1932

Abstract

With the discovery of the incredible diversity of neurons, Cajal and coworkers laid the foundation of modern neuroscience. Neuron types are not only structural units of nervous systems but also evolutionary units, because their identities are encoded in the genome. With the advent of high-throughput cellular transcriptomics, neuronal identities can be characterized and compared systematically across species. The comparison of neurons in mammals, reptiles, and birds indicates that the mammalian cerebral cortex is a mosaic of deeply conserved and recently evolved neuron types. Using the cerebral cortex as a case study, this review illustrates how comparing neuron types across species is key to reconciling observations on neural development, neuroanatomy, circuit wiring, and physiology for an integrated understanding of brain evolution.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cellbio-120319-112654
2021-10-06
2024-10-04
Loading full text...

Full text loading...

/deliver/fulltext/cellbio/37/1/annurev-cellbio-120319-112654.html?itemId=/content/journals/10.1146/annurev-cellbio-120319-112654&mimeType=html&fmt=ahah

Literature Cited

  1. Abellán A, Desfilis E, Medina L. 2014. Combinatorial expression of Lef1, Lhx2, Lhx5, Lhx9, Lmo3, Lmo4, and Prox1 helps to identify comparable subdivisions in the developing hippocampal formation of mouse and chicken. Front. Neuroanat. 8:59
    [Google Scholar]
  2. Amamoto R, Huerta VGL, Takahashi E, Dai G, Grant AK et al. 2016. Adult axolotls can regenerate original neuronal diversity in response to brain injury. eLife 5:e13998
    [Google Scholar]
  3. Arendt D, Hausen H, Purschke G. 2009. The “division of labour” model of eye evolution. Philos. Trans. R. Soc. B 364:2809–17
    [Google Scholar]
  4. Arendt D, Musser JM, Baker CVH, Bergman A, Cepko C et al. 2016. The origin and evolution of cell types. Nat. Rev. Genet. 17:12744–57
    [Google Scholar]
  5. Arlotta P, Hobert O 2015. Homeotic transformations of neuronal cell identities. Trends Neurosci 38:12751–62
    [Google Scholar]
  6. Ascoli GA, Alonso-Nanclares L, Anderson SA, Barrionuevo G, Benavides-Piccione R et al. 2008. Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex. Nat. Rev. Neurosci. 9:7557–68
    [Google Scholar]
  7. Atoji Y, Wild JM. 2004. Fiber connections of the hippocampal formation and septum and subdivisions of the hippocampal formation in the pigeon as revealed by tract tracing and kainic acid lesions. J. Comp. Neurol. 475:3426–61
    [Google Scholar]
  8. Atoji Y, Wild JM. 2012. Afferent and efferent projections of the mesopallium in the pigeon (Columba livia). J. Comp. Neurol. 520:4717–41
    [Google Scholar]
  9. Bakken TE, Jorstad NL, Hu Q, Lake BB, Tian W et al. 2020. Evolution of cellular diversity in primary motor cortex of human, marmoset monkey, and mouse. bioRxiv 016972. https://doi.org/10.1101/2020.03.31.016972
    [Crossref]
  10. Bayer SA. 1980. Development of the hippocampal region in the rat I. Neurogenesis examined with 3H-thymidine autoradiography. J. Comp. Neurol. 190:187–114
    [Google Scholar]
  11. Belgard TG, Montiel JF, Wang WZ, García-Moreno F, Margulies EH et al. 2013. Adult pallium transcriptomes surprise in not reflecting predicted homologies across diverse chicken and mouse pallial sectors. PNAS 110:3213150–55
    [Google Scholar]
  12. BICCN (BRAIN Initiat. Cell Census Netw.) Adkins RS, Aldridge AI, Allen S, Ament SA et al. 2020. A multimodal cell census and atlas of the mammalian primary motor cortex. bioRxiv 343129. https://doi.org/10.1101/2020.10.19.343129
    [Crossref]
  13. Bingman VP, Muzio RN. 2017. Reflections on the structural-functional evolution of the hippocampus: What is the big deal about a dentate gyrus. Brain Behav. Evol. 90:53–61
    [Google Scholar]
