1932

Abstract

Morphological transitions are typically attributed to the actions of proteins and lipids. Largely overlooked in membrane shape regulation is the glycocalyx, a pericellular membrane coat that resides on all cells in the human body. Comprised of complex sugar polymers known as glycans as well as glycosylated lipids and proteins, the glycocalyx is ideally positioned to impart forces on the plasma membrane. Large, unstructured polysaccharides and glycoproteins in the glycocalyx can generate crowding pressures strong enough to induce membrane curvature. Stress may also originate from glycan chains that convey curvature preference on asymmetrically distributed lipids, which are exploited by binding factors and infectious agents to induce morphological changes. Through such forces, the glycocalyx can have profound effects on the biogenesis of functional cell surface structures as well as the secretion of extracellular vesicles. In this review, we discuss recent evidence and examples of these mechanisms in normal health and disease.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cellbio-120219-054401
2021-10-06
2024-06-21
Loading full text...

Full text loading...

/deliver/fulltext/cellbio/37/1/annurev-cellbio-120219-054401.html?itemId=/content/journals/10.1146/annurev-cellbio-120219-054401&mimeType=html&fmt=ahah

Literature Cited

  1. AbuSamra DB, Aleisa FA, Al-Amoodi AS, Jalal Ahmed HM, Chin CJ et al. 2017. Not just a marker: CD34 on human hematopoietic stem/progenitor cells dominates vascular selectin binding along with CD44. Blood Adv 1:272799–816
    [Google Scholar]
  2. Adell MAY, Migliano SM, Upadhyayula S, Bykov YS, Sprenger S et al. 2017. Recruitment dynamics of ESCRT-III and Vps4 to endosomes and implications for reverse membrane budding. eLife 6:e31652
    [Google Scholar]
  3. Ahmad N, Gabius HJ, Andre S, Kaltner H, Sabesan S et al. 2004. Galectin-3 precipitates as a pentamer with synthetic multivalent carbohydrates and forms heterogeneous cross-linked complexes. J. Biol. Chem. 279:1210841–47
    [Google Scholar]
  4. Ajo-Franklin CM, Ganesan PV, Boxer SG. 2005. Variable incidence angle fluorescence interference contrast microscopy for z-imaging single objects. Biophys. J. 89:42759–69
    [Google Scholar]
  5. Al-bataineh M, Sutton TA, Hughey RP. 2017. Novel roles for mucin 1 in the kidney. Curr. Opin. Nephrol. Hypertens. 26:5384–91
    [Google Scholar]
  6. Allende ML, Proia RL. 2014. Simplifying complexity: genetically resculpting glycosphingolipid synthesis pathways in mice to reveal function. Glycoconj. J. 31:9613–22
    [Google Scholar]
  7. Anvarian Z, Mykytyn K, Mukhopadhyay S, Pedersen LB, Christensen ST. 2019. Cellular signalling by primary cilia in development, organ function and disease. Nat. Rev. Nephrol. 15:4199–219
    [Google Scholar]
  8. Arasu UT, Deen AJ, Pasonen-Seppänen S, Heikkinen S, Lalowski M et al. 2020. HAS3-induced extracellular vesicles from melanoma cells stimulate IHH mediated c-Myc upregulation via the hedgehog signaling pathway in target cells. Cell Mol. Life Sci. 77:204093–115
    [Google Scholar]
  9. Arnaud J, Tröndle K, Claudinon J, Audfray A, Varrot A et al. 2014. Membrane deformation by neolectins with engineered glycolipid binding sites. Angew. Chem. 126:359421–24
    [Google Scholar]
  10. Baena V, Terasaki M. 2019. Three-dimensional organization of transzonal projections and other cytoplasmic extensions in the mouse ovarian follicle. Sci. Rep. 9:1262
    [Google Scholar]
  11. Barnes JM, Kaushik S, Bainer RO, Sa JK, Woods EC et al. 2018. A tension-mediated glycocalyx-integrin feedback loop promotes mesenchymal-like glioblastoma. Nat. Cell Biol. 20:101203–14
    [Google Scholar]
  12. Bennett R, Järvelä T, Engelhardt P, Kostamovaara L, Sparks P et al. 2001. Mucin MUC1 is seen in cell surface protrusions together with ezrin in immunoelectron tomography and is concentrated at tips of filopodial protrusions in MCF-7 breast carcinoma cells. J. Histochem. Cytochem. 49:167–77
    [Google Scholar]
  13. Berndt C, Montañez E, Villena J, Fabre M, Vilaró S, Reina M 2004. Influence of cytoplasmic deletions on the filopodia-inducing effect of syndecan-3. Cell Biol. Int. 28:11829–33
    [Google Scholar]
  14. Bhatia T, Agudo-Canalejo J, Dimova R, Lipowsky R. 2018. Membrane nanotubes increase the robustness of giant vesicles. ACS Nano 12:54478–85
    [Google Scholar]
  15. Bianchi E, Doe B, Goulding D, Wright GJ. 2014. Juno is the egg Izumo receptor and is essential for mammalian fertilization. Nature 508:7497483–87
    [Google Scholar]
  16. Blalock TD, Spurr-Michaud SJ, Tisdale AS, Heimer SR, Gilmore MS et al. 2007. Functions of MUC16 in corneal epithelial cells. Invest. Ophthalmol. Vis. Sci. 48:104509–18
    [Google Scholar]
  17. Bouché C, Serdy S, Kahn CR, Goldfine AB. 2004. The cellular fate of glucose and its relevance in type 2 diabetes. Endocr. Rev. 25:5807–30
    [Google Scholar]
  18. Braun D, Fromherz P. 1997. Fluorescence interference-contrast microscopy of cell adhesion on oxidized silicon. Appl. Phys. A 65:4341–48
    [Google Scholar]
  19. Brocca P, Cantù L, Corti M, Del Favero E, Motta S. 2004. Shape fluctuations of large unilamellar lipid vesicles observed by laser light scattering:influence of the small-scale structure. Langmuir 20:62141–48
