureau A, Paulo JA, Rinehart J, Harper JW. 2015. The PINK1-PARKIN mitochondrial ubiquitylation pathway drives a program of OPTN/NDP52 recruitment and TBK1 activation to promote mitophagy. Mol. Cell 60:17–20
    [Google Scholar]
  47. Hollenstein DM, Kraft C. 2020. Autophagosomes are formed at a distinct cellular structure. Curr. Opin. Cell Biol. 65:50–57
    [Google Scholar]
  48. Hübner CA, Dikic I. 2020. ER-phagy and human diseases. Cell Death Differ 27:833–42
    [Google Scholar]
  49. Isakson P, Lystad AH, Breen K, Koster G, Stenmark H, Simonsen A. 2013. TRAF6 mediates ubiquitination of KIF23/MKLP1 and is required for midbody ring degradation by selective autophagy. Autophagy 9:121955–64
    [Google Scholar]
  50. Jain A, Lamark T, Sjøttem E, Larsen KB, Awuh JA et al. 2010. p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription. J. Biol. Chem. 285:2922576–91
    [Google Scholar]
  51. Jakobi AJ, Huber ST, Mortensen SA, Schultz SW, Palara A et al. 2020. Structural basis of p62/SQSTM1 helical filaments and their role in cellular cargo uptake. Nat. Commun. 11:440
    [Google Scholar]
  52. Ji CH, Kim HY, Heo AJ, Lee SH, Lee MJ et al. 2019. The N-degron pathway mediates ER-phagy. Mol. Cell 75:51058–72.e9
    [Google Scholar]
  53. Jia J, Bissa B, Brecht L, Allers L, Choi SW et al. 2020a. AMPK, a regulator of metabolism and autophagy, is activated by lysosomal damage via a novel Galectin-directed ubiquitin signal transduction system. Mol. Cell 77:5951–69.e9
    [Google Scholar]
  54. Jia J, Claude-Taupin A, Gu Y, Choi SW, Peters R et al. 2020b. Galectin-3 coordinates a cellular system for lysosomal repair and removal. Dev. Cell 52:169–87.e8
    [Google Scholar]
  55. Jiang S, Wells CD, Roach PJ. 2011. Starch-binding domain-containing protein 1 (Stbd1) and glycogen metabolism: identification of the Atg8 family interacting motif (AIM) in Stbd1 required for interaction with GABARAPL1. Biochem. Biophys. Res. Commun. 413:3420–25
    [Google Scholar]
  56. Johansen T, Lamark T. 2011. Selective autophagy mediated by autophagic adapter proteins. Autophagy 7:3279–96
    [Google Scholar]
  57. Johansen T, Lamark T. 2020. Selective autophagy: ATG8 family proteins, LIR motifs and cargo receptors. J. Mol. Biol. 432:180–103
    [Google Scholar]
  58. Judith D, Jefferies HBJ, Boeing S, Frith D, Snijders AP, Tooze SA. 2019. ATG9A shapes the forming autophagosome through Arfaptin 2 and phosphatidylinositol 4-kinase IIIβ. J. Cell Biol. 218:51634–52
    [Google Scholar]
  59. Kageyama S, Gudmundsson SR, Sou Y-S, Ichimura Y, Tamura N et al. 2021. p62/SQSTM1-droplet serves as a platform for autophagosome formation and anti-oxidative stress response. Nat. Commun. 12:16
    [Google Scholar]
  60. Kamber RA, Shoemaker CJ, Denic V. 2015. Receptor-bound targets of selective autophagy use a scaffold protein to activate the Atg1 kinase. Mol. Cell 59:3372–81
    [Google Scholar]
  61. Kane LA, Lazarou M, Fogel AI, Li Y, Yamano K et al. 2014. PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity. J. Cell Biol. 205:2143–53
    [Google Scholar]
  62. Kanki T, Wang K, Cao Y, Baba M, Klionsky DJ. 2009. Atg32 is a mitochondrial protein that confers selectivity during mitophagy. Dev. Cell 17:198–109
    [Google Scholar]
  63. Kaushik S, Cuervo AM. 2018. The coming of age of chaperone-mediated autophagy. Nat. Rev. Mol. Cell Biol. 19:6365–81
    [Google Scholar]
