1932

Abstract

Wnt signaling has multiple functions beyond the transcriptional effects of β-catenin stabilization. We review recent investigations that uncover new cell physiological effects through the regulation of Wnt receptor endocytosis, Wnt-induced stabilization of proteins (Wnt-STOP), macropinocytosis, increase in lysosomal activity, and metabolic changes. Many of these growth-promoting effects of canonical Wnt occur within minutes and are independent of new protein synthesis. A key element is the sequestration of glycogen synthase kinase 3 (GSK3) inside multivesicular bodies and lysosomes. Twenty percent of human proteins contain consecutive GSK3 phosphorylation motifs, which in the absence of Wnt can form phosphodegrons for polyubiquitination and proteasomal degradation. Wnt signaling by either the pharmacological inhibition of GSK3 or the loss of tumor-suppressor proteins, such as adenomatous polyposis coli (APC) and Axin1, increases lysosomal acidification, anabolic metabolites, and macropinocytosis, which is normally repressed by the GSK3-Axin1-APC destruction complex. The combination of these cell physiological effects drives cell growth.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cellbio-120319-023657
2021-10-06
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/cellbio/37/1/annurev-cellbio-120319-023657.html?itemId=/content/journals/10.1146/annurev-cellbio-120319-023657&mimeType=html&fmt=ahah

Literature Cited

  1. Acebron SP, Karaulanov E, Berger BS, Huang Y-L, Niehrs C. 2014. Mitotic Wnt signaling promotes protein stabilization and regulates cell size. Mol. Cell 54:663–74
    [Google Scholar]
  2. Albrecht LV, Bui MH, De Robertis EM 2019. Canonical Wnt is inhibited by targeting one-carbon metabolism through methotrexate or methionine deprivation. PNAS 116:2987–95
    [Google Scholar]
  3. Albrecht LV, Ploper D, Tejeda-Muñoz N, De Robertis EM 2018. Arginine methylation is required for canonical Wnt signaling and endolysosomal trafficking. PNAS 115:E5317–25
    [Google Scholar]
  4. Albrecht LV, Tejeda-Muñoz N, Bui MH, Cicchetto AC, Di Biagio D et al. 2020a. GSK3 inhibits macropinocytosis and lysosomal activity through the Wnt destruction complex machinery. Cell Rep 32:107973
    [Google Scholar]
  5. Albrecht LV, Tejeda-Muñoz N, De Robertis EM. 2020b. Protocol for probing regulated lysosomal activity and function in living cells. STAR Protoc 1:100132
    [Google Scholar]
  6. Alexander J, Bey E, Whitcutt JM, Gear JH. 1976. Adaptation of cells derived from human malignant tumours to growth in vitro. S. Afr. J. Med. Sci. 41:89–98
    [Google Scholar]
  7. Appelqvist H, Wäster P, Kågedal K, Öllinger K. 2013. The lysosome: from waste bag to potential therapeutic target. J. Mol. Cell Biol. 5:214–26
    [Google Scholar]
  8. Araki N, Johnson MT, Swanson JA. 1996. A role for phosphoinositide 3-kinase in the completion of macropinocytosis and phagocytosis by macrophages. J. Cell Biol. 135:1249–60
    [Google Scholar]
  9. Arias E, Cuervo AM. 2020. Pros and cons of chaperone-mediated autophagy in cancer biology. Trends Endocrinol. Metab. 31:53–66
    [Google Scholar]
  10. Bar-Sagi D, Feramisco JR. 1986. Induction of membrane ruffling and fluid-phase pinocytosis in quiescent fibroblasts by ras proteins. Science 233:1061–68
    [Google Scholar]
  11. Behrens J, von Kries JP, Kühl M, Bruhn L, Wedlich D et al. 1996. Functional interaction of β-catenin with the transcription factor LEF-1. Nature 382:638–42