  14. Blankvoort S, Witter MP, Noonan J, Cotney J, Kentros C. 2018. Marked diversity of unique cortical enhancers enables neuron-specific tools by enhancer-driven gene expression. Curr. Biol. 28:132103–14.e5
    [Google Scholar]
  15. Blanton MG, Kriegstein AR. 1991. Morphological differentiation of distinct neuronal classes in embryonic turtle cerebral cortex. J. Comp. Neurol. 310:4550–70
    [Google Scholar]
  16. Briscoe SD, Albertin CB, Rowell JJ, Ragsdale CW. 2018. Neocortical association cell types in the forebrain of birds and alligators. Curr. Biol. 28:5686–96.e6
    [Google Scholar]
  17. Briscoe SD, Ragsdale CW. 2018a. Homology, neocortex, and the evolution of developmental mechanisms. Science 362:6411190–93
    [Google Scholar]
  18. Briscoe SD, Ragsdale CW. 2018b. Molecular anatomy of the alligator dorsal telencephalon. J. Comp. Neurol. 526:101613–46
    [Google Scholar]
  19. Brox A, Puelles L, Ferreiro B, Medina L. 2004. Expression of the genes Emx1, Tbr1, and Eomes (Tbr2) in the telencephalon of Xenopus laevis confirms the existence of a ventral pallial division in all tetrapods. J. Comp. Neurol. 474:4562–77
    [Google Scholar]
  20. Bruce LL, Butler AB. 1984. Telencephalic connections in lizards. II. Projections to anterior dorsal ventricular ridge. J. Comp. Neurol. 229:4602–15
    [Google Scholar]
  21. Bruce LL, Neary TJ. 1995. The limbic system of tetrapods: a comparative analysis of cortical and amygdalar populations. Brain Behav. Evol. 46:224–34
    [Google Scholar]
  22. Butler AB, Molnar Z. 2002. Development and evolution of the collopallium in amniotes : a new hypothesis of field homology. Brain Res. Bull. 57:475–79
    [Google Scholar]
  23. Butler AB, Reiner A, Karten H. 2011. Evolution of the amniote pallium and the origins of mammalian neocortex. Ann. N. Y. Acad. Sci. 1225:14–27
    [Google Scholar]
  24. Calabrese A, Woolley SMN. 2015. Coding principles of the canonical cortical microcircuit in the avian brain. PNAS 112:113517–22
    [Google Scholar]
  25. Callaway EM, Borrell V. 2011. Developmental sculpting of dendritic morphology of layer 4 neurons in visual cortex: influence of retinal input. J. Neurosci. 31:207456–70
    [Google Scholar]
  26. Canto CB, Wouterlood FG, Witter MP. 2008. What does the anatomical organization of the entorhinal cortex tell us?. Neural Plast 2008:381243
    [Google Scholar]
  27. Cárdenas A, Borrell V. 2020. Molecular and cellular evolution of corticogenesis in amniotes. Cell. Mol. Life Sci. 77:1435–60
    [Google Scholar]
  28. Chakraborty M, Jarvis ED. 2015. Brain evolution by brain pathway duplication. Philos. Trans. R. Soc. B. 370:168420150056
    [Google Scholar]
  29. Choy JMC, Suzuki N, Shima Y, Budisantoso T, Nelson SB, Bekkers JM. 2017. Optogenetic mapping of intracortical circuits originating from semilunar cells in the piriform cortex. Cereb. Cortex 27:1589–601
    [Google Scholar]
  30. Colquitt BM, Merullo DP, Konopka G, Roberts T, Brainard MS. 2021. Cellular transcriptomics reveals evolutionary identities of songbird vocal circuits. Science 371:6530eabd9704
    [Google Scholar]
  31. Crick FC, Koch C. 2005. What is the function of the claustrum?. Philos. Trans. R. Soc. B 360:14581271–79
    [Google Scholar]
  32. Crockett T, Wright N, Thornquist S, Ariel M, Wessel R 2015. Turtle dorsal cortex pyramidal neurons comprise two distinct cell types with indistinguishable visual responses. PLOS ONE 10:12e0144012
    [Google Scholar]
  33. Crosby EC. 1917. The forebrain of Alligator mississippiensis. J. Comp. Neurol. 27:3325–402
    [Google Scholar]
  34. De León Reyes NS, Mederos S, Varela I, Weiss LA, Perea G et al. 2019. Transient callosal projections of L4 neurons are eliminated for the acquisition of local connectivity. Nat. Commun. 10:4549
    [Google Scholar]
  35. Desan PH. 1984. The Organization of the Cerebral Cortex of the Pond Turtle, Pseudemys scripta elegans. PhD Thesis Harvard Univ.