  64. Kazlauskaite A, Kondapalli C, Gourlay R, Campbell DG, Ritorto MS et al. 2014. Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65. Biochem. J. 460:1127–39
    [Google Scholar]
  65. Khaminets A, Heinrich T, Mari M, Grumati P, Huebner AK et al. 2015. Regulation of endoplasmic reticulum turnover by selective autophagy. Nature 522:7556354–58
    [Google Scholar]
  66. Kim PK, Hailey DW, Mullen RT, Lippincott-Schwartz J. 2008. Ubiquitin signals autophagic degradation of cytosolic proteins and peroxisomes. PNAS 105:5220567–74
    [Google Scholar]
  67. Kimura T, Jain A, Choi SW, Mandell MA, Schroder K et al. 2015. TRIM-mediated precision autophagy targets cytoplasmic regulators of innate immunity. J. Cell Biol. 210:6973–89
    [Google Scholar]
  68. Kimura T, Mandell M, Deretic V. 2016. Precision autophagy directed by receptor regulators – emerging examples within the TRIM family. J. Cell Sci. 129:5881–91
    [Google Scholar]
  69. Kirkin V, Lamark T, Sou YS, Bjørkøy G, Nunn JL et al. 2009. A role for NBR1 in autophagosomal degradation of ubiquitinated substrates. Mol. Cell 33:4505–16
    [Google Scholar]
  70. Kirkin V, Rogov VV. 2019. A diversity of selective autophagy receptors determines the specificity of the autophagy pathway. Mol. Cell 76:2268–85
    [Google Scholar]
  71. Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Abeliovich H et al. 2016. Guidelines for the use and interpretation of assays for monitoring autophagy. (, 3rd edition.). Autophagy 12:11–222
    [Google Scholar]
  72. Knaevelsrud H, Simonsen A. 2010. Fighting disease by selective autophagy of aggregate-prone proteins. FEBS Lett 584:122635–45
    [Google Scholar]
  73. Koerver L, Papadopoulos C, Liu B, Kravic B, Rota G et al. 2019. The ubiquitin-conjugating enzyme UBE2QL1 coordinates lysophagy in response to endolysosomal damage. EMBO Rep 20:10e48014
    [Google Scholar]
  74. Komatsu M, Kurokawa H, Waguri S, Taguchi K, Kobayashi A et al. 2010. The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat. Cell Biol. 12:213–23
    [Google Scholar]
  75. Kondapalli C, Kazlauskaite A, Zhang N, Woodroof HI, Campbell DG et al. 2012. PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating Serine 65. Open Biol 2:120080
    [Google Scholar]
  76. Kondo-Okamoto N, Noda NN, Suzuki SW, Nakatogawa H, Takahashi I et al. 2012. Autophagy-related protein 32 acts as an autophagic degron and directly initiates mitophagy. J. Biol. Chem. 287:1310631–38
    [Google Scholar]
  77. Korac J, Schaeffer V, Kovacevic I, Clement AM, Jungblut B et al. 2013. Ubiquitin-independent function of optineurin in autophagic clearance of protein aggregates. J. Cell Sci. 126:580–92
    [Google Scholar]
  78. Koyano F, Okatsu K, Kosako H, Tamura Y, Go E et al. 2014. Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature 510:7503162–66
    [Google Scholar]
  79. Kraft C, Kijanska M, Kalie E, Siergiejuk E, Lee SS et al. 2012. Binding of the Atg1/ULK1 kinase to the ubiquitin-like protein Atg8 regulates autophagy. EMBO J 31:183691–703
    [Google Scholar]
  80. Kriegenburg F, Ungermann C, Reggiori F. 2018. Coordination of autophagosome-lysosome fusion by Atg8 family members. Curr. Biol. 28:8R512–18
    [Google Scholar]
  81. Lazarou M, Sliter DA, Kane LA, Sarraf SA, Wang C et al. 2015. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 524:7565309–14
    [Google Scholar]