    [Google Scholar]
  12. Bhanot P, Brink M, Samos CH, Hsieh J-C, Wang Y et al. 1996. A new member of the frizzled family from Drosophila functions as a Wingless receptor. Nature 382:225–30
    [Google Scholar]
  13. Bilić J, Huang Y-L, Davidson G, Zimmermann T, Cruciat C-M et al. 2007. Wnt induces LRP6 signalosomes and promotes dishevelled-dependent LRP6 phosphorylation. Science 316:1619–22
    [Google Scholar]
  14. Blitzer JT, Nusse R. 2006. A critical role for endocytosis in Wnt signaling. BMC Cell Biol 7:28
    [Google Scholar]
  15. Bullman S, Pedamalu C, Sicinska E, Clancy TE, Zhang X. 2017. Analysis of Fusobacterium persistence and antibiotic response in colorectal cancer. Science 358:1443–48
    [Google Scholar]
  16. Cancer Genome Atlas Netw 2012. Comprehensive molecular characterization of human colon and rectal cancer. Nature 487:330–37
    [Google Scholar]
  17. Carmon KS, Gong X, Lin Q, Thomas A, Liu Q 2011. R-spondins function as ligands of the orphan receptors LGR4 and LGR5 to regulate Wnt/β-catenin signaling. PNAS 108:11452–57
    [Google Scholar]
  18. Chen P-H, Chen X, Lin Z, Fang D, He X 2013. The structural basis of R-spondin recognition by LGR5 and RNF43. Genes Dev 27:1345–50
    [Google Scholar]
  19. Cheng CK, Li L, Cheng SH, Ng K, Chan NP et al. 2011. Secreted-frizzled related protein 1 is a transcriptional repression target of the t(8;21) fusion protein in acute myeloid leukemia. Blood 118:6638–48
    [Google Scholar]
  20. Colozza G, Jami-Alahmadi Y, Dsouza A, Tejeda-Muñoz N, Albrecht LV et al. 2020. Wnt-inducible Lrp6-APEX2 interacting proteins identify ESCRT machinery and Trk-fused gene as components of the Wnt signaling pathway. Sci. Rep. 10:21555
    [Google Scholar]
  21. Colozza G, Koo BK. 2021. Wnt/β-catenin signaling: structure, assembly and endocytosis of the signalosome. Dev. Growth Differ. https://doi.org/10.1111/dgd.12718
    [Crossref] [Google Scholar]
  22. Commisso C, Davidson SM, Soydaner-Azeloglu RG, Parker SJ, Kamphorst JJ et al. 2013. Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells. Nature 497:633–37
    [Google Scholar]
  23. Condon ND, Heddleston JM, Chew T-L, Luo L, McPherson PS et al. 2018. Macropinosome formation by tent pole ruffling in macrophages. J. Cell Biol. 217:3873–85
    [Google Scholar]
  24. Cosman F, Crittenden DB, Adachi JD, Binkley N, Czerwinski E et al. 2016. Romosozumab treatment in postmenopausal women with osteoporosis. N. Engl. J. Med. 375:1532–43
    [Google Scholar]
  25. Cruciat CM, Ohkawara B, Acebron SP, Karaulanov E, Reinhard C et al. 2010. Requirement of prorenin receptor and vacuolar H+-ATPase-mediated acidification for Wnt signaling. Science 327:459–63
    [Google Scholar]
  26. Cselenyi CS, Jernigan KK, Tahinci E, Thorne CA, Lee LA, Lee E 2008. LRP6 transduces a canonical Wnt signal independently of Axin degradation by inhibiting GSK3’s phosphorylation of β-catenin. PNAS 105:8032–37
    [Google Scholar]
  27. Davidson G, Wu W, Shen J, Bilić J, Fenger U et al. 2005. Casein kinase 1γ couples Wnt receptor activation to cytoplasmic signal transduction. Nature 438:867–72
    [Google Scholar]
  28. De Duve C, Wattiaux R. 1966. Functions of lysosomes. Annu. Rev. Physiol. 28:435–92
    [Google Scholar]
  29. de Lau W, Barker N, Low TY, Koo B-K, Li VS et al. 2011. Lgr5 homologues associate with Wnt receptors and mediate R-spondin signalling. Nature 476:293–97
    [Google Scholar]
