1932

Abstract

T cell activation is a critical event in the adaptive immune response, indispensable for cell-mediated and humoral immunity as well as for immune regulation. Recent years have witnessed an emerging trend emphasizing the essential role that physical force and mechanical properties play at the T cell interface. In this review, we integrate current knowledge of T cell antigen recognition and the different models of T cell activation from the perspective of mechanobiology, focusing on the interaction between the T cell receptor (TCR) and the peptide–major histocompatibility complex (pMHC) antigen. We address the shortcomings of TCR affinity alone in explaining T cell functional outcomes and the rising status of force-regulated TCR bond lifetimes, most notably the TCR catch bond. Ultimately, T cell activation and the ensuing physiological responses result from mechanical interaction between TCRs and the pMHC.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cellbio-120219-055100
2021-10-06
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/cellbio/37/1/annurev-cellbio-120219-055100.html?itemId=/content/journals/10.1146/annurev-cellbio-120219-055100&mimeType=html&fmt=ahah

Literature Cited

  1. Adams JJ, Narayanan S, Liu B, Birnbaum ME, Kruse AC et al. 2011. T cell receptor signaling is limited by docking geometry to peptide-major histocompatibility complex. Immunity 35:681–93
    [Google Scholar]
  2. Aifantis I, Mandal M, Sawai K, Ferrando A, Vilimas T. 2006. Regulation of T-cell progenitor survival and cell-cycle entry by the pre-T-cell receptor. Immunol. Rev. 209:159–69
    [Google Scholar]
  3. Alam SM, Davies GM, Lin CM, Zal T, Nasholds W et al. 1999. Qualitative and quantitative differences in T cell receptor binding of agonist and antagonist ligands. Immunity 10:227–37
    [Google Scholar]
  4. Alam SM, Travers PJ, Wung JL, Nasholds W, Redpath S et al. 1996. T-cell-receptor affinity and thymocyte positive selection. Nature 381:616–20
    [Google Scholar]
  5. Aleksic M, Dushek O, Zhang H, Shenderov E, Chen J-L et al. 2010. Dependence of T cell antigen recognition on T cell receptor-peptide MHC confinement time. Immunity 32:163–74
    [Google Scholar]
  6. Allison KA, Sajti E, Collier JG, Gosselin D, Troutman TD et al. 2016. Affinity and dose of TCR engagement yield proportional enhancer and gene activity in CD4+ T cells. eLife 5:e10134
    [Google Scholar]
  7. Andersen PS, Geisler C, Buus S, Mariuzza RA, Karjalainen K. 2001. Role of the T cell receptor ligand affinity in T cell activation by bacterial superantigens. J. Biol. Chem. 276:33452–57
    [Google Scholar]
  8. Andris F, Denanglaire S, de Mattia F, Urbain J, Leo O 2004. Naive T cells are resistant to anergy induction by anti-CD3 antibodies. J. Immunol. 173:3201–8
    [Google Scholar]
  9. Armstrong KM, Piepenbrink KH, Baker BM. 2008. Conformational changes and flexibility in T-cell receptor recognition of peptide-MHC complexes. Biochem. J. 415:183–96
    [Google Scholar]
  10. Azuma M. 2019. Co-signal molecules in T-cell activation: historical overview and perspective. Adv. Exp. Med. Biol. 1189:3–23
    [Google Scholar]
  11. Baker BM, Gagnon SJ, Biddison WE, Wiley DC. 2000. Conversion of a T cell antagonist into an agonist by repairing a defect in the TCR/peptide/MHC interface: implications for TCR signaling. Immunity 13:475–84
    [Google Scholar]
  12. Barda-Saad M, Braiman A, Titerence R, Bunnell SC, Barr VA, Samelson LE. 2005. Dynamic molecular interactions linking the T cell antigen receptor to the actin cytoskeleton. Nat. Immunol. 6:80–89
    [Google Scholar]
  13. Bashour KT, Gondarenko A, Chen H, Shen K, Liu X et al. 2014. CD28 and CD3 have complementary roles in T-cell traction forces. PNAS 111:2241–46
    [Google Scholar]
  14. Basu R, Whitlock BM, Husson J, Le Floc'h A, Jin W et al. 2016. Cytotoxic T cells use mechanical force to potentiate target cell killing. Cell 165:100–10
    [Google Scholar]
  15. Beddoe T, Chen Z, Clements CS, Ely LK, Bushell SR et al. 2009. Antigen ligation triggers a conformational change within the constant domain of the αβ T cell receptor. Immunity 30:777–88
    [Google Scholar]