  82. Lee Y, Chou T-F, Pittman SK, Keith AL, Razani B, Weihl CC. 2017. Keap1/Cullin3 modulates p62/SQSTM1 activity via UBA domain ubiquitination. Cell Rep 19:1188–202
    [Google Scholar]
  83. Leidal AM, Huang HH, Marsh T, Solvik T, Zhang D et al. 2020. The LC3-conjugation machinery specifies the loading of RNA-binding proteins into extracellular vesicles. Nat. Cell Biol. 22:2187–99
    [Google Scholar]
  84. Levine B, Kroemer G. 2019. Biological functions of autophagy genes: a disease perspective. Cell 176:1–211–42
    [Google Scholar]
  85. Li J, Zhu R, Chen K, Zheng H, Zhao H et al. 2018. Potent and specific Atg8-targeting autophagy inhibitory peptides from giant ankyrins. Nat. Chem. Biol. 14:8778–87
    [Google Scholar]
  86. Liang JR, Lingeman E, Ahmed S, Corn JE 2018. Atlastins remodel the endoplasmic reticulum for selective autophagy. J. Cell Biol. 217:103354–67
    [Google Scholar]
  87. Liu L, Feng D, Chen G, Chen M, Zheng Q et al. 2012. Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat. Cell Biol 14:2177–85
    [Google Scholar]
  88. Loi M, Raimondi A, Morone D, Molinari M. 2019. ESCRT-III-driven piecemeal micro-ER-phagy remodels the ER during recovery from ER stress. Nat. Commun. 10:5058
    [Google Scholar]
  89. Lu K, Psakhye I, Jentsch S. 2014. Autophagic clearance of polyQ proteins mediated by ubiquitin-Atg8 adaptors of the conserved CUET protein family. Cell 158:3549–63
    [Google Scholar]
  90. Lynch-Day MA, Klionsky DJ 2010. The Cvt pathway as a model for selective autophagy. FEBS Lett 584:71359–66
    [Google Scholar]
  91. Maeda S, Yamamoto H, Kinch LN, Garza CM, Takahashi S et al. 2020. Structure, lipid scrambling activity and role in autophagosome formation of ATG9A. Nat. Struct. Mol. Biol. 27:1194–201
    [Google Scholar]
  92. Mancias JD, Wang X, Gygi SP, Harper JW, Kimmelman AC. 2014. Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy. Nature 509:7498105–9
    [Google Scholar]
  93. Mandell MA, Jain A, Arko-Mensah J, Chauhan S, Kimura T et al. 2014. TRIM proteins regulate autophagy and can target autophagic substrates by direct recognition. Dev. Cell 30:4394–409
    [Google Scholar]
  94. Mandell MA, Jain A, Kumar S, Castleman MJ, Anwar T et al. 2016. TRIM17 contributes to autophagy of midbodies while actively sparing other targets from degradation. J. Cell Sci. 129:193562–73
    [Google Scholar]
  95. Matoba K, Kotani T, Tsutsumi A, Tsuji T, Mori T et al. 2020. Atg9 is a lipid scramblase that mediates autophagosomal membrane expansion. Nat. Struct. Mol. Biol. 27:1185–93
    [Google Scholar]
  96. Matsumoto G, Wada K, Okuno M, Kurosawa M, Nukina N. 2011. Serine 403 phosphorylation of p62/SQSTM1 regulates selective autophagic clearance of ubiquitinated proteins. Mol. Cell 44:2279–89
    [Google Scholar]
  97. Mejlvang J, Olsvik H, Svenning S, Bruun J-A, Abudu YP et al. 2018. Starvation induces rapid degradation of selective autophagy receptors by endosomal microautophagy. J. Cell Biol. 217:103640–55
    [Google Scholar]
  98. Melia TJ, Lystad AH, Simonsen A. 2020. Autophagosome biogenesis: from membrane growth to closure. J. Cell Biol. 219:6e202002085
    [Google Scholar]
  99. Mizushima N, Yoshimori T, Ohsumi Y. 2011. The role of Atg proteins in autophagosome formation. Annu. Rev. Cell Dev. Biol. 27:107–32
    [Google Scholar]