  30. De Robertis EM, Kuroda H. 2004. Dorsal-ventral patterning and neural induction in Xenopus embryos. Annu. Rev. Cell Dev. Biol. 20:285–308
    [Google Scholar]
  31. Dharmawardhane S, Schurmann A, Sells MA, Chernoff J, Schmid SL, Bokoch GM. 2000. Regulation of macropinocytosis by p21-activated kinase-1. Mol. Biol. Cell 11:3341–52
    [Google Scholar]
  32. Ding Y, Colozza G, Sosa EA, Moriyama Y, Rundle S et al. 2018. Bighead is a Wnt antagonist secreted by the Xenopus Spemann organizer that promotes Lrp6 endocytosis. PNAS 115:E9135–44
    [Google Scholar]
  33. Dobrowolski R, De Robertis EM. 2011. Endocytic control of growth factor signalling: multivesicular bodies as signalling organelles. Nat. Rev. Mol. Cell Biol. 13:53–60
    [Google Scholar]
  34. Dobrowolski R, Vick P, Ploper D, Gumper I, Snitkin H et al. 2012. Presenilin deficiency or lysosomal inhibition enhances Wnt signaling through relocalization of GSK3 to the late-endosomal compartment. Cell Rep 2:1316–28
    [Google Scholar]
  35. Doherty GJ, McMahon HT. 2009. Mechanisms of endocytosis. Annu. Rev. Biochem. 78:857–902
    [Google Scholar]
  36. Dow LE, O'Rourke KP, Simon J, Tschaharganeh DF, van Es JH et al. 2015. Apc restoration promotes cellular differentiation and reestablishes crypt homeostasis in colorectal cancer. Cell 161:1539–52
    [Google Scholar]
  37. Dubey R, van Kerkhof P, Jordens I, Malinauskas T, Pusapati GV et al. 2020. R-spondins engage heparan sulfate proteoglycans to potentiate WNT signaling. eLife 9:e54469
    [Google Scholar]
  38. Faux MC, Ross JL, Meeker C, Johns T, Ji H et al. 2004. Restoration of full-length adenomatous polyposis coli (APC) protein in a colon cancer cell line enhances cell adhesion. J. Cell Sci. 117:427–39
    [Google Scholar]
  39. Galluzzi L, Spranger S, Fuchs E, Lopez-Soto A. 2019. WNT signaling in cancer immunosurveillance. Trends Cell Biol 29:44–65
    [Google Scholar]
  40. Gammons M, Bienz M. 2018. Multiprotein complexes governing Wnt signal transduction. Curr. Opin. Cell Biol. 51:42–49
    [Google Scholar]
  41. Giebel N, de Jaime-Soguero A, García del Arco A, Landry JJM, Tietje M et al. 2021. USP42 protects ZNRF3/RNF43 from R-spondin-dependent clearance and inhibits Wnt signaling. EMBO Rep 30:e51415
    [Google Scholar]
  42. Glinka A, Dolde C, Kirsch N, Huang Y-L, Kazanskaya O et al. 2011. LGR4 and LGR5 are R-spondin receptors mediating Wnt/β-catenin and Wnt/PCP signalling. EMBO Rep 12:1055–61
    [Google Scholar]
  43. Glinka A, Wu W, Delius H, Monaghan AP, Blumenstock C, Niehrs C. 1998. Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction. Nature 391:357–62
    [Google Scholar]
  44. Grainger S, Nguyen N, Richter J, Setayesh J, Lonquich B et al. 2019. EGFR is required for Wnt9a–Fzd9b signalling specificity in haematopoietic stem cells. Nat. Cell Biol. 21:721–30
    [Google Scholar]
  45. Haigler HT, McKanna JA, Cohen S. 1979. Rapid stimulation of pinocytosis in human carcinoma cells A-431 by epidermal growth factor. J. Cell Biol. 83:82–90
    [Google Scholar]
  46. Han T, Schatoff EM, Murphy C, Zafra MP, Wilkinson JE et al. 2017. R-spondin chromosome rearrangements drive Wnt-dependent tumour initiation and maintenance in the intestine. Nat. Commun. 8:15945
    [Google Scholar]
  47. Hao HX, Xie Y, Zhang Y, Charlat O, Oster E et al. 2012. ZNRF3 promotes Wnt receptor turnover in an R-spondin-sensitive manner. Nature 485:195–200
    [Google Scholar]
