1932

Abstract

The centrosome is a main orchestrator of the animal cellular microtubule cytoskeleton. Dissecting its structure and assembly mechanisms has been a goal of cell biologists for over a century. In the last two decades, a good understanding of the molecular constituents of centrosomes has been achieved. Moreover, recent breakthroughs in electron and light microscopy techniques have enabled the inspection of the centrosome and the mapping of its components with unprecedented detail. However, we now need a profound and dynamic understanding of how these constituents interact in space and time. Here, we review the latest findings on the structural and molecular architecture of the centrosome and how its biogenesis is regulated, highlighting how biophysical techniques and principles as well as quantitative modeling are changing our understanding of this enigmatic cellular organelle.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cellbio-120219-051400
2021-10-06
2024-06-24
Loading full text...

Full text loading...

/deliver/fulltext/cellbio/37/1/annurev-cellbio-120219-051400.html?itemId=/content/journals/10.1146/annurev-cellbio-120219-051400&mimeType=html&fmt=ahah

Literature Cited

  1. Adams SD, Csere J, D'angelo G, Carter EP, Romao M et al. 2021. Centrosome amplification mediates small extracellular vesicle secretion via lysosome disruption. Curr. Biol. 31:71403–16.e7
    [Google Scholar]
  2. Agircan FG, Schiebel E, Mardin BR. 2014. Separate to operate: control of centrosome positioning and separation. Philos. Trans. R. Soc. B 369:20130461
    [Google Scholar]
  3. Al Jord A, Lemaître A-I, Delgehyr N, Faucourt M, Spassky N, Meunier A 2014. Centriole amplification by mother and daughter centrioles differs in multiciliated cells. Nature 516:104–7
    [Google Scholar]
  4. Alvarez-Rodrigo I, Steinacker TL, Saurya S, Conduit PT, Baumbach J et al. 2019. Evidence that a positive feedback loop drives centrosome maturation in fly embryos. eLife 8:e50130
    [Google Scholar]
  5. Arnandis T, Monteiro P, Adams SD, Bridgeman VL, Rajeeve V et al. 2018. Oxidative stress in cells with extra centrosomes drives non-cell-autonomous invasion. Dev. Cell 47:409–24.e9
    [Google Scholar]
  6. Arquint C, Nigg EA. 2014. STIL microcephaly mutations interfere with APC/C-mediated degradation and cause centriole amplification. Curr. Biol. 24:351–60
    [Google Scholar]
  7. Arquint C, Nigg EA. 2016. The PLK4-STIL-SAS-6 module at the core of centriole duplication. Biochem. Soc. Trans. 44:1253–63
    [Google Scholar]
  8. Aydogan MG, Wainman A, Saurya S, Steinacker TL, Caballe A et al. 2018. A homeostatic clock sets daughter centriole size in flies. J. Cell Biol. 217:1233–48
    [Google Scholar]
  9. Bahe S, Stierhof YD, Wilkinson CJ, Leiss F, Nigg EA. 2005. Rootletin forms centriole-associated filaments and functions in centrosome cohesion. J. Cell Biol. 171:27–33
    [Google Scholar]
  10. Banterle N, Nievergelt AP, de Buhr S, Hatzopoulos GN, Brillard C et al. 2020. Surface-catalyzed SAS-6 self-assembly directs centriole formation through kinetic and structural mechanisms. bioRxiv 283184. https://doi.org/10.1101/2020.09.04.283184
    [Crossref]
  11. Bauer M, Cubizolles F, Schmidt A, Nigg EA. 2016. Quantitative analysis of human centrosome architecture by targeted proteomics and fluorescence imaging. EMBO J 35:2152–66
    [Google Scholar]
  12. Bettencourt-Dias M, Rodrigues-Martins A, Carpenter L, Riparbelli M, Lehmann L et al. 2005. SAK/PLK4 is required for centriole duplication and flagella development. Curr. Biol. 15:2199–2207
    [Google Scholar]
  13. Bornens M, Paintrand M, Berges J, Marty M-C, Karsenti E. 1987. Structural and chemical characterization of isolated centrosomes. Cell Motil. Cytoskelet. 8:3238–49
    [Google Scholar]
  14. Borrego-Pinto J, Somogyi K, Karreman MA, König J, Müller-Reichert T et al. 2016. Distinct mechanisms eliminate mother and daughter centrioles in meiosis of starfish oocytes. J. Cell Biol. 212:815–27
    [Google Scholar]
  15. Boveri T. 1887. Ueber die Befruchtung der Eier von Ascaris megalocephala [On the fertilization of eggs of Ascaris megalocephala. ]. In Sitz. Ges. Morph. Phys. München 371–80 Munich: Jos. Ant. Finsterlin