  100. Mochida K, Oikawa Y, Kimura Y, Kirisako H, Hirano H et al. 2015. Receptor-mediated selective autophagy degrades the endoplasmic reticulum and the nucleus. Nature 522:7556359–62
    [Google Scholar]
  101. Mochida K, Yamasaki A, Matoba K, Kirisako H, Noda NN, Nakatogawa H. 2020. Super-assembly of ER-phagy receptor Atg40 induces local ER remodeling at contacts with forming autophagosomal membranes. Nat. Commun. 11:3306
    [Google Scholar]
  102. Murakawa T, Yamaguchi O, Hashimoto A, Hikoso S, Takeda T et al. 2015. Bcl-2-like protein 13 is a mammalian Atg32 homologue that mediates mitophagy and mitochondrial fragmentation. Nat. Commun. 6:7527
    [Google Scholar]
  103. Nakatogawa H. 2020. Mechanisms governing autophagosome biogenesis. Nat. Rev. Mol. Cell Biol. 21:439–58
    [Google Scholar]
  104. Nakatogawa H, Ohbayashi S, Sakoh-Nakatogawa M, Kakuta S, Suzuki SW et al. 2012. The autophagy-related protein kinase Atg1 interacts with the ubiquitin-like protein Atg8 via the Atg8 family interacting motif to facilitate autophagosome formation. J. Biol. Chem. 287:3428503–7
    [Google Scholar]
  105. Nakatogawa H, Suzuki K, Kamada Y, Ohsumi Y. 2009. Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat. Rev. Mol. Cell Biol. 10:7458–67
    [Google Scholar]
  106. Narendra DP, Jin SM, Tanaka A, Suen DF, Gautier CA et al. 2010. PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLOS Biol 8:1e1000298
    [Google Scholar]
  107. Nguyen TN, Padman BS, Usher J, Oorschot V, Ramm G, Lazarou M. 2016. Atg8 family LC3/GABARAP proteins are crucial for autophagosome-lysosome fusion but not autophagosome formation during PINK1/Parkin mitophagy and starvation. J. Cell Biol. 215:6857–74
    [Google Scholar]
  108. Nishimura T, Tamura N, Kono N, Shimanaka Y, Arai H et al. 2017. Autophagosome formation is initiated at phosphatidylinositol synthase-enriched ER subdomains. EMBO J 36:121719–35
    [Google Scholar]
  109. Nishimura T, Tooze SA. 2020. Emerging roles of ATG proteins and membrane lipids in autophagosome formation. Cell Discov 6:32
    [Google Scholar]
  110. Nixon-Abell J, Obara CJ, Weigel AV, Li D, Legant WR et al. 2016. Increased spatiotemporal resolution reveals highly dynamic dense tubular matrices in the peripheral ER. Science 354:6311aaf3928
    [Google Scholar]
  111. Noad J, von der Malsburg A, Pathe C, Michel MA, Komander D, Randow F. 2017. LUBAC-synthesized linear ubiquitin chains restrict cytosol-invading bacteria by activating autophagy and NF-κB. Nat. Microbiol. 2:17063
    [Google Scholar]
  112. Novak I, Kirkin V, McEwan DG, Zhang J, Wild P et al. 2010. Nix is a selective autophagy receptor for mitochondrial clearance. EMBO Rep 11:145–51
    [Google Scholar]
  113. Nthiga TM, Shrestha BK, Sjøttem E, Bruun J-A, Bowitz Larsen K et al. 2020. CALCOCO1 acts with VAMP-associated proteins to mediate ER-phagy. EMBO J 39:15e103649
    [Google Scholar]
  114. Ohnstad AE, Delgado JM, North BJ, Nasa I, Kettenbach AN et al. 2020. Receptor-mediated clustering of FIP200 bypasses the role of LC3 lipidation in autophagy. EMBO J 39:e104948
    [Google Scholar]
  115. Ohsumi Y. 2014. Historical landmarks of autophagy research. Cell Res 24:9–23
    [Google Scholar]
  116. Okamoto K, Kondo-Okamoto N, Ohsumi Y. 2009. Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy. Dev. Cell 17:187–97
    [Google Scholar]
  117. Omari S, Makareeva E, Roberts-Pilgrim A, Mirigian L, Jarnik M et al. 2018. Noncanonical autophagy at ER exit sites regulates procollagen turnover. PNAS 115:43E10099–108