  16. Bell GI. 1978. Models for the specific adhesion of cells to cells. Science 200:618–27
    [Google Scholar]
  17. Blanchfield JL, Shorter SK, Evavold BD. 2013. Monitoring the dynamics of T cell clonal diversity using recombinant peptide:MHC technology. Front. Immunol. 4:170
    [Google Scholar]
  18. Blumenthal D, Chandra V, Avery L, Burkhardt JK 2020. Mouse T cell priming is enhanced by maturation-dependent stiffening of the dendritic cell cortex. eLife 9:e55995
    [Google Scholar]
  19. Borovsky Z, Mishan-Eisenberg G, Yaniv E, Rachmilewitz J 2002. Serial triggering of T cell receptors results in incremental accumulation of signaling intermediates. J. Biol. Chem. 277:21529–36
    [Google Scholar]
  20. Boulter JM, Schmitz N, Sewell AK, Godkin AJ, Bachmann MF, Gallimore AM. 2007. Potent T cell agonism mediated by a very rapid TCR/pMHC interaction. Eur. J. Immunol. 37:798–806
    [Google Scholar]
  21. Brazin KN, Mallis RJ, Das DK, Feng Y, Hwang W et al. 2015. Structural features of the αβTCR mech-anotransduction apparatus that promote pMHC discrimination. Front. Immunol. 6:441
    [Google Scholar]
  22. Bufi N, Saitakis M, Dogniaux S, Buschinger O, Bohineust A et al. 2015. Human primary immune cells exhibit distinct mechanical properties that are modified by inflammation. Biophys. J. 108:2181–90
    [Google Scholar]
  23. Castro CD, Luoma AM, Adams EJ. 2015. Coevolution of T-cell receptors with MHC and non-MHC ligands. Immunol. Rev. 267:30–55
    [Google Scholar]
  24. Chandler NJ, Call MJ, Call ME. 2020. T cell activation machinery: form and function in natural and engineered immune receptors. Int. J. Mol. Sci. 21:7424
    [Google Scholar]
  25. Chang VT, Fernandes RA, Ganzinger KA, Lee SF, Siebold C et al. 2016. Initiation of T cell signaling by CD45 segregation at ‘close contacts. ’. Nat. Immunol. 17:574–82
    [Google Scholar]
  26. Chen W, Lou J, Zhu C. 2010. Forcing switch from short- to intermediate- and long-lived states of the αA domain generates LFA-1/ICAM-1 catch bonds. J. Biol. Chem. 285:35967–78
    [Google Scholar]
  27. Chen W, Zhu C. 2013. Mechanical regulation of T-cell functions. Immunol. Rev. 256:160–76
    [Google Scholar]
  28. Chen Y, Ju LA, Zhou F, Liao J, Xue L et al. 2019. An integrin αIIbβ3 intermediate affinity state mediates biomechanical platelet aggregation. Nat. Mater. 18:760–69
    [Google Scholar]
  29. Choi YI, Duke-Cohan JS, Chen W, Liu B, Rossy J et al. 2014. Dynamic control of β1 integrin adhesion by the plexinD1-sema3E axis. PNAS 111:379–84
    [Google Scholar]
  30. Ciofani M, Schmitt TM, Ciofani A, Michie AM, Cuburu N et al. 2004. Obligatory role for cooperative signaling by pre-TCR and Notch during thymocyte differentiation. J. Immunol. 172:5230–39
    [Google Scholar]
  31. Clark RA, Alon R, Springer TA. 1996. CD44 and hyaluronan-dependent rolling interactions of lymphocytes on tonsillar stroma. J. Cell Biol. 134:1075–87
    [Google Scholar]
  32. Colin-York H, Javanmardi Y, Skamrahl M, Kumari S, Chang VT et al. 2019. Cytoskeletal control of antigen-dependent T cell activation. Cell Rep 26:123369–79.e5
    [Google Scholar]
  33. Das DK, Feng Y, Mallis RJ, Li X, Keskin DB et al. 2015. Force-dependent transition in the T-cell receptor β-subunit allosterically regulates peptide discrimination and pMHC bond lifetime. PNAS 112:1517–22
    [Google Scholar]
  34. Davis MM, Bjorkman PJ. 1988. T-cell antigen receptor genes and T-cell recognition. Nature 334:395–402
    [Google Scholar]
  35. Davis MM, Boniface JJ, Reich Z, Lyons D, Hampl J et al. 1998. Ligand recognition by αβ T cell receptors. Annu. Rev. Immunol. 16:523–44
    [Google Scholar]
  36. Davis SJ, van der Merwe PA. 2006. The kinetic-segregation model: TCR triggering and beyond. Nat. Immunol. 7:803–9
    [Google Scholar]
  37. De Magistris MT, Alexander J, Coggeshall M, Altman A, Gaeta FCA et al. 1992. Antigen analog-major histocompatibility complexes act as antagonists of the T cell receptor. Cell 68:625–34
    [Google Scholar]
  38. Deftos ML, Bevan MJ. 2000. Notch signaling in T cell development. Curr. Opin. Immunol. 12:166–72
    [Google Scholar]
  39. Dembo M, Torney DC, Saxman K, Hammer D. 1988. The reaction-limited kinetics of membrane-to-surface adhesion and detachment. Proc. R. Soc. B 234: 1274.55–83