  48. Herr P, Basler K. 2012. Porcupine-mediated lipidation is required for Wnt recognition by Wls. Dev. Biol. 361:392–402
    [Google Scholar]
  49. Hershko A, Ciechanover A. 1998. The ubiquitin system. Annu. Rev. Biochem. 67:425–79
    [Google Scholar]
  50. Hinze L, Labrosse R, Degar J, Han T, Schatoff EM et al. 2020. Exploiting the therapeutic interaction of WNT pathway activation and asparaginase for colorectal cancer therapy. Cancer Discov 10:1690–705
    [Google Scholar]
  51. Hodakoski C, Hopkins BD, Zhang G, Su T, Cheng Z et al. 2019. Rac-mediated macropinocytosis of extracellular protein promotes glucose independence in non-small cell lung cancer. Cancers 11:37
    [Google Scholar]
  52. Hsieh JC, Kodjabachian L, Rebbert ML, Rattner A, Smallwood PM et al. 1999. A new secreted protein that binds to Wnt proteins and inhibits their activities. Nature 398:431–36
    [Google Scholar]
  53. Huang SM, Mishina YM, Liu S, Cheung A, Stegmeier F et al. 2009. Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature 461:614–20
    [Google Scholar]
  54. Janda CY, Waghray D, Levin AM, Thomas C, Garcia KC. 2012. Structural basis of Wnt recognition by Frizzled. Science 337:59–64
    [Google Scholar]
  55. Jeong W-J, Yoon J, Park J-C, Lee S-H, Kaduwal S et al. 2012. Ras stabilization through aberrant activation of Wnt/β-catenin signaling promotes intestinal tumorigenesis. Sci. Signal. 5:ra30
    [Google Scholar]
  56. Jho E-H, Zhang T, Domon C, Joo C-K, Freund J-N, Costantini F. 2002. Wnt/β-catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway. Mol. Cell. Biol. 22:1172–83
    [Google Scholar]
  57. Joiner DM, Ke J, Zhong Z, Xu HE, Williams BO. 2013. LRP5 and LRP6 in development and disease. Trends Endocrinol. Metab. 24:31–39
    [Google Scholar]
  58. Jung Y-S, Jun S, Kim MJ, Lee SH, Suh HN et al. 2018. TMEM9 promotes intestinal tumorigenesis through vacuolar-ATPase-activated Wnt/β-catenin signalling. Nat. Cell Biol. 20:1421–33
    [Google Scholar]
  59. Kanarek N, Petrova B, Sabatini DM. 2020. Dietary modifications for enhanced cancer therapy. Nature 579:507–17
    [Google Scholar]
  60. Kazanskaya O, Glinka A, del Barco Barrantes I, Stannek P, Niehrs C, Wu W 2004. R-spondin2 is a secreted activator of Wnt/β-catenin signaling and is required for Xenopus myogenesis. Dev. Cell 7:525–34
    [Google Scholar]
  61. Kim H, Vick P, Hedtke J, Ploper D, De Robertis EM. 2015. Wnt signaling translocates Lys48-linked polyubiquitinated proteins to the lysosomal pathway. Cell Rep 11:1151–59
    [Google Scholar]
  62. Kim K-A, Kakitani M, Zhao J, Oshima T, Tang T et al. 2005. Mitogenic influence of human R-spondin1 on the intestinal epithelium. Science 309:1256–59
    [Google Scholar]
  63. Kim S-E, Huang H, Zhao M, Zhang X, Zhang A et al. 2013. Wnt stabilization of β-catenin reveals principles for morphogen receptor-scaffold assemblies. Science 340:867–70
    [Google Scholar]
  64. Kirsch N, Chang LS, Koch S, Glinka A, Dolde C et al. 2017. Angiopoietin-like 4 is a Wnt signaling antagonist that promotes LRP6 turnover. Dev. Cell 43:71–82.e6
    [Google Scholar]
  65. Kleeman SO, Koelzer VH, Jones HJ, Vazquez EG, Davis H et al. 2020. Exploiting differential Wnt target gene expression to generate a molecular biomarker for colorectal cancer stratification. Gut 69:1092–103
    [Google Scholar]
  66. Koch S, Acebron SP, Herbst J, Hatiboglu G, Niehrs C. 2015. Post-transcriptional Wnt signaling governs epididymal sperm maturation. Cell 163:1225–36
    [Google Scholar]