    [Google Scholar]
  118. Onishi M, Yamano K, Sato M, Matsuda N, Okamoto K. 2021. Molecular mechanisms and physiological functions of mitophagy. EMBO J 40:e104705
    [Google Scholar]
  119. Orvedahl A, MacPherson S, Sumpter R Jr., Talloczy Z, Zou Z, Levine B. 2010. Autophagy protects against Sindbis virus infection of the central nervous system. Cell Host Microbe 7:2115–27
    [Google Scholar]
  120. Pankiv S, Clausen TH, Lamark T, Brech A, Bruun J-A et al. 2007. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J. Biol. Chem. 282:3324131–45
    [Google Scholar]
  121. Pankiv S, Lamark T, Bruun J-A, Øvervatn A, Bjørkøy G, Johansen T. 2010. Nucleocytoplasmic shuttling of p62/SQSTM1 and its role in recruitment of nuclear polyubiquitinated proteins to promyelocytic leukemia bodies. J. Biol. Chem. 285:85941–53
    [Google Scholar]
  122. Papadopoulos C, Kravic B, Meyer H. 2020. Repair or lysophagy: dealing with damaged lysosomes. J. Mol. Biol. 432:1231–39
    [Google Scholar]
  123. Peng H, Yang J, Li G, You Q, Han W et al. 2017. Ubiquitylation of p62/sequestosome1 activates its autophagy receptor function and controls selective autophagy upon ubiquitin stress. Cell Res 27:5657–74
    [Google Scholar]
  124. Pilli M, Arko-Mensah J, Ponpuak M, Roberts E, Master S et al. 2012. TBK-1 promotes autophagy-mediated antimicrobial defense by controlling autophagosome maturation. Immunity 37:2223–34
    [Google Scholar]
  125. Pohl C, Jentsch S. 2009. Midbody ring disposal by autophagy is a post-abscission event of cytokinesis. Nat. Cell Biol. 11:65–70
    [Google Scholar]
  126. Ravenhill BJ, Boyle KB, von Muhlinen N, Ellison CJ, Masson GR et al. 2019. The cargo receptor NDP52 initiates selective autophagy by recruiting the ULK complex to cytosol-invading bacteria. Mol. Cell 74:2320–29.e6
    [Google Scholar]
  127. Richter B, Sliter DA, Herhaus L, Stolz A, Wang C et al. 2016. Phosphorylation of OPTN by TBK1 enhances its binding to Ub chains and promotes selective autophagy of damaged mitochondria. PNAS 113:154039–44
    [Google Scholar]
  128. Rogov VV, Suzuki H, Marinkovic M, Lang V, Kato R et al. 2017. Phosphorylation of the mitochondrial autophagy receptor Nix enhances its interaction with LC3 proteins. Sci. Rep. 7:1131
    [Google Scholar]
  129. Sahu R, Kaushik S, Clement CC, Cannizzo ES, Scharf B et al. 2011. Microautophagy of cytosolic proteins by late endosomes. Dev. Cell 20:1131–39
    [Google Scholar]
  130. Sánchez-Martın P, Komatsu M. 2018. p62/SQSTM1 – steering the cell through health and disease. J. Cell Sci. 131:21jcs222836
    [Google Scholar]
  131. Sandoval H, Thiagarajan P, Dasgupta SK, Schumacher A, Prchal JT et al. 2008. Essential role for Nix in autophagic maturation of erythroid cells. Nature 454:7201232–35
    [Google Scholar]
  132. Sarraf SA, Shah HV, Kanfer G, Pickrell AM, Holtzclaw LA et al. 2020. Loss of TAX1BP1-directed autophagy results in protein aggregate accumulation in the brain. Mol. Cell 80:5779–95.e10
    [Google Scholar]
  133. Sawa-Makarska J, Abert C, Romanov J, Zens B, Ibiricu I, Martens S. 2014. Cargo binding to Atg19 unmasks further Atg8-binding sites to mediate membrane–cargo apposition during selective autophagy. Nat. Cell Biol. 16:425–33
    [Google Scholar]