    [Google Scholar]
  16. Bowler M, Kong D, Sun S, Nanjundappa R, Evans L et al. 2019. High-resolution characterization of centriole distal appendage morphology and dynamics by correlative STORM and electron microscopy. Nat. Commun. 10:993
    [Google Scholar]
  17. Cabral G, Laos T, Dumont J, Dammermann A 2019. Differential requirements for centrioles in mitotic centrosome growth and maintenance. Dev. Cell 50:355–66
    [Google Scholar]
  18. Cabral G, Sans SS, Cowan CR, Dammermann A. 2013. Multiple mechanisms contribute to centriole separation in C. elegans. Curr. Biol. 23:141380–87
    [Google Scholar]
  19. Carvalho-Santos Z, Azimzadeh J, Pereira-Leal JB, Bettencourt-Dias M. 2011. Tracing the origins of centrioles, cilia, and flagella. J. Cell Biol. 194:165–75
    [Google Scholar]
  20. Chan JY. 2011. A clinical overview of centrosome amplification in human cancers. Int. J. Biol. Sci. 7:112244
    [Google Scholar]
  21. Ching K, Stearns T. 2020. Centrioles are amplified in cycling progenitors of olfactory sensory neurons. PLOS Biol 18:e3000852
    [Google Scholar]
  22. Chong WM, Wang W-J, Lo C-H, Chiu T-Y, Chang T-J et al. 2020. Super-resolution microscopy reveals coupling between mammalian centriole subdistal appendages and distal appendages. eLife 9:e53580
    [Google Scholar]
  23. Cizmecioglu O, Arnold M, Bahtz R, Settele F, Ehret L et al. 2010. Cep152 acts as a scaffold for recruitment of Plk4 and CPAP to the centrosome. J. Cell Biol. 191:731–39
    [Google Scholar]
  24. Clark SW, Meyer DI. 1992. Centractin is an actin homologue associated with the centrosome. Nature 359:246–50
    [Google Scholar]
  25. Comartin D, Gupta GD, Fussner E, Coyaud É, Hasegan M et al. 2013. CEP120 and SPICE1 cooperate with CPAP in centriole elongation. Curr. Biol. 23:1360–66
    [Google Scholar]
  26. Conduit PT, Feng Z, Richens JH, Baumbach J, Wainman A et al. 2014. The centrosome-specific phosphorylation of Cnn by Polo/Plk1 drives Cnn scaffold assembly and centrosome maturation. Dev. Cell 28:659–69
    [Google Scholar]
  27. Courtois A, Schuh M, Ellenberg J, Hiiragi T. 2012. The transition from meiotic to mitotic spindle assembly is gradual during early mammalian development. J. Cell Biol. 198:357–70
    [Google Scholar]
  28. Cunha-Ferreira I, Bento I, Pimenta-Marques A, Jana SC, Lince-Faria M et al. 2013. Regulation of autophosphorylation controls PLK4 self-destruction and centriole number. Curr. Biol. 23:2245–54
    [Google Scholar]
  29. Cunha-Ferreira I, Rodrigues-Martins A, Bento I, Riparbelli M, Zhang W et al. 2009. The SCF/Slimb ubiquitin ligase limits centrosome amplification through degradation of SAK/PLK4. Curr. Biol. 19:43–49
    [Google Scholar]
  30. Delgehyr N, Sillibourne J, Bornens M. 2005. Microtubule nucleation and anchoring at the centrosome are independent processes linked by ninein function. J. Cell Sci. 118:1565–75
    [Google Scholar]
  31. Dias Louro MA, Bettencourt-Dias M, Cameiro J 2021. A first-takes-all model of centriole copy number control based on cartwheel elongation. PLOS Comput. Biol 17:5e1008359
    [Google Scholar]
  32. Dobbelaere J, Josué F, Suijkerbuijk S, Baum B, Tapon N, Raff J. 2008. A genome-wide RNAi screen to dissect centriole duplication and centrosome maturation in Drosophila. PLOS Biol 6:1975–90
    [Google Scholar]
  33. Dobbelaere J, Schmidt Cernohorska M, Huranova M, Slade D, Dammermann A. 2020. Cep97 is required for centriole structural integrity and cilia formation in Drosophila. Curr. Biol. 30:153045–56.e7
    [Google Scholar]
  34. Euteneuer U, Schliwa M. 1985. Evidence for an involvement of actin in the positioning and motility of centrosomes. J. Cell Biol. 101:196–103
    [Google Scholar]
  35. Faragher AJ, Fry AM. 2003. Nek2A kinase stimulates centrosome disjunction and is required for formation of bipolar mitotic spindles. Mol. Biol. Cell 14:2876–89
    [Google Scholar]
  36. Farina F, Gaillard J, Guérin C, Couté Y, Sillibourne J et al. 2016. The centrosome is an actin-organizing centre. Nat. Cell Biol. 18:65–75
    [Google Scholar]