  67. Koivusalo M, Welch C, Hayashi H, Scott CC, Kim M et al. 2010. Amiloride inhibits macropinocytosis by lowering submembranous pH and preventing Rac1 and Cdc42 signaling. J. Cell Biol. 188:547–63
    [Google Scholar]
  68. Koo B-K, Spit M, Jordens I, Low TY, Stange DE et al. 2012. Tumour suppressor RNF43 is a stem-cell E3 ligase that induces endocytosis of Wnt receptors. Nature 488:665–69
    [Google Scholar]
  69. Langdahl BL, Libanati C, Crittenden DB, Bolognese MA, Brown JP et al. 2017. Romosozumab (sclerostin monoclonal antibody) versus teriparatide in postmenopausal women with osteoporosis transitioning from oral bisphosphonate therapy: a randomised, open-label, phase 3 trial. Lancet 390:1585–94
    [Google Scholar]
  70. Lebensohn AM, Rohatgi R 2018. R-spondins can potentiate WNT signaling without LGRs. eLife 7:e33126
    [Google Scholar]
  71. Lee H-J, Jedrychowski MP, Vinayagam A, Wu N, Shyh-Chang N et al. 2017. Proteomic and metabolomic characterization of a mammalian cellular transition from quiescence to proliferation. Cell Rep 20:721–36
    [Google Scholar]
  72. Lewis WH. 1931. Pinocytosis. Bull. Johns Hopkins Hosp. 49:17–27
    [Google Scholar]
  73. Leyns L, Bouwmeester T, Kim SH, Piccolo S, De Robertis EM. 1997. Frzb-1 is a secreted antagonist of Wnt signaling expressed in the Spemann organizer. Cell 88:747–56
    [Google Scholar]
  74. Li X, Wang C, Jiang H, Luo C. 2019. A patent review of arginine methyltransferase inhibitors (2010–2018). Expert Opin. Ther. Pat. 29:97–114
    [Google Scholar]
  75. Lin Y-C, Haas A, Bufe A, Parbin S, Hennecke M et al. 2021. Wnt10b-GSK3β-dependent Wnt/STOP signaling prevents aneuploidy in human somatic cells. Life Sci. Alliance 4:e202000855
    [Google Scholar]
  76. Liu H, Fergusson MM, Castilho RM, Liu J, Cao L et al. 2007. Augmented Wnt signaling in a mammalian model of accelerated aging. Science 317:803–6
    [Google Scholar]
  77. Logan CY, Nusse R. 2004. The Wnt signaling pathway in development and disease. Annu. Rev. Cell Dev. Biol. 20:781–810
    [Google Scholar]
  78. Loh KM, van Amerongen R, Nusse R. 2016. Generating cellular diversity and spatial form: Wnt signaling and the evolution of multicellular animals. Dev. Cell 38:643–55
    [Google Scholar]
  79. MacDonald BT, Tamai K, He X. 2009. Wnt/β-catenin signaling: components, mechanisms, and diseases. Dev. Cell 17:9–26
    [Google Scholar]
  80. Malinauskas T, Aricescu AR, Lu W, Siebold C, Jones EY. 2011. Modular mechanism of Wnt signaling inhibition by Wnt inhibitory factor 1. Nat. Struct. Mol. Biol. 18:886–93
    [Google Scholar]
  81. Mao B, Wu W, Davidson G, Marhold J, Li M et al. 2002. Kremen proteins are Dickkopf receptors that regulate Wnt/β-catenin signalling. Nature 417:664–67
    [Google Scholar]
  82. McClung MR, Grauer A. 2014. Romosozumab in postmenopausal women with osteopenia. N. Engl. J. Med. 370:1664–65
    [Google Scholar]
  83. Mii Y, Taira M. 2009. Secreted Frizzled-related proteins enhance the diffusion of Wnt ligands and expand their signalling range. Development 136:4083–88
    [Google Scholar]
  84. Nichols BJ, Lippincott-Schwartz J. 2001. Endocytosis without clathrin coats. Trends Cell Biol 11:406–12
    [Google Scholar]
  85. Niehrs C. 2012. The complex world of WNT receptor signalling. Nat. Rev. Mol. Cell Biol. 13:767–79
    [Google Scholar]
  86. Niehrs C, Shen J. 2010. Regulation of Lrp6 phosphorylation. Cell Mol. Life Sci. 67:2551–62
    [Google Scholar]