  134. Sawa-Makarska J, Baumann V, Coudevylle N, von Bülow S, Nogellova V et al. 2020. Reconstitution of autophagosome nucleation defines Atg9 vesicles as seeds for membrane formation. Science 369:6508eaaz7714
    [Google Scholar]
  135. Schuck S. 2020. Microautophagy – distinct molecular mechanisms handle cargoes of many sizes. J. Cell Sci. 133:jcs246322
    [Google Scholar]
  136. Seglen PO, Gordon PB, Holen I, Hoyvik H. 1991. Hepatocytic autophagy. Biomed. Biochim. Acta 50:4–6373–81
    [Google Scholar]
  137. Sentelle RD, Senkal CE, Jiang W, Ponnusamy S, Gencer S et al. 2012. Ceramide targets autophagosomes to mitochondria and induces lethal mitophagy. Nat. Chem. Biol. 8:10831–38
    [Google Scholar]
  138. Shen HM, Mizushima N. 2014. At the end of the autophagic road: an emerging understanding of lysosomal functions in autophagy. Trends Biochem. Sci. 39:261–71
    [Google Scholar]
  139. Shin Y, Brangwynne CP. 2017. Liquid phase condensation in cell physiology and disease. Science 357:6357eaaf4382
    [Google Scholar]
  140. Shpilka T, Weidberg H, Pietrokovski S, Elazar Z. 2011. Atg8: an autophagy-related ubiquitin-like protein family. Genome Biol 12:7226
    [Google Scholar]
  141. Skytte Rasmussen M, Mouilleron S, Shrestha BK, Wirth M, Lee R et al. 2017. ATG4B contains a C-terminal LIR motif important for binding and efficient cleavage of mammalian orthologs of yeast Atg8. Autophagy 13:5834–53
    [Google Scholar]
  142. Smith MD, Harley ME, Kemp AJ, Wills J, Lee M et al. 2018. CCPG1 is a non-canonical autophagy cargo receptor essential for ER-phagy and pancreatic ER proteostasis. Dev. Cell 44:2217–32.e11
    [Google Scholar]
  143. Strappazzon F, Nazio F, Corrado M, Cianfanelli V, Romagnoli A et al. 2015. AMBRA1 is able to induce mitophagy via LC3 binding, regardless of PARKIN and p62/SQSTM1. Cell Death Differ 22:3419–32
    [Google Scholar]
  144. Sugiura A, McLelland G, Fon EA, McBride HM. 2014. A new pathway for mitochondrial quality control: mitochondrial-derived vesicles. EMBO J 33:192142–56
    [Google Scholar]
  145. Sun D, Wu R, Zheng J, Li P, Yu L 2018. Polyubiquitin chain-induced p62 phase separation drives autophagic cargo segregation. Cell Res 28:4405–15
    [Google Scholar]
  146. Svenning S, Lamark T, Krause K, Johansen T. 2011. Plant NBR1 is a selective autophagy substrate and a functional hybrid of the mammalian autophagic adapters NBR1 and p62/SQSTM1. Autophagy 7:9993–1010
    [Google Scholar]
  147. Takahashi Y, He H, Tang Z, Hattori T, Liu Y et al. 2018. An autophagy assay reveals the ESCRT-III component CHMP2A as a regulator of phagophore closure. Nat. Commun. 9:2855
    [Google Scholar]
  148. Thurston TL, Boyle KB, Allen M, Ravenhill BJ, Karpiyevich M et al. 2016. Recruitment of TBK1 to cytosol-invading Salmonella induces WIPI2-dependent antibacterial autophagy. EMBO J 35:161779–92
    [Google Scholar]
  149. Thurston TL, Ryzhakov G, Bloor S, von Muhlinen N, Randow F. 2009. The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria. Nat. Immunol. 10:111215–21
    [Google Scholar]
  150. Thurston TL, Wandel MP, von Muhlinen N, Foeglein A, Randow F. 2012. Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion. Nature 482:7385414–18
    [Google Scholar]
  151. Torggler R, Papinski D, Brach T, Bas L, Schuschnig M et al. 2016. Two independent pathways within selective autophagy converge to activate Atg1 kinase at the vacuole. Mol. Cell 64:2221–35
    [Google Scholar]