    [Google Scholar]
  40. Dong D, Zheng L, Lin J, Zhang B, Zhu Y et al. 2019. Structural basis of assembly of the human T cell receptor-CD3 complex. Nature 573:546–52
    [Google Scholar]
  41. Dotti G, Gottschalk S, Savoldo B, Brenner MK. 2014. Design and development of therapies using chimeric antigen receptor-expressing T cells. Immunol. Rev. 257:107–26
    [Google Scholar]
  42. Dushek O, van der Merwe PA. 2014. An induced rebinding model of antigen discrimination. Trends Immunol 35:153–58
    [Google Scholar]
  43. Edwards LJ, Zarnitsyna VI, Hood JD, Evavold BD, Zhu C. 2012. Insights into T cell recognition of antigen: significance of two-dimensional kinetic parameters. Front. Immunol. 3:86
    [Google Scholar]
  44. Elosegui-Artola A, Trepat X, Roca-Cusachs P. 2018. Control of mechanotransduction by molecular clutch dynamics. Trends Cell Biol 28:356–67
    [Google Scholar]
  45. Evans EA, Calderwood DA. 2007. Forces and bond dynamics in cell adhesion. Science 316:1148–53
    [Google Scholar]
  46. Evavold BD, Allen PM. 1991. Separation of IL-4 production from Th cell proliferation by an altered T cell receptor ligand. Science 252:1308–10
    [Google Scholar]
  47. Feng Y, Brazin KN, Kobayashi E, Mallis RJ, Reinherz EL, Lang MJ 2017. Mechanosensing drives acuity of αβ T-cell recognition. PNAS 114:E8204–13
    [Google Scholar]
  48. Feng Y, Reinherz EL, Lang MJ. 2018. αβ T cell receptor mechanosensing forces out serial engagement. Trends Immunol 39:596–609
    [Google Scholar]
  49. Ganti RS, Lo W-L, McAffee DB, Groves JT, Weiss A, Chakraborty AK 2020. How the T cell signaling network processes information to discriminate between self and agonist ligands. PNAS 117:26020–30
    [Google Scholar]
  50. Garcia KC, Adams EJ. 2005. How the T cell receptor sees antigen–a structural view. Cell 122:333–36
    [Google Scholar]
  51. Gascoigne NR, Rybakin V, Acuto O, Brzostek J. 2016. TCR signal strength and T cell development. Annu. Rev. Cell Dev. Biol. 32:327–48
    [Google Scholar]
  52. Gascoigne NR, Zal T, Alam SM. 2001. T-cell receptor binding kinetics in T-cell development and activation. Expert Rev. Mol. Med. 3:6117
    [Google Scholar]
  53. Ge Q, Stone JD, Thompson MT, Cochran JR, Rushe M et al. 2002. Soluble peptide–MHC monomers cause activation of CD8+ T cells through transfer of the peptide to T cell MHC molecules. PNAS 99:13729–34
    [Google Scholar]
  54. George AJ, Stark J, Chan C. 2005. Understanding specificity and sensitivity of T-cell recognition. Trends Immunol 26:653–59
    [Google Scholar]
  55. Gottschalk RA, Hathorn MM, Beuneu H, Corse E, Dustin ML et al. 2012. Distinct influences of peptide-MHC quality and quantity on in vivo T-cell responses. PNAS 109:881–86
    [Google Scholar]
  56. Govern CC, Paczosa MK, Chakraborty AK, Huseby ES 2010. Fast on-rates allow short dwell time ligands to activate T cells. PNAS 107:8724–29
    [Google Scholar]
  57. Grakoui A, Bromley SK, Sumen C, Davis MM, Shaw AS et al. 1999. The immunological synapse: a molecular machine controlling T cell activation. Science 285:221–27
    [Google Scholar]
  58. Gras S, Chadderton J, Del Campo CM, Farenc C, Wiede F et al. 2016. Reversed T cell receptor docking on a major histocompatibility class I complex limits involvement in the immune response. Immunity 45:749–60
    [Google Scholar]
  59. Gudipati V, Rydzek J, Doel-Perez I, Dos Reis Gonçalves V, Scharf L et al. 2020. Inefficient CAR-proximal signaling blunts antigen sensitivity. Nat. Immunol. 21:848–56
    [Google Scholar]
  60. Guo X, Yan C, Li H, Huang W, Shi X et al. 2017. Lipid-dependent conformational dynamics underlie the functional versatility of T-cell receptor. Cell Res 27:505–25
    [Google Scholar]
  61. Harris DT, Hager MV, Smith SN, Cai Q, Stone JD et al. 2018. Comparison of T cell activities mediated by human TCRs and CARs that use the same recognition domains. J. Immunol. 200:1088–100
    [Google Scholar]
  62. Hashimoto-Tane A, Saito T. 2016. Dynamic regulation of TCR-microclusters and the microsynapse for T cell activation. Front. Immunol. 7:255
    [Google Scholar]