  87. Nusse R, Clevers H. 2017. Wnt/β-catenin signaling, disease, and emerging therapeutic modalities. Cell 169:985–99
    [Google Scholar]
  88. O'Rourke KP, Loizou E, Livshits G, Schatoff EM, Baslan T et al. 2017. Transplantation of engineered organoids enables rapid generation of metastatic mouse models of colorectal cancer. Nat. Biotechnol. 35:577–82
    [Google Scholar]
  89. Palm W, Park Y, Wright K, Pavlova NN, Tuveson DA, Thompson CB. 2015. The utilization of extracellular proteins as nutrients is suppressed by mTORC1. Cell 162:259–70
    [Google Scholar]
  90. Palm W, Thompson CB. 2017. Nutrient acquisition strategies of mammalian cells. Nature 546:234–42
    [Google Scholar]
  91. Park S, Cui J, Yu W, Wu L, Carmon KS, Liu QJ. 2018. Differential activities and mechanisms of the four R-spondins in potentiating Wnt/beta-catenin signaling. J. Biol. Chem. 293:9759–69
    [Google Scholar]
  92. Pate KT, Stringari C, Sprowl-Tanio S, Wang K, TeSlaa T et al. 2014. Wnt signaling directs a metabolic program of glycolysis and angiogenesis in colon cancer. EMBO J 33:1454–73
    [Google Scholar]
  93. Patel P, Woodgett JR. 2017. Glycogen synthase kinase 3: a kinase for all pathways?. Curr. Top. Dev. Biol 123:277–302
    [Google Scholar]
  94. Pavlova NN, Thompson CB. 2016. The emerging hallmarks of cancer metabolism. Cell Metab 23:27–47
    [Google Scholar]
  95. Perera RM, Di Malta C, Ballabio A. 2019. MiT/TFE family of transcription factors, lysosomes, and cancer. Annu. Rev. Cancer Biol. 3:203–22
    [Google Scholar]
  96. Piccolo S, Agius E, Leyns L, Bhattacharyya S, Grunz H et al. 1999. The head inducer Cerberus is a multifunctional antagonist of Nodal. BMP and Wnt signals. Nature 397:707–10
    [Google Scholar]
  97. Recouvreux MV, Commisso C. 2017. Macropinocytosis: a metabolic adaptation to nutrient stress in cancer. Front. Endocrinol. 8:261
    [Google Scholar]
  98. Redelman-Sidi G, Binyamin A, Gaeta I, Palm W, Thompson CB et al. 2018. The canonical Wnt pathway drives macropinocytosis in cancer. Cancer Res 78:4658–70
    [Google Scholar]
  99. Riffell JL, Lord CJ, Ashworth A. 2012. Tankyrase-targeted therapeutics: expanding opportunities in the PARP family. Nat. Rev. Drug Discov. 11:923–36
    [Google Scholar]
  100. Rim EY, Kinney LK, Nusse R. 2020. β-Catenin-mediated Wnt signal transduction proceeds through an endocytosis-independent mechanism. Mol. Biol. Cell 31:1425–36
    [Google Scholar]
  101. Rodgers SJ, Ooms LM, Oorschot VMJ, Schittenhelm RB, Nguyen EV et al. 2021. INPP4B promotes PI3Kα-dependent late endosome formation and Wnt/β-catenin signaling in breast cancer. Nat. Commun 12:3140
    [Google Scholar]
  102. Saag KG, Petersen J, Brandi ML, Karaplis AC, Lorentzon M et al. 2017. Romosozumab or Alendronate for fracture prevention in women with osteoporosis. N. Engl. J. Med. 377:1417–27
    [Google Scholar]
  103. Saito-Diaz K, Benchabane H, Tiwari A, Tian A, Li B et al. 2018. APC inhibits ligand-independent Wnt signaling by the clathrin endocytic pathway. Dev. Cell 44:566–81.e8
    [Google Scholar]
  104. Schatoff EM, Goswami S, Zafra MP, Foronda M, Shusterman M et al. 2019. Distinct colorectal cancer-associated APC mutations dictate response to Tankyrase inhibition. Cancer Discov 9:1358–71
    [Google Scholar]
  105. Seshagiri S, Stawiski EW, Durinck S, Modrusan Z, Storm EE et al. 2012. Recurrent R-spondin fusions in colon cancer. Nature 488:660–64
    [Google Scholar]