  152. Tsuboyama K, Koyama-Honda I, Sakamaki Y, Koike M, Morishita H, Mizushima N. 2016. The ATG conjugation systems are important for degradation of the inner autophagosomal membrane. Science 354:63151036–41
    [Google Scholar]
  153. Tumbarello DA, Manna PT, Allen M, Bycroft M, Arden SD et al. 2015. The autophagy receptor TAX1BP1 and the molecular motor myosin VI are required for clearance of Salmonella typhimurium by autophagy. PLOS Pathog 11:10e1005174
    [Google Scholar]
  154. Turco E, Witt M, Abert C, Bock-Bierbaum T, Su MY et al. 2019. FIP200 claw domain binding to p62 promotes autophagosome formation at ubiquitin condensates. Mol. Cell 74:2330–46.e11
    [Google Scholar]
  155. Vaites LP, Paulo JA, Huttlin EL, Harper JW. 2018. Systematic analysis of human cells lacking ATG8 proteins uncovers roles for GABARAPs and the CCZ1/MON1 regulator C18orf8/RMC1 in macroautophagic and selective autophagic flux. Mol. Cell. Biol. 38:1e00392-17
    [Google Scholar]
  156. Van Humbeeck C, Cornelissen T, Hofkens H, Mandemakers W, Gevaert K et al. 2011. Parkin interacts with Ambra1 to induce mitophagy. J. Neurosci. 31:2810249–61
    [Google Scholar]
  157. Vargas JNS, Wang C, Bunker E, Hao L, Maric D et al. 2019. Spatiotemporal control of ULK1 activation by NDP52 and TBK1 during selective autophagy. Mol. Cell 74:2347–62.e6
    [Google Scholar]
  158. von Muhlinen N, Akutsu M, Ravenhill BJ, Foeglein A, Bloor S et al. 2012. LC3C, bound selectively by a noncanonical LIR motif in NDP52, is required for antibacterial autophagy. Mol. Cell 48:3329–42
    [Google Scholar]
  159. Wei Y, Chiang WC, Sumpter R Jr., Mishra P, Levine B. 2017. Prohibitin 2 is an inner mitochondrial membrane mitophagy receptor. Cell 168:1–2224–38.e10
    [Google Scholar]
  160. Wesch N, Kirkin V, Rogov VV. 2020. Atg8-family proteins—structural features and molecular interactions in autophagy and beyond. Cells 9:92008
    [Google Scholar]
  161. Wild P, Farhan H, McEwan DG, Wagner S, Rogov VV et al. 2011. Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science 333:6039228–33
    [Google Scholar]
  162. Wilkinson S. 2019. ER-phagy: shaping up and destressing the endoplasmic reticulum. FEBS J 286:142645–63
    [Google Scholar]
  163. Wirth M, Zhang W, Razi M, Nyoni L, Joshi D et al. 2019. Molecular determinants regulating selective binding of autophagy adapters and receptors to ATG8 proteins. Nat. Commun. 10:2055
    [Google Scholar]
  164. Wong YC, Holzbaur EL 2014. Optineurin is an autophagy receptor for damaged mitochondria in parkin-mediated mitophagy that is disrupted by an ALS-linked mutation. PNAS 111:42E4439–48
    [Google Scholar]
  165. Wu W, Tian W, Hu Z, Chen G, Huang L et al. 2014. ULK1 translocates to mitochondria and phosphorylates FUNDC1 to regulate mitophagy. EMBO Rep 15:5566–75
    [Google Scholar]
  166. Wu X, Rapoport TA. 2018. Mechanistic insights into ER-associated protein degradation. Curr. Opin. Cell Biol. 53:22–28
    [Google Scholar]
  167. Wyant GA, Abu-Remaileh M, Frenkel EM, Laqtom NN, Dharamdasani V et al. 2018. NUFIP1 is a ribosome receptor for starvation-induced ribophagy. Science 360:6390751–58
    [Google Scholar]
  168. Xie Z, Nair U, Klionsky DJ. 2008. Atg8 controls phagophore expansion during autophagosome formation. Mol. Biol. Cell 19:83290–98
    [Google Scholar]
  169. Xu C, Wang L, Fozouni P, Evjen G, Chandra V et al. 2020. SIRT1 is downregulated by autophagy in senescence and ageing. Nat. Cell Biol. 22:1170–79