  37. Farina F, Ramkumar N, Brown L, Samandar Eweis D, Anstatt J et al. 2019. Local actin nucleation tunes centrosomal microtubule nucleation during passage through mitosis. EMBO J 38:e99843
    [Google Scholar]
  38. Feng Z, Caballe A, Wainman A, Johnson S, Haensele AFM et al. 2017. Structural basis for mitotic centrosome assembly in flies. Cell 169:1078–89.e13
    [Google Scholar]
  39. Fong K-W, Choi Y-K, Rattner JB, Qi RZ. 2008. CDK5RAP2 is a pericentriolar protein that functions in centrosomal attachment of the γ-tubulin ring complex. Mol. Biol. Cell 19:115–25
    [Google Scholar]
  40. Franz A, Roque H, Saurya S, Dobbelaere J, Raff JW. 2013. CP110 exhibits novel regulatory activities during centriole assembly in Drosophila. J. Cell Biol. 203:5785–99
    [Google Scholar]
  41. Fry AM, Mayor T, Meraldi P, Stierhof Y-D, Tanaka K, Nigg EA. 1998a. C-Nap1, a novel centrosomal coiled-coil protein and candidate substrate of the cell cycle–regulated protein kinase Nek2. J. Cell Biol. 141:1563–74
    [Google Scholar]
  42. Fry AM, Meraldi P, Nigg EA. 1998b. A centrosomal function for the human Nek2 protein kinase, a member of the NIMA family of cell cycle regulators. EMBO J 17:470–81
    [Google Scholar]
  43. Fu J, Glover DM. 2012. Structured illumination of the interface between centriole and peri-centriolar material. Open Biol 2:120104
    [Google Scholar]
  44. Gadadhar S, Bodakuntla S, Natarajan K, Janke C. 2017. The tubulin code at a glance. J. Cell Sci. 130:1347–53
    [Google Scholar]
  45. Gaglio T, Saredi A, Bingham JB, Hasbani MJ, Gill SR et al. 1996. Opposing motor activities are required for the organization of the mammalian mitotic spindle pole. J. Cell Biol. 135:399–414
    [Google Scholar]
  46. Ganem NJ, Godinho SA, Pellman D. 2009. A mechanism linking extra centrosomes to chromosomal instability. Nature 460:278–82
    [Google Scholar]
  47. Geimer S, Melkonian M. 2004. The ultrastructure of the Chlamydomonas reinhardtii basal apparatus: identification of an early marker of radial asymmetry inherent in the basal body. J. Cell Sci. 117:2663–74
    [Google Scholar]
  48. Godinho SA, Pellman D. 2014. Causes and consequences of centrosome abnormalities in cancer. Philos. Trans. R. Soc. B 369:20130467
    [Google Scholar]
  49. Godinho SA, Picone R, Burute M, Dagher R, Su Y et al. 2014. Oncogene-like induction of cellular invasion from centrosome amplification. Nature 510:167–71
    [Google Scholar]
  50. Goehring NW, Hyman AA. 2012. Organelle growth control through limiting pools of cytoplasmic components. Curr. Biol. 22:R330–39
    [Google Scholar]
  51. Gomes Pereira S, Sousa AL, Nabais C, Paixão T, Holmes AJ et al. 2020. The 3D architecture and molecular foundations of de novo centriole assembly via bicentrioles. bioRxiv 423647. https://doi.org/10.1101/2020.12.21.423647
    [Crossref]
  52. Gönczy P, Pichler S, Kirkham M, Hyman AA. 1999. Cytoplasmic dynein is required for distinct aspects of MTOC positioning, including centrosome separation, in the one cell stage Caenorhabditis elegans embryo. J. Cell Biol. 147:135–50
    [Google Scholar]
  53. Greenan G, Keszthelyi B, Vale RD, Agard DA 2018. Insights into centriole biogenesis and evolution revealed by cryotomography of doublet and triplet centrioles. eLife 7:e36851
    [Google Scholar]
  54. Guichard P, Chrétien D, Marco S, Tassin A-M. 2010. Procentriole assembly revealed by cryo-electron tomography. EMBO J 29:1565–72
    [Google Scholar]
  55. Guichard P, Desfosses A, Maheshwari A, Hachet V, Dietrich C et al. 2012. Cartwheel architecture of Trichonympha basal body. Science 337:553
    [Google Scholar]
  56. Guichard P, Hachet V, Majubu N, Neves A, Demurtas D et al. 2013. Native architecture of the centriole proximal region reveals features underlying its 9-fold radial symmetry. Curr. Biol. 23:1620–28
    [Google Scholar]
  57. Guichard P, Hamel V, Le Guennec M, Banterle N, Iacovache I et al. 2017. Cell-free reconstitution reveals centriole cartwheel assembly mechanisms. Nat. Commun. 8:14813
    [Google Scholar]
  58. Habedanck R, Stierhof YD, Wilkinson CJ, Nigg EA. 2005. The Polo kinase Plk4 functions in centriole duplication. Nat. Cell Biol. 7:1140–46
    [Google Scholar]