  106. Stamos JL, Weis WI. 2013. The β-catenin destruction complex. Cold Spring Harb. Perspect. Biol. 5:a007898
    [Google Scholar]
  107. Swanson JA, King JS. 2019. The breadth of macropinocytosis research. Philos. Trans. R. Soc. B 374:20180146
    [Google Scholar]
  108. Szenker-Ravi E, Altunoglu U, Leushacke M, Bosso-Lefevre C, Khatoo M et al. 2018. RSPO2 inhibition of RNF43 and ZNRF3 governs limb development independently of LGR4/5/6. Nature 557:564–69
    [Google Scholar]
  109. Taelman VF, Dobrowolski R, Plouhinec JL, Fuentealba LC, Vorwald PP et al. 2010. Wnt signaling requires sequestration of glycogen synthase kinase 3 inside multivesicular endosomes. Cell 143:1136–48
    [Google Scholar]
  110. Tejeda-Muñoz N, Albrecht LV, Bui MH, De Robertis EM 2019. Wnt canonical pathway activates macropinocytosis and lysosomal degradation of extracellular proteins. PNAS 116:10402–11
    [Google Scholar]
  111. Uren A, Reichsman F, Anest V, Taylor WG, Muraiso K et al. 2000. Secreted Frizzled-related protein-1 binds directly to Wingless and is a biphasic modulator of Wnt signaling. J. Biol. Chem. 275:4374–82
    [Google Scholar]
  112. Vinyoles M, Del Valle-Pérez B, Curto J, Viñas-Castells R, Alba-Castellón L et al. 2014. Multivesicular GSK3 sequestration upon Wnt signaling is controlled by p120-catenin/cadherin interaction with LRP5/6. Mol. Cell 53:444–57
    [Google Scholar]
  113. West MA, Bretscher MS, Watts C. 1989. Distinct endocytotic pathways in epidermal growth factor-stimulated human carcinoma A431 cells. J. Cell Biol. 109:2731–39
    [Google Scholar]
  114. Xu Q, Wang Y, Dabdoub A, Smallwood PM, Williams J et al. 2004. Vascular development in the retina and inner ear: control by Norrin and Frizzled-4, a high-affinity ligand-receptor pair. Cell 116:883–95
    [Google Scholar]
  115. Xu YK, Nusse R. 1998. The Frizzled CRD domain is conserved in diverse proteins including several receptor tyrosine kinases. Curr. Biol. 8:R405–6
    [Google Scholar]
  116. Yamamoto H, Komekado H, Kikuchi A. 2006. Caveolin is necessary for Wnt-3a-dependent internalization of LRP6 and accumulation of β-catenin. Dev. Cell 11:213–23
    [Google Scholar]
  117. Yoshida S, Pacitto R, Inoki K, Swanson J. 2018. Macropinocytosis, mTORC1 and cellular growth control. Cell Mol. Life Sci. 75:1227–39
    [Google Scholar]
  118. Zebisch M, Xu Y, Krastev C, MacDonald BT, Chen M et al. 2013. Structural and molecular basis of ZNRF3/RNF43 transmembrane ubiquitin ligase inhibition by the Wnt agonist R-spondin. Nat. Commun. 4:2787
    [Google Scholar]
  119. Zehir A, Benayed R, Shah RH, Syed A, Middha S et al. 2017. Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nat. Med. 23:703–13
    [Google Scholar]
  120. Zhang X, Cheong S-M, Amado NG, Reis AH, MacDonald BT et al. 2015. Notum is required for neural and head induction via Wnt deacylation, oxidation, and inactivation. Dev. Cell 32:719–30
    [Google Scholar]
  121. Zhang Y, Commisso C. 2019. Macropinocytosis in cancer: a complex signaling network. Trends Cancer 5:332–34
    [Google Scholar]
  122. Zimmerli D, Hausmann G, Cantu C, Basler K. 2017. Pharmacological interventions in the Wnt pathway: inhibition of Wnt secretion versus disrupting the protein-protein interfaces of nuclear factors. Br. J. Pharmacol. 174:4600–10
    [Google Scholar]
/content/journals/10.1146/annurev-cellbio-120319-023657
Loading
/content/journals/10.1146/annurev-cellbio-120319-023657
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error