    [Google Scholar]
  36. Desfilis E, Abellán A, Sentandreu V, Medina L. 2018. Expression of regulatory genes in the embryonic brain of a lizard and implications for understanding pallial organization and evolution. J. Comp. Neurol. 526:1166–202
    [Google Scholar]
  37. Diodato A, Ruinart de Brimont M, Yim YS, Derian N, Perrin S et al. 2016. Molecular signatures of neural connectivity in the olfactory cortex. Nat. Commun. 7:12238
    [Google Scholar]
  38. Donato F, Jacobsen RI, Moser M-B, Moser EI. 2017. Stellate cells drive maturation of the entorhinal-hippocampal circuit. Science 355:6330eaai8178
    [Google Scholar]
  39. Duboule D. 1994. Temporal colinearity and the phylotypic progression: a basis for the stability of a vertebrate Bauplan and the evolution of morphologies through heterochrony. Development 120:Suppl135–42
    [Google Scholar]
  40. Dugas-Ford J, Rowell JJ, Ragsdale CW. 2012. Cell-type homologies and the origins of the neocortex. PNAS 109:4216974–79
    [Google Scholar]
  41. Ebbesson SOE. 1980. The parcellation theory and its relation to interspecific variability in brain organization, evolutionary and ontogenetic development, and neuronal plasticity. Cell Tissue Res 213:2179–212
    [Google Scholar]
  42. Ebner FF. 1976. The forebrain of reptiles and mammals. Evolution of Brain and Behavior in Vertebrates RB Masterton, ME Bitterman, CBG Campbell, N Hotton 115–67 London: Routledge
    [Google Scholar]
  43. Filimonoff IN. 1947. A rational subdivision of the cerebral cortex. Arch. Neur. Psych. 58:3296–311
    [Google Scholar]
  44. Franjic D, Choi J, Skarica M, Xu C, Li Q et al. 2020. Molecular diversity among adult human hippocampal and entorhinal cells. bioRxiv 889139. https://doi.org/10.1101/2019.12.31.889139
    [Crossref]
  45. García-Moreno F, López-Mascaraque L, De Carlos JA. 2008. Early telencephalic migration topographically converging in the olfactory cortex. Cereb. Cortex 18:61239–52
    [Google Scholar]
  46. García-Moreno F, Molnár Z. 2020. Variations of telencephalic development that paved the way for neocortical evolution. Prog. Neurobiol. 194:101865
    [Google Scholar]
  47. Goffinet AM, Bar I, Bernier B, Trujillo C, Raynaud A, Meyer G. 1999. Reelin expression during embryonic brain development in lacertilian lizards. J. Comp. Neurol. 414:4533–50
    [Google Scholar]
  48. Gouwens NW, Sorensen SA, Baftizadeh F, Budzillo A, Lee BR et al. 2020. Integrated morphoelectric and transcriptomic classification of cortical GABAergic cells. Cell 183:935–53.e19
    [Google Scholar]
  49. Grillner S, Robertson B. 2016. The basal ganglia over 500 million years. Curr. Biol. 26:20R1088–100
    [Google Scholar]
  50. Gupta S, Maurya R, Saxena M, Sen J. 2012. Defining structural homology between the mammalian and avian hippocampus through conserved gene expression patterns observed in the chick embryo. Dev. Biol. 366:2125–41
    [Google Scholar]
  51. Haberly LB. 1983. Structure of the piriform cortex of the opossum. I. Description of neuron types with Golgi methods. J. Comp. Neurol. 213:2163–87
    [Google Scholar]
  52. Haberly LB. 1990. Comparative aspects of olfactory cortex. Cerebral Cortex EG Jones 137–66 New York: Springer
    [Google Scholar]
  53. Haberly LB. 2001. Parallel-distributed processing in olfactory cortex: new insights from morphological and physiological analysis of neuronal circuitry. Chem. Senses 26:5551–76
    [Google Scholar]
  54. Hansen DV, Lui JH, Parker PRL, Kriegstein AR. 2010. Neurogenic radial glia in the outer subventricular zone of human neocortex. Nature 464:7288554–61
    [Google Scholar]