  63. Henrickson SE, Mempel TR, Mazo IB, Liu B, Artyomov MN et al. 2008. In vivo imaging of T cell priming. Sci. Signal 1:12pt2
    [Google Scholar]
  64. Hogquist KA, Jameson SC, Heath WR, Howard JL, Bevan MJ, Carbone FR. 1994. T cell receptor antagonist peptides induce positive selection. Cell 76:17–27
    [Google Scholar]
  65. Hong J, Ge C, Jothikumar P, Yuan Z, Liu B et al. 2018. A TCR mechanotransduction signaling loop induces negative selection in the thymus. Nat. Immunol. 19:1379–90
    [Google Scholar]
  66. Hong J, Persaud SP, Horvath S, Allen PM, Evavold BD, Zhu C. 2015. Force-regulated in situ TCR–peptide-bound MHC class II kinetics determine functions of CD4+ T cells. J. Immunol. 195:3557–64
    [Google Scholar]
  67. Hosseini BH, Louban I, Djandji D, Wabnitz GH, Deeg J et al. 2009. Immune synapse formation determines interaction forces between T cells and antigen-presenting cells measured by atomic force microscopy. PNAS 106:17852–57
    [Google Scholar]
  68. Hu KH, Butte MJ. 2016. T cell activation requires force generation. J. Cell Biol. 213:535–42
    [Google Scholar]
  69. Huang J, Zarnitsyna VI, Liu B, Edwards LJ, Jiang N et al. 2010. The kinetics of two-dimensional TCR and pMHC interactions determine T-cell responsiveness. Nature 464:932–36
    [Google Scholar]
  70. Huppa JB, Axmann M, Mortelmaier MA, Lillemeier BF, Newell EW et al. 2010. TCR–peptide–MHC interactions in situ show accelerated kinetics and increased affinity. Nature 463:963–67
    [Google Scholar]
  71. Hwang J-R, Byeon Y, Kim D, Park S-G. 2020. Recent insights of T cell receptor-mediated signaling pathways for T cell activation and development. Exp. Mol. Med. 52:750–61
    [Google Scholar]
  72. Hwang W, Mallis RJ, Lang MJ, Reinherz EL 2020. The αβTCR mechanosensor exploits dynamic ectodomain allostery to optimize its ligand recognition site. PNAS 117:21336–45
    [Google Scholar]
  73. James JR, Vale RD. 2012. Biophysical mechanism of T-cell receptor triggering in a reconstituted system. Nature 487:64–69
    [Google Scholar]
  74. Jameson SC, Bevan MJ. 1995. T cell receptor antagonists and partial agonists. Immunity 2:1–11
    [Google Scholar]
  75. Jiang N, Huang J, Edwards LJ, Liu B, Zhang Y et al. 2011. Two-stage cooperative T cell receptor-peptide major histocompatibility complex-CD8 trimolecular interactions amplify antigen discrimination. Immunity 34:13–23
    [Google Scholar]
  76. Judokusumo E, Tabdanov E, Kumari S, Dustin ML, Kam LC 2012. Mechanosensing in T lymphocyte activation. Biophys. J. 102:L5–7
    [Google Scholar]
  77. Jung D, Alt FW. 2004. Unraveling V(D)J recombination: insights into gene regulation. Cell 116:299–311
    [Google Scholar]
  78. Kaitao L, William R, Zhou Y, Cheng Z. 2019. Single-molecule investigations of T-cell activation. Curr. Opin. Biomed. Eng. 12:102–10
    [Google Scholar]
  79. Kaizuka Y, Douglass AD, Varma R, Dustin ML, Vale RD 2007. Mechanisms for segregating T cell receptor and adhesion molecules during immunological synapse formation in Jurkat T cells. PNAS 104:20296–301
    [Google Scholar]
  80. Kersh GJ, Allen PM. 1996. Structural basis for T cell recognition of altered peptide ligands: a single T cell receptor can productively recognize a large continuum of related ligands. J. Exp. Med. 184:1259–68
    [Google Scholar]
  81. Kersh GJ, Kersh EN, Fremont DH, Allen PM. 1998. High- and low-potency ligands with similar affinities for the TCR: the importance of kinetics in TCR signaling. Immunity 9:817–26
    [Google Scholar]
  82. Kim ST, Takeuchi K, Sun Z-Y, Touma M, Castro CE et al. 2009. The αβ T cell receptor is an anisotropic mechanosensor. J. Biol. Chem. 284:31028–37
    [Google Scholar]
  83. Kolawole EM, Andargachew R, Liu B, Jacobs JR, Evavold BD. 2018. 2D kinetic analysis of TCR and CD8 coreceptor for LCMV GP33 epitopes. Front. Immunol. 9:2348
    [Google Scholar]
  84. Kolawole EM, Lamb TJ, Evavold BD. 2020. Relationship of 2D affinity to T cell functional outcomes. Int. J. Mol. Sci. 21:7969
    [Google Scholar]
  85. Kong F, Garcia AJ, Mould AP, Humphries MJ, Zhu C. 2009. Demonstration of catch bonds between an integrin and its ligand. J. Cell Biol. 185:1275–84
    [Google Scholar]