    [Google Scholar]
  20. Budnik V, Ruiz-Cañada C, Wendler F. 2016. Extracellular vesicles round off communication in the nervous system. Nat. Rev. Neurosci. 17:3160–72
    [Google Scholar]
  21. Burra S, Nicolella DP, Francis WL, Freitas CJ, Mueschke NJ et al. 2010. Dendritic processes of osteocytes are mechanotransducers that induce the opening of hemichannels. PNAS 107:3113648–53
    [Google Scholar]
  22. Busch DJ, Houser JR, Hayden CC, Sherman MB, Lafer EM, Stachowiak JC. 2015. Intrinsically disordered proteins drive membrane curvature. Nat. Commun. 6:7875
    [Google Scholar]
  23. Butt L, Unnersjö-Jess D, Höhne M, Edwards A, Binz-Lotter J et al. 2020. A molecular mechanism explaining albuminuria in kidney disease. Nat. Metab. 2:5461–74
    [Google Scholar]
  24. Button B, Cai L-H, Ehre C, Kesimer M, Hill DB et al. 2012. A periciliary brush promotes the lung health by separating the mucus layer from airway epithelia. Science 337:6097937–41
    [Google Scholar]
  25. Chang CY-Y, Chang H-W, Chen C-M, Lin C-Y, Chen C-P et al. 2011. MUC4 gene polymorphisms associate with endometriosis development and endometriosis-related infertility. BMC Med 9:19
    [Google Scholar]
  26. Chang H-M, Qiao J, Leung PCK. 2016. Oocyte–somatic cell interactions in the human ovary—novel role of bone morphogenetic proteins and growth differentiation factors. Hum. Reprod. Update 23:11–18
    [Google Scholar]
  27. Chauhan M, Balakrishnan M, Chan R, Yallampalli C 2015. Adrenomedullin 2 (ADM2) regulates mucin 1 at the maternal-fetal interface in human pregnancy. Biol. Reprod. 93:61–8
    [Google Scholar]
  28. Chen Y, Qin J, Chen ZW. 2008. Fluorescence-topographic NSOM directly visualizes peak-valley polarities of GM1/GM3 rafts in cell membrane fluctuations. J. Lipid Res. 49:102268–75
    [Google Scholar]
  29. Cheng X, Smith JC. 2019. Biological membrane organization and cellular signaling. Chem. Rev. 119:95849–80
    [Google Scholar]
  30. Cohen M, Klein E, Geiger B, Addadi L. 2003. Organization and adhesive properties of the hyaluronan pericellular coat of chondrocytes and epithelial cells. Biophys. J. 85:31996–2005
    [Google Scholar]
  31. Colom A, Derivery E, Soleimanpour S, Tomba C, Molin MD et al. 2018. A fluorescent membrane tension probe. Nat. Chem. 10:111118–25
    [Google Scholar]
  32. Colombo M, Raposo G, Théry C. 2014. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu. Rev. Cell Dev. Biol. 30:255–89
    [Google Scholar]
  33. Crawley SW, Shifrin DA, Grega-Larson NE, McConnell RE, Benesh AE et al. 2014. Intestinal brush border assembly driven by protocadherin-based intermicrovillar adhesion. Cell 157:2433–46
    [Google Scholar]
  34. Dasgupta R, Miettinen MS, Fricke N, Lipowsky R, Dimova R 2018. The glycolipid GM1 reshapes asymmetric biomembranes and giant vesicles by curvature generation. PNAS 115:225756–61
    [Google Scholar]
  35. Decher G, Kuchinka E, Ringsdorf H, Venzmer J, Bitter-Suermann D, Weisgerber C. 1989. Interaction of amphiphilic polymers with model membranes. Angew. Makromol. Chem. 166:171–80
    [Google Scholar]
  36. DeSouza MM, Surveyor GA, Price RE, Julian J, Kardon R et al. 2000. MUC1/episialin: a critical barrier in the female reproductive tract. J. Reprod. Immunol. 45:2127–58
    [Google Scholar]
  37. Domagala W, Koss LG. 1978. Configuration of surfaces of human cancer cells in effusions. Virchows Arch. B Cell Path. 26:27–42
    [Google Scholar]
  38. Doyonnas R, Kershaw DB, Duhme C, Merkens H, Chelliah S et al. 2001. Anuria, omphalocele, and perinatal lethality in mice lacking the Cd34-related protein podocalyxin. J. Exp. Med. 194:113–28
    [Google Scholar]
  39. Ebrahimkutty MP, Galic M. 2019. Receptor-free signaling at curved cellular membranes. BioEssays 41:101900068
    [Google Scholar]
  40. Eierhoff T, Bastian B, Thuenauer R, Madl J, Audfray A et al. 2014. A lipid zipper triggers bacterial invasion. PNAS 111:3512895–900
    [Google Scholar]
  41. El-Hayek S, Yang Q, Abbassi L, FitzHarris G, Clarke HJ 2018. Mammalian oocytes locally remodel follicular architecture to provide the foundation for germline-soma communication. Curr. Biol. 28:71124–31.e3
    [Google Scholar]
  42. Evanko SP, Angello JC, Wight TN. 1999. Formation of hyaluronan- and versican-rich pericellular matrix is required for proliferation and migration of vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol. 19:41004–13
    [Google Scholar]
  43. Ewers H, Römer W, Smith AE, Bacia K, Dmitrieff S et al. 2010. GM1 structure determines SV40-induced membrane invagination and infection. Nat. Cell Biol. 12:11–18
    [Google Scholar]
  44. Eyermann C, Czaplinski K, Colognato H. 2012. Dystroglycan promotes filopodial formation and process branching in differentiating oligodendroglia. J. Neurochem. 120:6928–47
    [Google Scholar]
  45. Fischer A, Koopmans T, Ramesh P, Christ S, Strunz M et al. 2020. Post-surgical adhesions are triggered by calcium-dependent membrane bridges between mesothelial surfaces. Nat. Commun. 11:3068
    [Google Scholar]
  46. Follett EAC, Goldman RD. 1970. The occurrence of microvilli during spreading and growth of BHK21/C13 fibroblasts. Exp. Cell Res. 59:1124–36