  59. Haren L, Stearns T, Lüders J. 2009. Plk1-dependent recruitment of γ-tubulin complexes to mitotic centrosomes involves multiple PCM components. PLOS ONE 4:e5976
    [Google Scholar]
  60. Hilbert M, Noga A, Frey D, Hamel V, Guichard P et al. 2016. SAS-6 engineering reveals interdependence between cartwheel and microtubules in determining centriole architecture. Nat. Cell Biol. 18:393–403
    [Google Scholar]
  61. Hiraki M, Nakazawa Y, Kamiya R, Hirono M. 2007. Bld10p constitutes the cartwheel-spoke tip and stabilizes the 9-fold symmetry of the centriole. Curr. Biol 17:1778–83
    [Google Scholar]
  62. Hoh RA, Stowe TR, Turk E, Stearns T. 2012. Transcriptional program of ciliated epithelial cells reveals new cilium and centrosome components and links to human disease. PLOS ONE 7:e52166
    [Google Scholar]
  63. Huang N, Xia Y, Zhang D, Wang S, Bao Y et al. 2017. Hierarchical assembly of centriole subdistal appendages via centrosome binding proteins CCDC120 and CCDC68. Nat. Commun. 8:15057
    [Google Scholar]
  64. Hubert T, Vandekerckhove J, Gettemans J. 2011. Actin and Arp2/3 localize at the centrosome of interphase cells. Biochem. Biophys. Res. Commun. 404:153–58
    [Google Scholar]
  65. Hyman AA, Weber CA, Jülicher F. 2014. Liquid-liquid phase separation in biology. Annu. Rev. Cell Dev. Biol. 30:39–58
    [Google Scholar]
  66. Inoue D, Obino D, Pineau J, Farina F, Gaillard J et al. 2019. Actin filaments regulate microtubule growth at the centrosome. EMBO J 38:e99630
    [Google Scholar]
  67. Ito D, Zitouni S, Jana SC, Duarte P, Ferreira MG 2019. Pericentrin-mediated SAS-6 recruitment promotes centriole assembly. eLife 8:e41418
    [Google Scholar]
  68. Jaiswal S, Singh P. 2021. Centrosome dysfunction in human diseases. Semin. Cell Dev. Biol. 110:113–22
    [Google Scholar]
  69. Jana SC, Mendonça S, Machado P, Werner S, Rocha J et al. 2018. Differential regulation of transition zone and centriole proteins contributes to ciliary base diversity. Nat. Cell Biol. 20:928–41
    [Google Scholar]
  70. Jiang X, Tam Ho DB, Mahe K, Mia J, Sepulveda G et al. 2020. Condensation of pericentrin proteins in human cells illuminates phase separation in centrosome assembly. bioRxiv 084749. https://doi.org/10.1101/2020.05.08.084749
    [Crossref]
  71. Joukov V, Walter JC, De Nicolo A. 2014. The Cep192-organized Aurora A-Plk1 cascade is essential for centrosome cycle and bipolar spindle assembly. Mol. Cell 55:578–91
    [Google Scholar]
  72. Khodjakov A, Rieder CL, Sluder G, Cassels G, Sibon O, Wang CL. 2002. De novo formation of centrosomes in vertebrate cells arrested during S phase. J. Cell Biol. 158:1171–81
    [Google Scholar]
  73. Kim J, Kim J, Rhee K. 2019. PCNT is critical for the association and conversion of centrioles to centrosomes during mitosis. J. Cell Sci. 132:6jcs225789
    [Google Scholar]
  74. Kim M, O'Rourke BP, Soni RK, Jallepalli PV, Hendrickson RC, Tsou MFB. 2016. Promotion and suppression of centriole duplication are catalytically coupled through PLK4 to ensure centriole homeostasis. Cell Rep 16:1195–203
    [Google Scholar]
  75. Kim T-S, Zhang L, Il Ahn J, Meng L, Chen Y et al. 2019. Molecular architecture of a cylindrical self-assembly at human centrosomes. Nat. Commun. 10:1151
    [Google Scholar]
  76. Kitagawa D, Vakonakis I, Olieric N, Hilbert M, Keller D et al. 2011. Structural basis of the 9-fold symmetry of centrioles. Cell 144:364–75
    [Google Scholar]
  77. Klena N, Le Guennec M, Tassin A, van den Hoek H, Erdmann PS et al. 2020. Architecture of the centriole cartwheel-containing region revealed by cryo-electron tomography. EMBO J 39:e106246
    [Google Scholar]
  78. Kong D, Sahabandu N, Sullenberger C, Vásquez-Limeta A, Luvsanjav D et al. 2020. Prolonged mitosis results in structurally aberrant and over-elongated centrioles. J. Cell Biol. 219:e201910019
    [Google Scholar]
  79. Kratz AS, Bärenz F, Richter KT, Hoffmann I. 2015. Plk4-dependent phosphorylation of STIL is required for centriole duplication. Biol. Open 4:370–77
    [Google Scholar]