  86. Kurd N, Robey EA. 2016. T-cell selection in the thymus: a spatial and temporal perspective. Immunol. Rev. 271:114–26
    [Google Scholar]
  87. Laky K, Fowlkes BJ. 2008. Notch signaling in CD4 and CD8 T cell development. Curr. Opin. Immunol. 20:197–202
    [Google Scholar]
  88. Lee C-Y, Lou J, Wen K-K, McKane M, Eskin SG et al. 2013. Actin depolymerization under force is governed by lysine 113:glutamic acid 195-mediated catch-slip bonds. PNAS 110:5022–27
    [Google Scholar]
  89. Lee C-Y, Lou J, Wen K-K, McKane M, Eskin SG et al. 2016. Regulation of actin catch-slip bonds with a RhoA-formin module. Sci. Rep. 6:35058
    [Google Scholar]
  90. Lee H, Eskin SG, Ono S, Zhu C, McIntire LV. 2019. Force-history dependence and cyclic mechanical reinforcement of actin filaments at the single molecular level. J. Cell Sci. 132:jcs216911
    [Google Scholar]
  91. Lee JK, Stewart-Jones G, Dong T, Harlos K, Di Gleria K et al. 2004. T cell cross-reactivity and conformational changes during TCR engagement. J. Exp. Med. 200:1455–66
    [Google Scholar]
  92. Lever M, Maini PK, van der Merwe PA, Dushek O. 2014. Phenotypic models of T cell activation. Nat. Rev. Immunol. 14:619–29
    [Google Scholar]
  93. Li X, Mizsei R, Tan K, Mallis RJ, Duke-Cohan JS et al. 2021. Pre–T cell receptors topologically sample self-ligands during thymocyte β-selection. Science 371:181–85
    [Google Scholar]
  94. Li Y, Kurlander RJ. 2010. Comparison of anti-CD3 and anti-CD28-coated beads with soluble anti-CD3 for expanding human T cells: differing impact on CD8 T cell phenotype and responsiveness to restimulation. J. Transl. Med. 8:104
    [Google Scholar]
  95. Li Y-C, Chen B-M, Wu P-C, Cheng T-L, Kao L-S et al. 2010. Cutting edge: mechanical forces acting on T cells immobilized via the TCR complex can trigger TCR signaling. J. Immunol. 184:5959–63
    [Google Scholar]
  96. Limozin L, Bridge M, Bongrand P, Dushek O, van der Merwe PA, Robert P 2019. TCR-pMHC kinetics under force in a cell-free system show no intrinsic catch bond, but a minimal encounter duration before binding. PNAS 116:16943–48
    [Google Scholar]
  97. Lin JJY, Low-Nam ST, Alfieri KN, McAffee DB, Fay NC, Groves JT. 2019. Mapping the stochastic sequence of individual ligand-receptor binding events to cellular activation: T cells act on the rare events. Sci. Signal. 12:564eaat8715
    [Google Scholar]
  98. Liu B, Chen W, Evavold BD, Zhu C. 2014a. Accumulation of dynamic catch bonds between TCR and agonist peptide-MHC triggers T cell signaling. Cell 157:357–68
    [Google Scholar]
  99. Liu B, Chen W, Natarajan K, Li Z, Margulies DH, Zhu C. 2015a. The cellular environment regulates in situ kinetics of T-cell receptor interaction with peptide major histocompatibility complex. Eur. J. Immunol. 45:2099–110
    [Google Scholar]
  100. Liu B, Chen W, Zhu C. 2015b. Molecular force spectroscopy on cells. Annu. Rev. Phys. Chem. 66:427–51
    [Google Scholar]
  101. Liu B, Zhong S, Malecek K, Johnson LA, Rosenberg SA et al. 2014b. 2D TCR-pMHC-CD8 kinetics determines T-cell responses in a self-antigen-specific TCR system. Eur. J. Immunol. 44:239–50
    [Google Scholar]
  102. Liu Y, Blanchfield L, Ma VP-Y, Andargachew R, Galior K et al. 2016. DNA-based nanoparticle tension sensors reveal that T-cell receptors transmit defined pN forces to their antigens for enhanced fidelity. PNAS 113:5610–15
    [Google Scholar]
  103. Luca VC, Jude KM, Pierce NW, Nachury MV, Fischer S, Garcia KC. 2015. Structural basis for Notch1 engagement of Delta-like 4. Science 347:847–53
    [Google Scholar]
  104. Luca VC, Kim BC, Ge C, Kakuda S, Wu D et al. 2017. Notch-Jagged complex structure implicates a catch bond in tuning ligand sensitivity. Science 355:1320–24
    [Google Scholar]
  105. Luhr JJ, Alex N, Amon L, Krater M, Kubankova M et al. 2020. Maturation of monocyte-derived DCs leads to increased cellular stiffness, higher membrane fluidity, and changed lipid composition. Front. Immunol. 11:590121
    [Google Scholar]
  106. Ma R, Kellner AV, Ma VP-Y, Su H, Deal BR et al. 2019. DNA probes that store mechanical information reveal transient piconewton forces applied by T cells. PNAS 116:16949–54
    [Google Scholar]