    [Google Scholar]
  47. Frey SL, Lee KYC. 2013. Number of sialic acid residues in ganglioside headgroup affects interactions with neighboring lipids. Biophys J 105:61421–31
    [Google Scholar]
  48. Fricke N, Dimova R. 2016. GM1 softens POPC membranes and induces the formation of micron-sized domains. Biophys. J. 111:91935–45
    [Google Scholar]
  49. Frolov VA, Shnyrova AV, Zimmerberg J. 2011. Lipid polymorphisms and membrane shape. Cold Spring Harb. Perspect. Biol. 3:11a004747
    [Google Scholar]
  50. Fröse J, Chen MB, Hebron KE, Reinhardt F, Hajal C et al. 2018. Epithelial-mesenchymal transition induces podocalyxin to promote extravasation via ezrin signaling. Cell Rep 24:4962–72
    [Google Scholar]
  51. Galeano B, Klootwijk R, Manoli I, Sun M, Ciccone C et al. 2007. Mutation in the key enzyme of sialic acid biosynthesis causes severe glomerular proteinuria and is rescued by N-acetylmannosamine. J. Clin. Invest. 117:61585–94
    [Google Scholar]
  52. Gandhi JG, Koch DL, Paszek MJ. 2019. Equilibrium modeling of the mechanics and structure of the cancer glycocalyx. Biophys. J. 116:4694–708
    [Google Scholar]
  53. Geng Y, Yeh K, Takatani T, King MR. 2012. Three to tango: MUC1 as a ligand for both E-selectin and ICAM-1 in the breast cancer metastatic cascade. Front. Oncol. 2: https://doi.org/10.3389/fonc.2012.00076
    [Crossref] [Google Scholar]
  54. Gipson IK, Blalock T, Tisdale A, Spurr-Michaud S, Allcorn S et al. 2008. MUC16 is lost from the uterodome (pinopode) surface of the receptive human endometrium: in vitro evidence that MUC16 is a barrier to trophoblast adherence. Biol. Reprod. 78:1134–42
    [Google Scholar]
  55. Gipson IK, Spurr-Michaud S, Tisdale A, Menon BB. 2014. Comparison of the transmembrane mucins MUC1 and MUC16 in epithelial barrier function. PLOS ONE 9:6e100393
    [Google Scholar]
  56. Godula K, Umbel ML, Rabuka D, Botyanszki Z, Bertozzi CR, Parthasarathy R. 2009. Control of the molecular orientation of membrane-anchored biomimetic glycopolymers. J. Am. Chem. Soc. 131:2910263–68
    [Google Scholar]
  57. Granés F, Garcı́a R, Casaroli-Marano RP, Castel S, Rocamora N et al. 1999. Syndecan-2 induces filopodia by active cdc42Hs. Exp. Cell Res. 248:2439–56
    [Google Scholar]
  58. Gruner SM. 1985. Intrinsic curvature hypothesis for biomembrane lipid composition: a role for nonbilayer lipids. PNAS 82:113665–69
    [Google Scholar]
  59. Hägerstrand H, Mrówczyńska L, Salzer U, Prohaska R, Michelsen KA et al. 2006. Curvature-dependent lateral distribution of raft markers in the human erythrocyte membrane. Mol. Membr. Biol. 23:3277–88
    [Google Scholar]
  60. Hale JE, Wuthier RE. 1987. The mechanism of matrix vesicle formation. Studies on the composition of chondrocyte microvilli and on the effects of microfilament-perturbing agents on cellular vesiculation. J. Biol. Chem. 262:41916–25
    [Google Scholar]
  61. Hara M, Yanagihara T, Hirayama Y, Ogasawara S, Kurosawa H et al. 2010. Podocyte membrane vesicles in urine originate from tip vesiculation of podocyte microvilli. Hum. Pathol. 41:91265–75
    [Google Scholar]
  62. Hattrup CL, Gendler SJ. 2008. Structure and function of the cell surface (tethered) mucins. Annu. Rev. Physiol. 70:431–57
    [Google Scholar]
  63. Horne AW, Lalani E-N, Margara RA, Ryder TA, Mobberley MA, White JO. 2005. The expression pattern of MUC1 glycoforms and other biomarkers of endometrial receptivity in fertile and infertile women. Mol. Reprod. Dev. 72:2216–29
    [Google Scholar]
  64. Horne AW, White JO, Margara RA, Williams R, Winston RM, Lalani E-N. 2001. MUC 1: a genetic susceptibility to infertility?. Lancet 357:92651336–37
    [Google Scholar]
  65. Hossein A, Deserno M. 2020. Spontaneous curvature, differential stress, and bending modulus of asymmetric lipid membranes. Biophys. J. 118:3624–42
    [Google Scholar]
  66. Houk AR, Jilkine A, Mejean CO, Boltyanskiy R, Dufresne ER et al. 2012. Membrane tension maintains cell polarity by confining signals to the leading edge during neutrophil migration. Cell 148:1–2175–88
    [Google Scholar]
  67. Houser JR, Hayden CC, Thirumalai D, Stachowiak JC. 2020. A Förster resonance energy transfer-based sensor of steric pressure on membrane surfaces. J. Am. Chem. Soc. 142:4920796–805
    [Google Scholar]
  68. Huizing M, Yardeni T, Fuentes F, Malicdan MCV, Leoyklang P et al. 2019. Rationale and design for a Phase 1 study of N-acetylmannosamine for primary glomerular diseases. Kidney Int. Rep. 4:101454–62
    [Google Scholar]
  69. Ingólfsson HI, Carpenter TS, Bhatia H, Bremer P-T, Marrink SJ, Lightstone FC. 2017. Computational lipidomics of the neuronal plasma membrane. Biophys. J. 113:102271–80
    [Google Scholar]
  70. Jedlovszky P, Sega M, Vallauri R. 2009. GM1 ganglioside embedded in a hydrated DOPC membrane: a molecular dynamics simulation study. J. Phys. Chem. B 113:144876–86
    [Google Scholar]
  71. Jennemann R, Kaden S, Sandhoff R, Nordström V, Wang S et al. 2012. Glycosphingolipids are essential for intestinal endocytic function. J. Biol. Chem. 287:3932598–616
    [Google Scholar]
  72. Jeppesen DK, Fenix AM, Franklin JL, Higginbotham JN, Zhang Q et al. 2019. Reassessment of exosome composition. Cell 177:2428–45.e18