  80. Lane HA, Nigg EA. 1996. Antibody microinjection reveals an essential role for human polo-like kinase 1 (Plk1) in the functional maturation of mitotic centrosomes. J. Cell Biol. 135:1701–13
    [Google Scholar]
  81. Lawo S, Hasegan M, Gupta GD, Pelletier L. 2012. Subdiffraction imaging of centrosomes reveals higher-order organizational features of pericentriolar material. Nat. Cell Biol. 14:1148–58
    [Google Scholar]
  82. Le Guennec M, Klena N, Aeschlimann G, Hamel V, Guichard P 2021. Overview of the centriole architecture. Curr. Opin. Struct. Biol. 66:58–65
    [Google Scholar]
  83. Le Guennec M, Klena N, Gambarotto D, Laporte MH, Tassin AM et al. 2020. A helical inner scaffold provides a structural basis for centriole cohesion. Sci. Adv. 6:eaaz4137
    [Google Scholar]
  84. Leda M, Holland AJ, Goryachev AB 2018. Autoamplification and competition drive symmetry breaking: initiation of centriole duplication by the PLK4-STIL network. iScience 8:222–35
    [Google Scholar]
  85. Lee K, Rhee K. 2011. PLK1 phosphorylation of pericentrin initiates centrosome maturation at the onset of mitosis. J. Cell Biol. 195:1093–101
    [Google Scholar]
  86. Lettman MM, Wong YL, Viscardi V, Niessen S, Chen SH et al. 2013. Direct binding of SAS-6 to ZYG-1 recruits SAS-6 to the mother centriole for cartwheel assembly. Dev. Cell 25:284–98
    [Google Scholar]
  87. Li S, Fernandez J-J, Marshall WF, Agard DA. 2012. Three-dimensional structure of basal body triplet revealed by electron cryo-tomography. EMBO J 31:552–62
    [Google Scholar]
  88. Li S, Fernandez J-J, Marshall WF, Agard DA 2019. Electron cryo-tomography provides insight into procentriole architecture and assembly mechanism. eLife 8:e43434
    [Google Scholar]
  89. Linck RW, Stephens RE. 2007. Functional protofilament numbering of ciliary, flagellar, and centriolar microtubules. Cell Motil. Cytoskelet. 64:489–95
    [Google Scholar]
  90. Liu Y, Gupta GD, Barnabas DD, Agircan FG, Mehmood S et al. 2018. Direct binding of CEP85 to STIL ensures robust PLK4 activation and efficient centriole assembly. Nat. Commun. 9:1731
    [Google Scholar]
  91. Loncarek J, Bettencourt-Dias M. 2018. Building the right centriole for each cell type. J. Cell Biol. 217:823–35
    [Google Scholar]
  92. Lončarek J, Hergert P, Khodjakov A. 2010. Centriole reduplication during prolonged interphase requires procentriole maturation governed by plk1. Curr. Biol. 20:1277–82
    [Google Scholar]
  93. Lopes CAM, Mesquita M, Cunha AI, Cardoso J, Carapeta S et al. 2018. Centrosome amplification arises before neoplasia and increases upon p53 loss in tumorigenesis. J. Cell Biol. 217:2353–63
    [Google Scholar]
  94. Manandhar G, Schatten H, Sutovsky P. 2005. Centrosome reduction during gametogenesis and its significance. Biol. Reprod. 72:2–13
    [Google Scholar]
  95. Mardin BR, Agircan FG, Lange C, Schiebel E. 2011. Plk1 controls the Nek2A-PP1γ antagonism in centrosome disjunction. Curr. Biol. 21:1145–51
    [Google Scholar]
  96. Marshall WF. 2016. Cell geometry: how cells count and measure size. Annu. Rev. Biophys. 45:49–64
    [Google Scholar]
  97. Marteil G, Guerrero A, Vieira AF, de Almeida BP, Machado P et al. 2018. Over-elongation of centrioles in cancer promotes centriole amplification and chromosome missegregation. Nat. Commun. 9:1258
    [Google Scholar]
  98. Matsuura K, Lefebvre PA, Kamiya R, Hirono M. 2004. Bld10p, a novel protein essential for basal body assembly in Chlamydomonas: localization to the cartwheel, the first ninefold symmetrical structure appearing during assembly. J. Cell Biol. 165:663–71
    [Google Scholar]
  99. Mennella V, Keszthelyi B, McDonald KL, Chhun B, Kan F et al. 2012. Subdiffraction-resolution fluorescence microscopy reveals a domain of the centrosome critical for pericentriolar material organization. Nat. Cell Biol. 14:1159–68
    [Google Scholar]
  100. Mercey O, Al Jord A, Rostaing P, Mahuzier A, Fortoul A et al. 2019a. Dynamics of centriole amplification in centrosome-depleted brain multiciliated progenitors. Sci. Rep. 9:13060
    [Google Scholar]
  101. Mercey O, Levine MS, LoMastro GM, Rostaing P, Brotslaw E et al. 2019b. Massive centriole production can occur in the absence of deuterosomes in multiciliated cells. Nat. Cell Biol. 21:1544–52