  107. Ma VP-Y, Liu Y, Blanchfield L, Su H, Evavold BD, Salaita K. 2016. Ratiometric tension probes for mapping receptor forces and clustering at intermembrane junctions. Nano Lett 16:4552–59
    [Google Scholar]
  108. Ma Z, Finkel TH. 2010. T cell receptor triggering by force. Trends Immunol 31:1–6
    [Google Scholar]
  109. Ma Z, Sharp KA, Janmey PA, Finkel TH. 2008. Surface-anchored monomeric agonist pMHCs alone trigger TCR with high sensitivity. PLOS Biol 6:328–42
    [Google Scholar]
  110. Maillard I, Tu L, Sambandam A, Yashiro-Ohtani Y, Millholland J et al. 2006. The requirement for Notch signaling at the β-selection checkpoint in vivo is absolute and independent of the pre–T cell receptor. J. Exp. Med. 203:2239–45
    [Google Scholar]
  111. Majedi FS, Hasani-Sadrabadi MM, Thauland TJ, Li S, Bouchard LS, Butte MJ. 2019. Augmentation of T-cell activation by oscillatory forces and engineered antigen-presenting cells. Nano Lett 19:6945–54
    [Google Scholar]
  112. Malissen B, Bongrand P. 2015. Early T cell activation: integrating biochemical, structural, and biophysical cues. Annu. Rev. Immunol. 33:539–61
    [Google Scholar]
  113. Mallis RJ, Bai K, Arthanari H, Hussey RE, Handley M et al. 2015. Pre-TCR ligand binding impacts thymocyte development before αβTCR expression. PNAS 112:8373–78
    [Google Scholar]
  114. Market E, Papavasiliou FN. 2003. V(D)J recombination and the evolution of the adaptive immune system. PLOS Biol 1:E16
    [Google Scholar]
  115. Martinez RJ, Evavold BD. 2015. Lower affinity T cells are critical components and active participants of the immune response. Front. Immunol. 6:468
    [Google Scholar]
  116. McDonald B, Kubes P. 2015. Interactions between CD44 and hyaluronan in leukocyte trafficking. Front. Immunol. 6:68
    [Google Scholar]
  117. McEver RP, Zhu C. 2010. Rolling cell adhesion. Annu. Rev. Cell Dev. Biol. 26:363–96
    [Google Scholar]
  118. McKeithan TW. 1995. Kinetic proofreading in T-cell receptor signal transduction. PNAS 92:5042–46
    [Google Scholar]
  119. Mempel TR, Henrickson SE, von Andrian UH. 2004. T-cell priming by dendritic cells in lymph nodes occurs in three distinct phases. Nature 427:154–59
    [Google Scholar]
  120. Mennens SFB, Bolomini-Vittori M, Weiden J, Joosten B, Cambi A, van den Dries K. 2017. Substrate stiffness influences phenotype and function of human antigen-presenting dendritic cells. Sci. Rep. 7:17511
    [Google Scholar]
  121. Moran AE, Hogquist KA. 2012. T-cell receptor affinity in thymic development. Immunology 135:261–67
    [Google Scholar]
  122. Mørch AM, Bálint S, Santos AM, Davis SJ, Dustin ML. 2020. Coreceptors and TCR signaling – the strong and the weak of it. Front. Cell Dev. Biol. 8:597627
    [Google Scholar]
  123. Nandagopal N, Santat LA, LeBon L, Sprinzak D, Bronner ME, Elowitz MB. 2018. Dynamic ligand discrimination in the Notch signaling pathway. Cell 172:869–80.e19
    [Google Scholar]
  124. Neuman KC, Nagy A. 2008. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat. Methods 5:491–505
    [Google Scholar]
  125. Nikolich-Zugich J, Slifka MK, Messaoudi I. 2004. The many important facets of T-cell repertoire diversity. Nat. Rev. Immunol. 4:123–32
    [Google Scholar]
  126. O'Connor RS, Hao X, Shen K, Bashour K, Akimova T et al. 2012. Substrate rigidity regulates human T cell activation and proliferation. J. Immunol. 189:1330–39
    [Google Scholar]
  127. Odorizzi PM, Wherry EJ. 2012. Inhibitory receptors on lymphocytes: insights from infections. J. Immunol. 188:2957–65
    [Google Scholar]
  128. Ogino S, Nishida N, Umemoto R, Suzuki M, Takeda M et al. 2010. Two-state conformations in the hyaluronan-binding domain regulate CD44 adhesiveness under flow condition. Structure 18:649–56
    [Google Scholar]
  129. Osborne BA, Minter LM. 2007. Notch signalling during peripheral T-cell activation and differentiation. Nat. Rev. Immunol. 7:64–75
    [Google Scholar]
  130. Piertney SB, Oliver MK. 2006. The evolutionary ecology of the major histocompatibility complex. Heredity 96:7–21
    [Google Scholar]
  131. Rafiq S, Hackett CS, Brentjens RJ. 2020. Engineering strategies to overcome the current roadblocks in CAR T cell therapy. Nat. Rev. Clin. Oncol. 17:147–67
    [Google Scholar]