    [Google Scholar]
  73. Jin J, Sison K, Li C, Tian R, Wnuk M et al. 2012. Soluble FLT1 binds lipid microdomains in podocytes to control cell morphology and glomerular barrier function. Cell 151:2384–99
    [Google Scholar]
  74. Johannes L, Wunder C, Shafaq-Zadah M. 2016. Glycolipids and lectins in endocytic uptake processes. J. Mol. Biol. 428:24, Part A4792–818
    [Google Scholar]
  75. Johansson K, Willysson A, Kristoffersson A-C, Tontanahal A, Gillet D et al. 2020. Shiga toxin-bearing microvesicles exert a cytotoxic effect on recipient cells only when the cells express the toxin receptor. Front. Cell. Infect. Microbiol. 10: https://doi.org/10.3389/fcimb.2020.00212
    [Crossref] [Google Scholar]
  76. Jonckheere N, Skrypek N, Merlin J, Dessein AF, Dumont P et al. 2012. The mucin MUC4 and its membrane partner ErbB2 regulate biological properties of human CAPAN-2 pancreatic cancer cells via different signalling pathways. PLOS ONE 7:2e32232
    [Google Scholar]
  77. Kabbani AM, Raghunathan K, Lencer WI, Kenworthy AK, Kelly CV 2020. Structured clustering of the glycosphingolipid GM1 is required for membrane curvature induced by cholera toxin. PNAS 117:2614978–86
    [Google Scholar]
  78. Kaiser F, Huebecker M, Wachten D. 2020. Sphingolipids controlling ciliary and microvillar function. FEBS Lett 594:223652–67
    [Google Scholar]
  79. Kamal MM, Mills D, Grzybek M, Howard J 2009. Measurement of the membrane curvature preference of phospholipids reveals only weak coupling between lipid shape and leaflet curvature. PNAS 106:5222245–50
    [Google Scholar]
  80. Kang HG, Lee M, Lee KB, Hughes M, Kwon BS et al. 2017. Loss of podocalyxin causes a novel syndromic type of congenital nephrotic syndrome. Exp. Mol. Med. 49:12e414
    [Google Scholar]
  81. Kappagantula S, Andrews MR, Cheah M, Abad-Rodriguez J, CG Dotti, Fawcett JW. 2014. Neu3 sialidase-mediated ganglioside conversion is necessary for axon regeneration and is blocked in CNS axons. J. Neurosci. 34:72477–92
    [Google Scholar]
  82. Kawai H, Allende ML, Wada R, Kono M, Sango K et al. 2001. Mice expressing only monosialoganglioside GM3 exhibit lethal audiogenic seizures. J. Biol. Chem. 276:106885–88
    [Google Scholar]
  83. Kelleher AM, Burns GW, Behura S, Wu G, Spencer TE. 2016. Uterine glands impact uterine receptivity, luminal fluid homeostasis and blastocyst implantation. Sci. Rep. 6:38078
    [Google Scholar]
  84. Kerjaschki D, Sharkey DJ, Farquhar MG. 1984. Identification and characterization of podocalyxin–the major sialoprotein of the renal glomerular epithelial cell. J. Cell Biol. 98:41591–96
    [Google Scholar]
  85. Kesimer M, Ehre C, Burns KA, Davis CW, Sheehan JK, Pickles RJ. 2013. Molecular organization of the mucins and glycocalyx underlying mucus transport over mucosal surfaces of the airways. Mucosal Immunol 6:2379–92
    [Google Scholar]
  86. Kesimer M, Scull M, Brighton B, DeMaria G, Burns K et al. 2009. Characterization of exosome-like vesicles released from human tracheobronchial ciliated epithelium: a possible role in innate defense. FASEB J 23:61858–68
    [Google Scholar]
  87. Kim S, Seo Y, Chowdhury T, Yu HJ, Lee CE et al. 2020. Inhibition of MUC1 exerts cell-cycle arrest and telomerase suppression in glioblastoma cells. Sci. Rep. 10:18238
    [Google Scholar]
  88. Kim SH, Chi M, Yi B, Kim SH, Oh S et al. 2014. Three-dimensional intestinal villi epithelium enhances protection of human intestinal cells from bacterial infection by inducing mucin expression. Integr. Biol. 6:121122–31
    [Google Scholar]
  89. Kim YK, Refaeli I, Brooks CR, Jing P, Gulieva RE et al. 2017. Gene-edited human kidney organoids reveal mechanisms of disease in podocyte development. Stem Cells 35:122366–78
    [Google Scholar]
  90. Kirby A, Gnirke A, Jaffe DB, Barešová V, Pochet N et al. 2013. Mutations causing medullary cystic kidney disease type 1 lie in a large VNTR in MUC1 missed by massively parallel sequencing. Nat. Genet. 45:3299–303
    [Google Scholar]
  91. Koistinen V, Härkönen K, Kärnä R, Arasu UT, Oikari S, Rilla K. 2017. EMT induced by EGF and wounding activates hyaluronan synthesis machinery and EV shedding in rat primary mesothelial cells. Matrix Biol 63:38–54
    [Google Scholar]
  92. Koistinen V, Jokela T, Oikari S, Kärnä R, Tammi M, Rilla K 2016. Hyaluronan-positive plasma membrane protrusions exist on mesothelial cells in vivo. Histochem. Cell Biol. 145:5531–44
    [Google Scholar]
  93. Koistinen V, Kärnä R, Koistinen A, Arjonen A, Tammi M, Rilla K 2015. Cell protrusions induced by hyaluronan synthase 3 (HAS3) resemble mesothelial microvilli and share cytoskeletal features of filopodia. Exp. Cell Res. 337:2179–91
    [Google Scholar]
  94. Kojima K, Nosaka H, Kishimoto Y, Nishiyama Y, Fukuda S et al. 2011. Defective glycosylation of α-dystroglycan contributes to podocyte flattening. Kidney Int 79:3311–16
    [Google Scholar]
  95. Kolata GB. 1975. Microvilli: a major difference between normal and cancer cells?. Science 188:4190819–20
    [Google Scholar]
  96. Komatsu M, Carraway CA, Fregien NL, Carraway KL. 1997. Reversible disruption of cell-matrix and cell-cell interactions by overexpression of sialomucin complex. J. Biol. Chem. 272:5233245–54