    [Google Scholar]
  170. Xu S, Peng G, Wang Y, Fang S, Karbowski M. 2011. The AAA-ATPase p97 is essential for outer mitochondrial membrane protein turnover. Mol. Biol. Cell 22:3291–300
    [Google Scholar]
  171. Yamano K, Kikuchi R, Kojima W, Hayashida R, Koyano F et al. 2020. Critical role of mitochondrial ubiquitination and the OPTN–ATG9A axis in mitophagy. J. Cell Biol. 219:9e201912144
    [Google Scholar]
  172. Yamasaki A, Alam JM, Noshiro D, Hirata E, Fujioka Y et al. 2020. Liquidity is a critical determinant for selective autophagy of protein condensates. Mol. Cell 77:61163–75.e9
    [Google Scholar]
  173. Yang M, Chen P, Liu J, Zhu S, Kroemer G et al. 2019. Clockophagy is a novel selective autophagy process favoring ferroptosis. Sci. Adv. 5:7eaaw2238
    [Google Scholar]
  174. Yoshii SR, Kishi C, Ishihara N, Mizushima N. 2011. Parkin mediates proteasome-dependent protein degradation and rupture of the outer mitochondrial membrane. J. Biol. Chem. 286:2219630–40
    [Google Scholar]
  175. You Z, Jiang W-X, Qin L-Y, Gong Z, Wan W et al. 2019. Requirement for p62 acetylation in the aggregation of ubiquitylated proteins under nutrient stress. Nat. Commun. 10:5792
    [Google Scholar]
  176. Zachari M, Gudmundsson SR, Li Z, Manifava M, Shah R et al. 2019. Selective autophagy of mitochondria on a ubiquitin-endoplasmic-reticulum platform. Dev. Cell 50:5627–43.e5
    [Google Scholar]
  177. Zaffagnini G, Savova A, Danieli A, Romanov J, Tremel S et al. 2018. p62 filaments capture and present ubiquitinated cargos for autophagy. EMBO J 37:5e98308
    [Google Scholar]
  178. Zhang G, Wang Z, Du Z, Zhang H. 2018. mTOR regulates phase separation of PGL granules to modulate their autophagic degradation. Cell 174:61492–1506.e22
    [Google Scholar]
  179. Zhang Y, Yan L, Zhou Z, Yang P, Tian E et al. 2009. SEPA-1 mediates the specific recognition and degradation of P granule components by autophagy in C. elegans. Cell 136:2308–21
    [Google Scholar]
  180. Zhang Y, Yao Y, Qiu X, Wang G, Hu Z et al. 2019. Listeria hijacks host mitophagy through a novel mitophagy receptor to evade killing. Nat. Immunol. 20:4433–46
    [Google Scholar]
  181. Zhao D, Zou C-X, Liu X-M, Jiang Z-D, Yu Z-Q et al. 2020. A UPR-induced soluble ER-phagy receptor acts with VAPs to confer ER stress resistance. Mol. Cell 79:6963–77.e3
    [Google Scholar]
  182. Zhao YG, Liu N, Miao G, Chen Y, Zhao H, Zhang H. 2018. The ER contact proteins VAPA/B interact with multiple autophagy proteins to modulate autophagosome biogenesis. Curr. Biol. 28:81234–45.e4
    [Google Scholar]
  183. Zhen Y, Spangenberg H, Munson MJ, Brech A, Schink KO et al. 2019. ESCRT-mediated phagophore sealing during mitophagy. Autophagy 16:5826–41
    [Google Scholar]
  184. Zheng YT, Shahnazari S, Brech A, Lamark T, Johansen T, Brumell JH. 2009. The adaptor protein p62/SQSTM1 targets invading bacteria to the autophagy pathway. J. Immunol. 183:95909–16
    [Google Scholar]
  185. Zhong Z, Umemura A, Sanchez-Lopez E, Liang S, Shalapour S et al. 2016. NF-κB restricts inflammasome activation via elimination of damaged mitochondria. Cell 164:5896–910
    [Google Scholar]
/content/journals/10.1146/annurev-cellbio-120219-035530
Loading
/content/journals/10.1146/annurev-cellbio-120219-035530
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error