  132. Reinherz EL, Wang J-H. 2015. Codification of bidentate pMHC interaction with TCR and its co-receptor. Trends Immunol 36:300–6
    [Google Scholar]
  133. Roselli E, Faramand R, Davila ML. 2021. Insight into next-generation CAR therapeutics: designing CAR T cells to improve clinical outcomes. J. Clin. Invest. 131:e142030
    [Google Scholar]
  134. Rosetti F, Chen Y, Sen M, Thayer E, Azcutia V et al. 2015. A lupus-associated Mac-1 variant has defects in integrin allostery and interaction with ligands under force. Cell Rep 10:1655–64
    [Google Scholar]
  135. Rossjohn J, Gras S, Miles JJ, Turner SJ, Godfrey DI, McCluskey J. 2015. T cell antigen receptor recognition of antigen-presenting molecules. Annu. Rev. Immunol. 33:169–200
    [Google Scholar]
  136. Rozdzial MM, Malissen B, Finkel TH. 1995. Tyrosine-phosphorylated T cell receptor ζ chain associates with the actin cytoskeleton upon activation of mature T lymphocytes. Immunity 3:623–33
    [Google Scholar]
  137. Rozdzial MM, Pleiman CM, Cambier JC, Finkel TH. 1998. pp56Lck mediates TCR ζ-chain binding to the microfilament cytoskeleton. J. Immunol. 161:5491–99
    [Google Scholar]
  138. Rudolph MG, Stanfield RL, Wilson IA. 2006. How TCRs bind MHCs, peptides, and coreceptors. Annu. Rev. Immunol. 24:419–66
    [Google Scholar]
  139. Saitakis M, Dogniaux S, Goudot C, Bufi N, Asnacios S et al. 2017. Different TCR-induced T lymphocyte responses are potentiated by stiffness with variable sensitivity. eLife 6:e23190
    [Google Scholar]
  140. Schnell A, Bod L, Madi A, Kuchroo VK. 2020. The yin and yang of co-inhibitory receptors: toward anti-tumor immunity without autoimmunity. Cell Res 30:285–99
    [Google Scholar]
  141. Schwanbeck R, Martini S, Bernoth K, Just U. 2011. The Notch signaling pathway: molecular basis of cell context dependency. Eur. J. Cell Biol. 90:572–81
    [Google Scholar]
  142. Scott-Browne JP, Crawford F, Young MH, Kappler JW, Marrack P, Gapin L 2011. Evolutionarily conserved features contribute to αβ T cell receptor specificity. Immunity 35:526–35
    [Google Scholar]
  143. Sewell AK. 2012. Why must T cells be cross-reactive?. Nat. Rev. Immunol. 12:669–77
    [Google Scholar]
  144. Shen B, Delaney MK, Du X. 2012. Inside-out, outside-in, and inside-outside-in: G protein signaling in integrin-mediated cell adhesion, spreading, and retraction. Curr. Opin. Cell Biol. 24:600–6
    [Google Scholar]
  145. Shi X, Bi Y, Yang W, Guo X, Jiang Y et al. 2013. Ca2+ regulates T-cell receptor activation by modulating the charge property of lipids. Nature 493:111–15
    [Google Scholar]
  146. Sibener LV, Fernandes RA, Kolawole EM, Carbone CB, Liu F et al. 2018. Isolation of a structural mechanism for uncoupling T cell receptor signaling from peptide-MHC binding. Cell 174:672–87.e27
    [Google Scholar]
  147. Singh NK, Alonso JA, Harris DT, Anderson SD, Ma J et al. 2020. An engineered T cell receptor variant realizes the limits of functional binding modes. Biochemistry 59:4163–75
    [Google Scholar]
  148. Smith-Garvin JE, Koretzky GA, Jordan MS. 2009. T cell activation. Annu. Rev. Immunol. 27:591–619
    [Google Scholar]
  149. Starr TK, SC Jameson, Hogquist KA. 2003. Positive and negative selection of T cells. Annu. Rev. Immunol. 21:139–76
    [Google Scholar]
  150. Stepanek O, Prabhakar AS, Osswald C, King CG, Bulek A et al. 2014. Coreceptor scanning by the T cell receptor provides a mechanism for T cell tolerance. Cell 159:333–45
    [Google Scholar]
  151. Stone JD, Chervin AS, Kranz DM. 2009. T-cell receptor binding affinities and kinetics: impact on T-cell activity and specificity. Immunology 126:165–76
    [Google Scholar]
  152. Sunshine JC, Perica K, Schneck JP, Green JJ. 2014. Particle shape dependence of CD8+ T cell activation by artificial antigen presenting cells. Biomaterials 35:269–77
    [Google Scholar]
  153. Swaminathan V, Waterman CM. 2016. The molecular clutch model for mechanotransduction evolves. Nat. Cell Biol. 18:459–61
    [Google Scholar]
  154. Sykulev Y, Brunmark A, Jackson M, Cohen RJ, Peterson PA, Eisen HN. 1994. Kinetics and affinity of reactions between an antigen-specific T-cell receptor and peptide-MHC complexes. Immunity 1:15–22