    [Google Scholar]
  97. Kopp JB, Anders H-J, Susztak K, Podestà MA, Remuzzi G et al. 2020. Podocytopathies. Nat. Rev. Dis. Primers 6:68
    [Google Scholar]
  98. Kozlovsky Y, Kozlov MM. 2003. Membrane fission: model for intermediate structures. Biophys. J. 85:185–96
    [Google Scholar]
  99. Kramer JR, Onoa B, Bustamante C, Bertozzi CR 2015. Chemically tunable mucin chimeras assembled on living cells. PNAS 112:4112574–79
    [Google Scholar]
  100. Kramer RH, Nicolson GL 1979. Interactions of tumor cells with vascular endothelial cell monolayers: a model for metastatic invasion. PNAS 76:115704–8
    [Google Scholar]
  101. Kultti A, Rilla K, Tiihonen R, Spicer AP, Tammi RH, Tammi MI. 2006. Hyaluronan synthesis induces microvillus-like cell surface protrusions. J. Biol. Chem. 281:2315821–28
    [Google Scholar]
  102. Kyykallio H, Oikari S, Bueno Álvez M, Gallardo Dodd CJ, Capra J, Rilla K 2020. The density and length of filopodia associate with the activity of hyaluronan synthesis in tumor cells. Cancers 12:71908
    [Google Scholar]
  103. Lakshminarayan R, Wunder C, Becken U, Howes MT, Benzing C et al. 2014. Galectin-3 drives glycosphingolipid-dependent biogenesis of clathrin-independent carriers. Nat. Cell Biol. 16:6592–603
    [Google Scholar]
  104. Lange K. 2011. Fundamental role of microvilli in the main functions of differentiated cells: outline of an universal regulating and signaling system at the cell periphery. J. Cell. Physiol. 226:4896–927
    [Google Scholar]
  105. Ledeen RW, Wu G. 2015. The multi-tasked life of GM1 ganglioside, a true factotum of nature. Trends Biochem. Sci. 40:7407–18
    [Google Scholar]
  106. Lee GM, Johnstone B, Jacobson K, Caterson B. 1993. The dynamic structure of the pericellular matrix on living cells. J. Cell Biol. 123:61899–907
    [Google Scholar]
  107. Lee H, Zhang D, Laskin DL, Jin Y 2018. Functional evidence of pulmonary extracellular vesicles in infectious and noninfectious lung inflammation. J. Immunol. 201:51500–9
    [Google Scholar]
  108. Ling H, Boodhoo A, Hazes B, Cummings MD, Armstrong GD et al. 1998. Structure of the Shiga-like toxin I B-pentamer complexed with an analogue of its receptor Gb3. Biochemistry 37:71777–88
    [Google Scholar]
  109. Lingwood CA. 2011. Glycosphingolipid functions. Cold Spring Harb. Perspect. Biol. 3:7a004788
    [Google Scholar]
  110. Liu Y, Barnoud J, Marrink SJ. 2019. Gangliosides destabilize lipid phase separation in multicomponent membranes. Biophys. J. 117:71215–23
    [Google Scholar]
  111. Lundgren E, Roos G. 1976. Cell surface changes in HeLa cells as an indication of cell cycle events. Cancer Res 36:11 Part 1 4044–51
    [Google Scholar]
  112. Machtinger R, Laurent LC, Baccarelli AA. 2016. Extracellular vesicles: roles in gamete maturation, fertilization and embryo implantation. Hum. Reprod. Update 22:2182–93
    [Google Scholar]
  113. Magistretti PJ, Geisler FH, Schneider JS, Li PA, Fiumelli H, Sipione S. 2019. Gangliosides: treatment avenues in neurodegenerative disease. Front. Neurol. 10: https://doi.org/10.3389/fneur.2019.00859
    [Crossref] [Google Scholar]
  114. Makabe S, Naguro T, Stallone T. 2006. Oocyte-follicle cell interactions during ovarian follicle development, as seen by high resolution scanning and transmission electron microscopy in humans. Microsc. Res. Tech. 69:6436–49
    [Google Scholar]
  115. Margarit L, Taylor A, Roberts MH, Hopkins L, Davies C et al. 2010. MUC1 as a discriminator between endometrium from fertile and infertile patients with PCOS and endometriosis. J. Clin. Endocrinol. Metab. 95:125320–29
    [Google Scholar]
  116. McConnell RE, Higginbotham JN, Shifrin DA Jr., Tabb DL, Coffey RJ, Tyska MJ. 2009. The enterocyte microvillus is a vesicle-generating organelle. J. Cell Biol. 185:71285–98
    [Google Scholar]
  117. McIntosh TJ, Simon SA. 1994. Long- and short-range interactions between phospholipid/ganglioside GM1 bilayers. Biochemistry 33:3410477–86
    [Google Scholar]
  118. McNeer RR, Carraway CAC, Fregien NL, Carraway KL. 1998. Characterization of the expression and steroid hormone control of sialomucin complex in the rat uterus: implications for uterine receptivity. J. Cell. Physiol. 176:1110–19
    [Google Scholar]
  119. Mills CC, Kolb E, Sampson VB. 2018. Development of chemotherapy with cell-cycle inhibitors for adult and pediatric cancer therapy. Cancer Res 78:2320–25
    [Google Scholar]
  120. Möckl L, Pedram K, Roy AR, Krishnan V, Gustavsson A-K et al. 2019. Quantitative super-resolution microscopy of the mammalian glycocalyx. Dev. Cell 50:157–72.e6
    [Google Scholar]
  121. Murphy CR. 2004. Uterine receptivity and the plasma membrane transformation. Cell Res 14:4259–67
    [Google Scholar]
  122. Mustonen A-M, Nieminen P, Joukainen A, Jaroma A, Kääriäinen T et al. 2016. First in vivo detection and characterization of hyaluronan-coated extracellular vesicles in human synovial fluid. J. Orthop. Res. 34:111960–68
    [Google Scholar]
  123. Narimatsu Y, Joshi HJ, Nason R, Van Coillie J, Karlsson R et al. 2019. An atlas of human glycosylation pathways enables display of the human glycome by gene engineered cells. Mol. Cell 75:2394–407.e5