    [Google Scholar]
  102. Mittasch M, Tran VM, Rios MU, Fritsch AW, Enos SJ et al. 2020. Regulated changes in material properties underlie centrosome disassembly during mitotic exit. J. Cell Biol. 219:jcb.201912036
    [Google Scholar]
  103. Moritz M, Braunfeld MB, Sedat JW, Alberts BM, Agard DA. 1995. Microtubule nucleation by γ-tubulin-containing rings in the centrosome. Nature 378:638–40
    [Google Scholar]
  104. Moyer TC, Holland AJ 2019. PLK4 promotes centriole duplication by phosphorylating STIL to link the procentriole cartwheel to the microtubule wall. eLife 8:e46054
    [Google Scholar]
  105. Nabais C, Gomes Pereira S, Bettencourt-Dias M 2018. Noncanonical biogenesis of centrioles and basal bodies. Cold Spring Harb. Symp. Quant. Biol. 82:123–35
    [Google Scholar]
  106. Nabais C, Pessoa D, de-Carvalho J, van Zanten T, Duarte P et al. 2021. Plk4 triggers autonomous de novo centriole biogenesis and maturation. J. Cell Biol. 220:5e202008090
    [Google Scholar]
  107. Nakazawa Y, Hiraki M, Kamiya R, Hirono M. 2007. SAS-6 is a cartwheel protein that establishes the 9-fold symmetry of the centriole. Curr. Biol. 17:2169–74
    [Google Scholar]
  108. Nazarov S, Bezler A, Hatzopoulos GN, Nemčíková Villímová V, Demurtas D et al. 2020. Novel features of centriole polarity and cartwheel stacking revealed by cryo-tomography. EMBO J 39:e106249
    [Google Scholar]
  109. Nido GS, Méndez R, Pascual-García A, Abia D, Bastolla U. 2012. Protein disorder in the centrosome correlates with complexity in cell types number. Mol. Biosyst. 8:353–67
    [Google Scholar]
  110. Nievergelt AP, Banterle N, Andany SH, Gönczy P, Fantner GE. 2018. High-speed photothermal off-resonance atomic force microscopy reveals assembly routes of centriolar scaffold protein SAS-6. Nat. Nanotechnol. 13:696–701
    [Google Scholar]
  111. Nigg EA, Holland AJ. 2018. Once and only once: mechanisms of centriole duplication and their deregulation in diseases. Nat. Rev. Mol. Cell Biol. 19:297–312
    [Google Scholar]
  112. Ohta M, Ashikawa T, Nozaki Y, Kozuka-Hata H, Goto H et al. 2014. Direct interaction of Plk4 with STIL ensures formation of a single procentriole per parental centriole. Nat. Commun. 5:5267
    [Google Scholar]
  113. Ohta M, Watanabe K, Ashikawa T, Nozaki Y, Yoshiba S et al. 2018. Bimodal binding of STIL to Plk4 controls proper centriole copy number. Cell Rep 23:3160–69.e4
    [Google Scholar]
  114. Ohta M, Zhao Z, Wu D, Wang S, Harrison JL et al. 2021. Polo-like kinase 1 independently controls microtubule-nucleating capacity and size of the centrosome. J. Cell Biol. 220:e202009083
    [Google Scholar]
  115. Park J-E, Meng L, Ryu EK, Nagashima K, Baxa U et al. 2020. Autophosphorylation-induced self-assembly and STIL-dependent reinforcement underlie Plk4’s ring-to-dot localization conversion around a human centriole. Cell Cycle 19:3419–36
    [Google Scholar]
  116. Park J-E, Zhang L, Bang JK, Andresson T, DiMaio F, Lee KS. 2019. Phase separation of Polo-like kinase 4 by autoactivation and clustering drives centriole biogenesis. Nat. Commun. 10:4959
    [Google Scholar]
  117. Peel N, Stevens NR, Basto R, Raff JW. 2007. Overexpressing centriole-replication proteins in vivo induces centriole overduplication and de novo formation. Curr. Biol. 17:834–43
    [Google Scholar]
  118. Pimenta-Marques A, Bento I, Lopes CAM, Duarte P, Jana SC, Bettencourt-Dias M. 2016. A mechanism for the elimination of the female gamete centrosome in Drosophila melanogaster. Science 353:aaf4866
    [Google Scholar]
  119. Plessner M, Knerr J, Grosse R 2019. Centrosomal actin assembly is required for proper mitotic spindle formation and chromosome congression. iScience 15:274–81
    [Google Scholar]
  120. Rhys AD, Monteiro P, Smith C, Vaghela M, Arnandis T et al. 2018. Loss of E-cadherin provides tolerance to centrosome amplification in epithelial cancer cells. J. Cell Biol. 217:195–209
    [Google Scholar]
  121. Robertson M. 1980. Biology in the 1980s, plus or minus a decade. Nature 285:358–59
    [Google Scholar]