    [Google Scholar]
  155. Takaba H, Takayanagi H. 2017. The mechanisms of T cell selection in the thymus. Trends Immunol 38:805–16
    [Google Scholar]
  156. Thauland TJ, Hu KH, Bruce MA, Butte MJ. 2017. Cytoskeletal adaptivity regulates T cell receptor signaling. Sci. Signal. 10:eaah3737
    [Google Scholar]
  157. Tian S, Maile R, Collins EJ, Frelinger JA 2007. CD8+ T cell activation is governed by TCR-peptide/MHC affinity, not dissociation rate. J. Immunol. 179:2952–60
    [Google Scholar]
  158. van der Merwe PA, Dushek O. 2011. Mechanisms for T cell receptor triggering. Nat. Rev. Immunol. 11:47–55
    [Google Scholar]
  159. Varma R, Campi G, Yokosuka T, Saito T, Dustin ML. 2006. T cell receptor-proximal signals are sustained in peripheral microclusters and terminated in the central supramolecular activation cluster. Immunity 25:117–27
    [Google Scholar]
  160. Varnum-Finney B, Wu L, Yu M, Brashem-Stein C, Staats S et al. 2000. Immobilization of Notch ligand, Delta-1, is required for induction of Notch signaling. J. Cell Sci. 113:4313–18
    [Google Scholar]
  161. Wahl A, Dinet C, Dillard P, Nassereddine A, Puech P-H et al. 2019. Biphasic mechanosensitivity of T cell receptor-mediated spreading of lymphocytes. PNAS 116:5908–13
    [Google Scholar]
  162. Waldman AD, Fritz JM, Lenardo MJ. 2020. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat. Rev. Immunol. 20:651–68
    [Google Scholar]
  163. Wang J-H, Reinherz EL. 2012. The structural basis of αβ T-lineage immune recognition: TCR docking topologies, mechanotransduction, and co-receptor function. Immunol. Rev. 250:102–19
    [Google Scholar]
  164. Wang X, Ha T. 2013. Defining single molecular forces required to activate integrin and notch signaling. Science 340:991–94
    [Google Scholar]
  165. Wooldridge L, Ekeruche-Makinde J, van den Berg HA, Skowera A, Miles JJ et al. 2012. A single autoimmune T cell receptor recognizes more than a million different peptides. J. Biol. Chem. 287:1168–77
    [Google Scholar]
  166. Wu P, Zhang T, Liu B, Fei P, Cui L et al. 2019. Mechano-regulation of peptide-MHC class I conformations determines TCR antigen recognition. Mol. Cell 73:1015–27.e7
    [Google Scholar]
  167. Wucherpfennig KW, Gagnon E, Call MJ, Huseby ES, Call ME. 2010. Structural biology of the T-cell receptor: insights into receptor assembly, ligand recognition, and initiation of signaling. Cold Spring Harb. Perspect. Biol. 2:a005140
    [Google Scholar]
  168. Xie J, Huppa JB, Newell EW, Huang J, Ebert PJ et al. 2012. Photocrosslinkable pMHC monomers stain T cells specifically and cause ligand-bound TCRs to be ‘preferentially’ transported to the cSMAC. Nat. Immunol. 13:7674–80
    [Google Scholar]
  169. Xu C, Gagnon E, Call ME, Schnell JR, Schwieters CD et al. 2008. Regulation of T cell receptor activation by dynamic membrane binding of the CD3ε cytoplasmic tyrosine-based motif. Cell 135:702–13
    [Google Scholar]
  170. Yang W, Grey HM. 2003. Study of the mechanism of TCR antagonism using dual-TCR-expressing T cells. J. Immunol. 170:4532–38
    [Google Scholar]
  171. Yang X, Mariuzza RA. 2015. Pre-T-cell receptor binds MHC: implications for thymocyte signaling and selection. PNAS 112:8166–67
    [Google Scholar]
  172. Yokosuka T, Sakata-Sogawa K, Kobayashi W, Hiroshima M, Hashimoto-Tane A et al. 2005. Newly generated T cell receptor microclusters initiate and sustain T cell activation by recruitment of Zap70 and SLP-76. Nat. Immunol. 6:1253–62
    [Google Scholar]
  173. Zehn D, SY Lee, Bevan MJ. 2009. Complete but curtailed T-cell response to very low-affinity antigen. Nature 458:211–14
    [Google Scholar]
  174. Zhong S, Malecek K, Johnson LA, Yu Z, Vega-Saenz de Miera E et al. 2013. T-cell receptor affinity and avidity defines antitumor response and autoimmunity in T-cell immunotherapy. PNAS 110:6973–78
    [Google Scholar]
  175. Zhu C, Chen W, Lou JZ, Rittase W, Li KT. 2019. Mechanosensing through immunoreceptors. Nat. Immunol. 20:1269–78
    [Google Scholar]
/content/journals/10.1146/annurev-cellbio-120219-055100
Loading
/content/journals/10.1146/annurev-cellbio-120219-055100
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error