    [Google Scholar]
  124. Narimatsu Y, Joshi HJ, Yang Z, Gomes C, Chen Y-H et al. 2018. A validated gRNA library for CRISPR/Cas9 targeting of the human glycosyltransferase genome. Glycobiology 28:5295–305
    [Google Scholar]
  125. Nawrocki G, Im W, Sugita Y, Feig M 2019. Clustering and dynamics of crowded proteins near membranes and their influence on membrane bending. PNAS 116:4924562–67
    [Google Scholar]
  126. Needham SR, Roberts SK, Arkhipov A, Mysore VP, Tynan CJ et al. 2016. EGFR oligomerization organizes kinase-active dimers into competent signalling platforms. Nat. Commun. 7:13307
    [Google Scholar]
  127. Neves SR, Tsokas P, Sarkar A, Grace EA, Rangamani P et al. 2008. Cell shape and negative links in regulatory motifs together control spatial information flow in signaling networks. Cell 133:4666–80
    [Google Scholar]
  128. Nielsen JS, Graves ML, Chelliah S, Vogl AW, Roskelley CD, McNagny KM. 2007. The CD34-related molecule podocalyxin is a potent inducer of microvillus formation. PLOS ONE 2:2e237
    [Google Scholar]
  129. Nijenhuis N, Mizuno D, Spaan JAE, Schmidt CF. 2012. High-resolution microrheology in the pericellular matrix of prostate cancer cells. J. R. Soc. Interface 9:731733–44
    [Google Scholar]
  130. Noble JM, Roberts LM, Vidavsky N, Chiou AE, Fischbach C et al. 2020. Direct comparison of optical and electron microscopy methods for structural characterization of extracellular vesicles. J. Struct. Biol. 210:1107474
    [Google Scholar]
  131. Ochs M, Hegermann J, Lopez-Rodriguez E, Timm S, Nouailles G et al. 2020. On top of the alveolar epithelium: surfactant and the glycocalyx. Int. J. Mol. Sci. 21:93075
    [Google Scholar]
  132. Orbach R, Su X. 2020. Surfing on membrane waves: microvilli, curved membranes, and immune signaling. Front. Immunol. 11: https://doi.org/10.3389/fimmu.2020.02187
    [Crossref] [Google Scholar]
  133. Osswald M, Jung E, Sahm F, Solecki G, Venkataramani V et al. 2015. Brain tumour cells interconnect to a functional and resistant network. Nature 528:758093–98
    [Google Scholar]
  134. Palmieri V, Bozzi M, Signorino G, Papi M, De Spirito M et al. 2017. α-Dystroglycan hypoglycosylation affects cell migration by influencing β-dystroglycan membrane clustering and filopodia length: a multiscale confocal microscopy analysis. Biochim. Biophys. Acta Mol. Basis Dis. 1863:92182–91
    [Google Scholar]
  135. Pan D, Chen J, Feng C, Wu W, Wang Y et al. 2019. Preferential localization of MUC1 glycoprotein in exosomes secreted by non-small cell lung carcinoma cells. Int. J. Mol. Sci. 20:2323
    [Google Scholar]
  136. Pan H, Colville MJ, Supekar NT, Azadi P, Paszek MJ. 2019. Sequence-specific mucins for glycocalyx engineering. ACS Synth. Biol. 8:102315–26
    [Google Scholar]
  137. Paszek MJ, DuFort CC, Rossier O, Bainer R, Mouw JK et al. 2014. The cancer glycocalyx mechanically primes integrin-mediated growth and survival. Nature 511:7509319–25
    [Google Scholar]
  138. Patel DS, Park S, Wu EL, Yeom MS, Widmalm G et al. 2016. Influence of ganglioside GM1 concentration on lipid clustering and membrane properties and curvature. Biophys. J. 111:91987–99
    [Google Scholar]
  139. Pei B, Chen J-W. 2003. More ordered, convex ganglioside-enriched membrane domains: the effects of GM1 on sphingomyelin bilayers containing a low level of cholesterol. J. Biochem. 134:4575–81
    [Google Scholar]
  140. Pelaseyed T, Hansson GC. 2020. Membrane mucins of the intestine at a glance. J. Cell Sci. 133:5jcs240929
    [Google Scholar]
  141. Pezeshkian W, Gao H, Arumugam S, Becken U, Bassereau P et al. 2017a. Mechanism of Shiga toxin clustering on membranes. ACS Nano 11:1314–24
    [Google Scholar]
  142. Pezeshkian W, Hansen AG, Johannes L, Khandelia H, Shillcock JC et al. 2016. Membrane invagination induced by Shiga toxin B-subunit: from molecular structure to tube formation. Soft Matter 12:235164–71
    [Google Scholar]
  143. Pezeshkian W, Nåbo LJ, Ipsen JH. 2017b. Cholera toxin B subunit induces local curvature on lipid bilayers. FEBS Open Biol 7:111638–45
    [Google Scholar]
  144. Pinho SS, Reis CA. 2015. Glycosylation in cancer: mechanisms and clinical implications. Nat. Rev. Cancer 15:9540–55
    [Google Scholar]
  145. Refaeli I, Hughes MR, McNagny KM. 2019. The first identified heterozygous nonsense mutations in podocalyxin offer new perspectives on the biology of podocytopathies. Clin. Sci. 133:3443–47
    [Google Scholar]
  146. Refaeli I, Hughes MR, Wong AK-W, Bissonnette MLZ, Roskelley CD et al. 2020. Distinct functional requirements for podocalyxin in immature and mature podocytes reveal mechanisms of human kidney disease. Sci. Rep. 10:9419
    [Google Scholar]
  147. Reily C, Stewart TJ, Renfrow MB, Novak J. 2019. Glycosylation in health and disease. Nat. Rev. Nephrol. 15:6346–66
    [Google Scholar]
  148. Renard H-F, Simunovic M, Lemière J, Boucrot E, Garcia-Castillo MD et al. 2015. Endophilin-A2 functions in membrane scission in clathrin-independent endocytosis. Nature 517:7535493–96
    [Google Scholar]
  149. Renard H-F, Tyckaert F, Lo Giudice C, Hirsch T, Valades-Cruz CA et al. 2020. Endophilin-A3 and Galectin-8 control the clathrin-independent endocytosis of CD166. Nat. Commun. 11:1457