  122. Rodrigues-Martins A, Riparbelli M, Callaini G, Glover DM, Bettencourt-Dias M. 2007. Revisiting the role of the mother centriole in centriole biogenesis. Science 316:1046–50
    [Google Scholar]
  123. Schmidt TI, Kleylein-Sohn J, Westendorf J, Le Clech M, Lavoie SB et al. 2009. Control of centriole length by CPAP and CP110. Curr. Biol. 19:1005–11
    [Google Scholar]
  124. Schmidt-Cernohorska M, Zhernov I, Steib E, Le Guennec M, Achek R et al. 2019. Flagellar microtubule doublet assembly in vitro reveals a regulatory role of tubulin C-terminal tails. Science 363:285–88
    [Google Scholar]
  125. Sharma A, Aher A, Dynes NJ, Frey D, Katrukha EA et al. 2016. Centriolar CPAP/SAS-4 imparts slow processive microtubule growth. Dev. Cell. 37:4362–76
    [Google Scholar]
  126. Sharma A, Olieric N, Steinmetz MO. 2021. Centriole length control. Curr. Opin. Struct. Biol. 66:89–95
    [Google Scholar]
  127. Simerly C, Manil-Ségalen M, Castro C, Hartnett C, Kong D et al. 2018. Separation and loss of centrioles from primordidal germ cells to mature oocytes in the mouse. Sci. Rep 8:12791
    [Google Scholar]
  128. Smith E, Hégarat N, Vesely C, Roseboom I, Larch C et al. 2011. Differential control of Eg5-dependent centrosome separation by Plk1 and Cdk1. EMBO J 30:2233–45
    [Google Scholar]
  129. Sonnen KF, Schermelleh L, Leonhardt H, Nigg EA. 2012. 3D-structured illumination microscopy provides novel insight into architecture of human centrosomes. Biol. Open 1:965–76
    [Google Scholar]
  130. Spektor A, Tsang WY, Khoo D, Dynlacht BD. 2007. Cep97 and CP110 suppress a cilia assembly program. Cell 130:678–90
    [Google Scholar]
  131. Steib E, Laporte MH, Gambarotto D, Olieric N, Zheng C et al. 2020. WDR90 is a centriolar microtubule wall protein important for centriole architecture integrity. eLife 9:e57205
    [Google Scholar]
  132. Strnad P, Leidel S, Vinogradova T, Euteneuer U, Khodjakov A, Gönczy P. 2007. Regulated HsSAS-6 levels ensure formation of a single procentriole per centriole during the centrosome duplication cycle. Dev. Cell 13:203–13
    [Google Scholar]
  133. Sullenberger C, Vasquez-Limeta A, Kong D, Loncarek J. 2020. With age comes maturity: biochemical and structural transformation of a human centriole in the making. Cells 9:1429
    [Google Scholar]
  134. Takao D, Watanabe K, Kuroki K, Kitagawa D. 2019a. Feedback loops in the Plk4-STIL-HsSAS6 network coordinate site selection for procentriole formation. Biol. Open 8:bio047175
    [Google Scholar]
  135. Takao D, Yamamoto S, Kitagawa D. 2019b. A theory of centriole duplication based on self-organized spatial pattern formation. J. Cell Biol. 218:3537–47
    [Google Scholar]
  136. Tanenbaum ME, Macůrek L, Galjart N, Medema RH. 2008. Dynein, Lis1 and CLIP-170 counteract Eg5-dependent centrosome separation during bipolar spindle assembly. EMBO J 27:3235–45
    [Google Scholar]
  137. Tang C-JC, Lin S-Y, Hsu W-B, Lin Y-N, Wu C-T et al. 2011. The human microcephaly protein STIL interacts with CPAP and is required for procentriole formation. EMBO J 30:4790–804
    [Google Scholar]
  138. Tanos BE, Yang H-J, Soni R, Wang W-J, Macaluso FP et al. 2013. Centriole distal appendages promote membrane docking, leading to cilia initiation. Genes Dev 27:163–68
    [Google Scholar]
  139. Tiwary AK, Zheng Y. 2019. Protein phase separation in mitosis. Curr. Opin. Cell Biol. 60:92–98
    [Google Scholar]
  140. Tsou M-FB, Stearns T. 2006. Mechanism limiting centrosome duplication to once per cell cycle. Nature 442:947–51
    [Google Scholar]
  141. Tsou M-FB, Wang W-J, George KA, Uryu K, Stearns T, Jallepalli PV. 2009. Polo kinase and separase regulate the mitotic licensing of centriole duplication in human cells. Dev. Cell 17:344–54
    [Google Scholar]
  142. Turing A. 1952. The chemical basis of morphogenesis. Philos. Trans. R. Soc. 237:37–72
    [Google Scholar]
  143. Tyson JJ, Chen KC, Novak B. 2003. Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Curr. Opin. Cell Biol. 15:221–31
    [Google Scholar]
  144. van Beneden É. 1876. Recherches sur les Dicyémides, survivant actuels d´un embranchement des Mésozoaires [Research on Dicyemida, current survivors of Mesozoa]. Bull. Acad. R. Sci. Belg. 41:1160–205