    [Google Scholar]
  150. Rice WL, Hoek ANV, Păunescu TG, Huynh C, Goetze B et al. 2013. High resolution helium ion scanning microscopy of the rat kidney. PLOS ONE 8:3e57051
    [Google Scholar]
  151. Rilla K, Pasonen-Seppänen S, Deen AJ, Koistinen VVT, Wojciechowski S et al. 2013. Hyaluronan production enhances shedding of plasma membrane-derived microvesicles. Exp. Cell Res. 319:132006–18
    [Google Scholar]
  152. Römer W, Berland L, Chambon V, Gaus K, Windschiegl B et al. 2007. Shiga toxin induces tubular membrane invaginations for its uptake into cells. Nature 450:7170670–75
    [Google Scholar]
  153. Rosholm KR, Leijnse N, Mantsiou A, Tkach V, Pedersen SL et al. 2017. Membrane curvature regulates ligand-specific membrane sorting of GPCRs in living cells. Nat. Chem. Biol. 13:7724–29
    [Google Scholar]
  154. Russo D, Capolupo L, Loomba JS, Sticco L, D'Angelo G 2018. Glycosphingolipid metabolism in cell fate specification. J. Cell Sci. 131:24jcs219204
    [Google Scholar]
  155. Saito F, Moore SA, Barresi R, Henry MD, Messing A et al. 2003. Unique role of dystroglycan in peripheral nerve myelination, nodal structure, and sodium channel stabilization. Neuron 38:5747–58
    [Google Scholar]
  156. Salustri A, Campagnolo L, Klinger FG, Camaioni A. 2019. Molecular organization and mechanical properties of the hyaluronan matrix surrounding the mammalian oocyte. Matrix Biol78–7911–23
    [Google Scholar]
  157. Sauvanet C, Wayt J, Pelaseyed T, Bretscher A. 2015. Structure, regulation, and functional diversity of microvilli on the apical domain of epithelial cells. Annu. Rev. Cell Dev. Biol. 31:593–621
    [Google Scholar]
  158. Schmick M, Bastiaens PIH. 2014. The interdependence of membrane shape and cellular signal processing. Cell 156:61132–38
    [Google Scholar]
  159. Scholl FG, Gamallo C, Vilaró S, Quintanilla M. 1999. Identification of PA2.26 antigen as a novel cell-surface mucin-type glycoprotein that induces plasma membrane extensions and increased motility in keratinocytes. J. Cell Sci. 112:244601–13
    [Google Scholar]
  160. Schubert T, Sych T, Madl J, Xu M, Omidvar R et al. 2020. Differential recognition of lipid domains by two Gb3-binding lectins. Sci. Rep. 10:9752
    [Google Scholar]
  161. Sens P, Turner MS. 2004. Theoretical model for the formation of caveolae and similar membrane invaginations. Biophys. J. 86:42049–57
    [Google Scholar]
  162. Sheetz MP, Singer SJ 1974. Biological membranes as bilayer couples. A molecular mechanism of drug-erythrocyte interactions. PNAS 71:114457–61
    [Google Scholar]
  163. Shibue T, Brooks MW, Inan MF, Reinhardt F, Weinberg RA. 2012. The outgrowth of micrometastases is enabled by the formation of filopodium-like protrusions. Cancer Discov 2:8706–21
    [Google Scholar]
  164. Shikichi M, Kitamura HP, Yanase H, Konno A, Takahashi-Iwanaga H, Iwanaga T. 1999. Three-dimensional ultrastructure of synoviocytes in the horse joint as revealed by the scanning electron microscope. Arch. Histol. Cytol. 62:3219–29
    [Google Scholar]
  165. Shin I-S, Ishii S, Shin J-S, Sung K-I, Park B-S et al. 2009. Globotriaosylceramide (Gb3) content in HeLa cells is correlated to Shiga toxin-induced cytotoxicity and Gb3 synthase expression. BMB Rep 42:5310–14
    [Google Scholar]
  166. Shurer CR, Colville MJ, Gupta VK, Head SE, Kai F et al. 2017. Genetically encoded toolbox for glycocalyx engineering: tunable control of cell adhesion, survival, and cancer cell behaviors. ACS Biomater. Sci. Eng. 4:2388–99
    [Google Scholar]
  167. Shurer CR, Kuo JC-H, Roberts LM, Gandhi JG, Colville MJ et al. 2019. Physical principles of membrane shape regulation by the glycocalyx. Cell 177:71757–70.e21
    [Google Scholar]
  168. Simons M, Schwarz K, Kriz W, Miettinen A, Reiser J et al. 2001. Involvement of lipid rafts in nephrin phosphorylation and organization of the glomerular slit diaphragm. Am. J. Pathol. 159:31069–77
    [Google Scholar]
  169. Sipione S, Monyror J, Galleguillos D, Steinberg N, Kadam V. 2020. Gangliosides in the brain: physiology, pathophysiology and therapeutic applications. Front. Neurosci. 14: https://doi.org/10.3389/fnins.2020.572965
    [Crossref] [Google Scholar]
  170. Sirviö E, Mikkonen JJW, Koistinen AP, Miinalainen I, Kullaa AM. 2019. Localization of transmembrane mucin MUC1 on the apical surface of oral mucosal cells. Ultrastruct. Pathol. 43:4–5184–89
    [Google Scholar]
  171. Sitarska E, Diz-Muñoz A. 2020. Pay attention to membrane tension: mechanobiology of the cell surface. Curr. Opin. Cell Biol. 66:11–18
    [Google Scholar]
  172. Son S, Takatori SC, Belardi B, Podolski M, Bakalar MH, Fletcher DA 2020. Molecular height measurement by cell surface optical profilometry (CSOP).. PNAS 117:2514209–19
    [Google Scholar]
  173. Song K, Fu J, Song J, Herzog BH, Bergstrom K et al. 2017. Loss of mucin-type O-glycans impairs the integrity of the glomerular filtration barrier in the mouse kidney. J. Biol. Chem. 292:4016491–97
    [Google Scholar]
  174. Sonnino S, Chiricozzi E, Grassi S, Mauri L, Prioni S, Prinetti A 2018. Gangliosides in membrane organization. Progress in Molecular Biology and Translational Science, Vol. 156 RL Schnaar, PHH Lopez 83–120 New York: Academic/Elsevier
    [Google Scholar]
  175. Sreekumari A, Lipowsky R. 2018. Lipids with bulky head groups generate large membrane curvatures by small compositional asymmetries. J. Chem. Phys. 149:8084901
    [Google Scholar]
  176. Stachowiak JC, Brodsky FM, Miller EA. 2013. A cost-benefit analysis of the physical mechanisms of membrane curvature. Nat. Cell Biol. 15:91019–27
    [Google Scholar]
  177. Stachowiak JC, Hayden CC, Sasaki DY 2010. Steric confinement of proteins on lipid membranes can drive curvature and tubulation. PNAS 107:177781–86
    [Google Scholar]
  178. Stachowiak JC, Schmid EM, Ryan CJ, Ann HS, Sasaki DY et al. 2012. Membrane bending by protein-protein crowding. Nat. Cell Biol. 14:9944–49
    [Google Scholar]
  179. Stotter BR, Talbot BE, Capen DE, Artelt N, Zeng J et al. 2020. Cosmc-dependent mucin-type O-linked glycosylation is essential for podocyte function. Am. J. Physiol. Ren. Physiol. 318:2F518–30
    [Google Scholar]
  180. Stowell SR, Ju T, Cummings RD. 2015. Protein glycosylation in cancer. Annu. Rev. Pathol. Mech. Dis. 10:473–510
    [Google Scholar]
  181. Tsafrir I, Sagi D, Arzi T, Guedeau-Boudeville M-A, Frette V et al. 2001. Pearling instabilities of membrane tubes with anchored polymers. Phys. Rev. Lett. 86:61138–41
    [Google Scholar]
  182. Tsai F-C, Bertin A, Bousquet H, Manzi J, Senju Y et al. 2018. Ezrin enrichment on curved membranes requires a specific conformation or interaction with a curvature-sensitive partner. eLife 7:e37262
    [Google Scholar]
  183. Tukaj C, Bohdanowicz J, Kubasik-Juraniec J. 2002. A scanning electron microscopic study of phenotypic plasticity and surface structural changes of aortal smooth muscle cells in primary culture. Folia Morphol 61:419198
    [Google Scholar]
  184. Twarock S, Tammi MI, Savani RC, Fischer JW. 2010. Hyaluronan stabilizes focal adhesions, filopodia, and the proliferative phenotype in esophageal squamous carcinoma cells. J. Biol. Chem. 285:3023276–84
    [Google Scholar]
  185. Uyar A, Torrealday S, Seli E. 2013. Cumulus and granulosa cell markers of oocyte and embryo quality. Fertil. Steril. 99:4979–97
    [Google Scholar]
  186. Wang H, Sency V, McJarrow P, Bright A, Huang Q et al. 2019. Oral ganglioside supplement improves growth and development in patients with ganglioside GM3 synthase deficiency. JIMD Reports E Morava, M Baumgartner, M Patterson, S Rahman, J Zschocke, V Peters 9–20 Berlin: Springer
    [Google Scholar]
  187. Watkins EB, Majewski J, Chi EY, Gao H, Florent J-C, Johannes L 2019. Shiga toxin induces lipid compression: a mechanism for generating membrane curvature. Nano Lett 19:107365–69
    [Google Scholar]
  188. Welf ES, Miles CE, Huh J, Sapoznik E, Chi J et al. 2020. Actin-membrane release initiates cell protrusions. Dev. Cell 55:6723–36.e8
    [Google Scholar]
  189. Williams G, Wood A, Williams E-J, Gao Y, Mercado ML et al. 2008. Ganglioside inhibition of neurite outgrowth requires Nogo receptor function: IDENTIFICATION OF INTERACTION SITES AND DEVELOPMENT OF NOVEL ANTAGONISTS. J. Biol. Chem. 283:2416641–52
    [Google Scholar]
  190. Willysson A, Ståhl A, Gillet D, Barbier J, Cintrat J-C et al. 2020. Shiga toxin uptake and sequestration in extracellular vesicles is mediated by its B-subunit. Toxins 12:7449
    [Google Scholar]
  191. Woods EC, Kai F, Barnes JM, Pedram K, Pickup MW et al. 2017. A bulky glycocalyx fosters metastasis formation by promoting G1 cell cycle progression. eLife 6:e25752
    [Google Scholar]
  192. Wrede C, Hegermann J, Mühlfeld C. 2020. Novel cell contact between podocyte microprojections and parietal epithelial cells analyzed by volume electron microscopy. Am. J. Physiol. Ren. Physiol. 318:5F1246–51
    [Google Scholar]
  193. Wu G, Lu Z-H, André S, Gabius H-J, Ledeen RW. 2016. Functional interplay between ganglioside GM1 and cross-linking galectin-1 induces axon-like neuritogenesis via integrin-based signaling and TRPC5-dependent Ca2+ influx. J. Neurochem. 136:3550–63
    [Google Scholar]
  194. Xu R, Rai A, Chen M, Suwakulsiri W, Greening DW, Simpson RJ. 2018. Extracellular vesicles in cancer—implications for future improvements in cancer care. Nat. Rev. Clin. Oncol. 15:10617–38
    [Google Scholar]
  195. Ying H, Kimmelman AC, Lyssiotis CA, Hua S, Chu GC et al. 2012. Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell 149:3656–70
    [Google Scholar]
  196. Yoshikawa M, Go S, Suzuki S, Suzuki A, Katori Y et al. 2015. Ganglioside GM3 is essential for the structural integrity and function of cochlear hair cells. Hum. Mol. Genet. 24:102796–807
    [Google Scholar]
  197. Zhang Y, Yan Z, Qin Q, Nisenblat V, Chang H-M et al. 2018. Transcriptome landscape of human folliculogenesis reveals oocyte and granulosa cell interactions. Mol. Cell 72:61021–34.e4
    [Google Scholar]
  198. Zhu Y, Groth T, Kelkar A, Zhou Y, Neelamegham S. 2021. A GlycoGene CRISPR-Cas9 lentiviral library to study lectin binding and human glycan biosynthesis pathways. Glycobiology 31:317380
    [Google Scholar]
/content/journals/10.1146/annurev-cellbio-120219-054401
Loading
/content/journals/10.1146/annurev-cellbio-120219-054401
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error