    [Google Scholar]
  145. Vitiello E, Moreau P, Nunes V, Mettouchi A, Maiato H et al. 2019. Acto-myosin force organization modulates centriole separation and PLK4 recruitment to ensure centriole fidelity. Nat. Commun. 10:52
    [Google Scholar]
  146. Vlijm R, Li X, Panic M, Rüthnick D, Hata S et al. 2018. STED nanoscopy of the centrosome linker reveals a CEP68-organized, periodic rootletin network anchored to a C-Nap1 ring at centrioles. PNAS 115:E2246–53
    [Google Scholar]
  147. Vorobjev IA, Chentsov YS. 1982. Centrioles in the cell cycle. I. Epithelial cells. J. Cell Biol. 93:938–49
    [Google Scholar]
  148. Wang L, Failler M, Fu W, Dynlacht BD. 2018. A distal centriolar protein network controls organelle maturation and asymmetry. Nat. Commun. 9:3938
    [Google Scholar]
  149. Watanabe K, Takao D, Ito KK, Takahashi M, Kitagawa D. 2019. The Cep57-pericentrin module organizes PCM expansion and centriole engagement. Nat. Commun. 10:931
    [Google Scholar]
  150. Wei Z, Kim T-S, Il Ahn J, Meng L, Chen Y et al. 2020. Requirement of the Cep57-Cep63 interaction for proper Cep152 recruitment and centriole duplication. Mol. Cell. Biol. 40:e00535-19
    [Google Scholar]
  151. Werner S, Pimenta-Marques A, Bettencourt-Dias M. 2017. Maintaining centrosomes and cilia. J. Cell Sci. 130:3789–800
    [Google Scholar]
  152. Woodruff JB, Ferreira Gomes B, Widlund PO, Mahamid J, Honigmann A, Hyman AA 2017. The centrosome is a selective condensate that nucleates microtubules by concentrating tubulin. Cell 169:1066–77
    [Google Scholar]
  153. Woodruff JB, Wueseke O, Viscardi V, Mahamid J, Ochoa SD et al. 2015. Regulated assembly of a supramolecular centrosome scaffold in vitro. Science 348:808–12
    [Google Scholar]
  154. Yamamoto S, Kitagawa D. 2019. Self-organization of Plk4 regulates symmetry breaking in centriole duplication. Nat. Commun. 10:1810
    [Google Scholar]
  155. Yamamoto S, Kitagawa D. 2021. Emerging insights into symmetry breaking in centriole duplication: updated view on centriole duplication theory. Curr. Opin. Struct. Biol. 66:8–14
    [Google Scholar]
  156. Yang J, Adamian M, Li T. 2006. Rootletin interacts with C-Nap1 and may function as a physical linker between the pair of centrioles/basal bodies in cells. Mol. Biol. Cell 17:1033–40
    [Google Scholar]
  157. Yang TT, Chong WM, Wang W-J, Mazo G, Tanos B et al. 2018. Super-resolution architecture of mammalian centriole distal appendages reveals distinct blade and matrix functional components. Nat. Commun. 9:2023
    [Google Scholar]
  158. Yoshiba S, Tsuchiya Y, Ohta M, Gupta A, Shiratsuchi G et al. 2019. HsSAS-6-dependent cartwheel assembly ensures stabilization of centriole intermediates. J. Cell Sci. 132:jcs217521
    [Google Scholar]
  159. Zhao H, Chen Q, Fang C, Huang Q, Zhou J et al. 2019. Parental centrioles are dispensable for deuterosome formation and function during basal body amplification. EMBO Rep 20:e46735
    [Google Scholar]
  160. Zhao H, Zhu L, Zhu Y, Cao J, Li S et al. 2013. The Cep63 paralogue Deup1 enables massive de novo centriole biogenesis for vertebrate multiciliogenesis. Nat. Cell Biol. 15:1434–44
    [Google Scholar]
  161. Zheng X, Ramani A, Soni K, Gottardo M, Zheng S et al. 2016. Molecular basis for CPAP-tubulin interaction in controlling centriolar and ciliary length. Nat. Commun. 7:11874
    [Google Scholar]
  162. Zimmerman WC, Sillibourne J, Rosa J, Doxsey SJ 2004. Mitosis-specific anchoring of γ tubulin complexes by pericentrin controls spindle organization and mitotic entry. Mol. Biol. Cell 15:3642–57
    [Google Scholar]
  163. Zitouni S, Francia ME, Leal F, Montenegro Gouveia S, Nabais C et al. 2016. CDK1 prevents unscheduled PLK4-STIL complex assembly in centriole biogenesis. Curr. Biol. 26:1127–37
    [Google Scholar]
  164. Zwicker D, Decker M, Jaensch S, Hyman AA, Jülicher F 2014. Centrosomes are autocatalytic droplets of pericentriolar material organized by centrioles. PNAS 111:E2636–45
    [Google Scholar]
/content/journals/10.1146/annurev-cellbio-120219-051400
Loading
/content/journals/10.1146/annurev-cellbio-120219-051400
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error