  55. Harris KD, Shepherd GMG. 2015. The neocortical circuit: themes and variations. Nat. Neurosci. 18:2170–81
    [Google Scholar]
  56. Hevner RF. 2016. Evolution of the mammalian dentate gyrus. J. Comp. Neurol. 524:3578–94
    [Google Scholar]
  57. Hobert O. 2011. Regulation of terminal differentiation programs in the nervous system. Annu. Rev. Cell Dev. Biol. 27:681–96
    [Google Scholar]
  58. Hodge RD, Bakken TE, Miller JA, Smith KA, Barkan ER et al. 2019. Conserved cell types with divergent features in human versus mouse cortex. Nature 573:777261–68
    [Google Scholar]
  59. Hodge RD, Miller JA, Novotny M, Kalmbach BE, Ting JT et al. 2020. Transcriptomic evidence that von Economo neurons are regionally specialized extratelencephalic-projecting excitatory neurons. Nat. Commun. 11:1172
    [Google Scholar]
  60. Holmgren N. 1925. Points of view concerning forebrain morphology in higher vertebrates. Acta Zool 6:413–77
    [Google Scholar]
  61. Hoogland PV, Vermeulen-Vanderzee E. 1989. Efferent connections of the dorsal cortex of the lizard Gekko gecko studied with Phaseolus vulgaris-leucoagglutinin. J. Comp. Neurol. 285:289–303
    [Google Scholar]
  62. Hoogland PV, Vermeulen-Vanderzee E. 1993. Medial cortex of the lizard Gekko gecko: a hodological study with emphasis on regional specialization. J. Comp. Neurol. 331:3326–38
    [Google Scholar]
  63. Hu H, Uesaka M, Guo S, Shimai K, Lu TM et al. 2017. Constrained vertebrate evolution by pleiotropic genes. Nat. Ecol. Evol. 1:111722–30
    [Google Scholar]
  64. Irisarri I, Baurain D, Brinkmann H, Delsuc F, Sire J-Y et al. 2017. Phylotranscriptomic consolidation of the jawed vertebrate timetree. Nat. Ecol. Evol. 1:1370–78
    [Google Scholar]
  65. Iwano T, Masuda A, Kiyonari H, Enomoto H, Matsuzaki F et al. 2012. Prox1 postmitotically defines dentate gyrus cells by specifying granule cell identity over CA3 pyramidal cell fate in the hippocampus. Development 139:163051–62
    [Google Scholar]
  66. Jackson J, Smith JB, Lee AK. 2020. The anatomy and physiology of claustrum-cortex interactions. Annu. Rev. Neurosci. 43:231–47
    [Google Scholar]
  67. Jarvis ED, Yu J, Rivas MV, Horita H, Feenders G et al. 2013. Global view of the functional molecular organization of the avian cerebrum: mirror images and functional columns. J. Comp. Neurol. 521:163614–65
    [Google Scholar]
  68. Karten HJ. 1969. The organization of the avian telencephalon and some speculations on the phylogeny of the amniote telencephalon. Ann. N. Y. Acad. Sci. 167:164–79
    [Google Scholar]
  69. Karten HJ. 2013. Neocortical evolution: neuronal circuits arise independently of lamination. Curr. Biol. 23:1R12–15
    [Google Scholar]
  70. Karten HJ, Brzozowska-Prechtl A, Prechtl J, Wang H, Mitra PP. 2008. Digital atlas of the zebra finch brain (Taeniopygia guttata): a dimensional and high resolution photo atlas Paper presented at the Annual Meeting of the Society for Neuroscience Washington, DC: Nov. 17
    [Google Scholar]
  71. Kebschull JM, Richman EB, Ringach N, Friedmann D, Albarran E et al. 2021. Cerebellar nuclei evolved by repeatedly duplicating a conserved cell-type set. Science 370:6523eabd5059
    [Google Scholar]
  72. Klingler E. 2017. Development and organization of the evolutionarily conserved three-layered olfactory cortex. eNeuro 4:10193
    [Google Scholar]
  73. Klingler E, De la Rossa A, Fièvre S, Devaraju K, Abe P, Jabaudon D 2019. A translaminar genetic logic for the circuit identity of intracortically projecting neurons. Curr. Biol. 29:2332–39.e5
    [Google Scholar]
  74. Klink R, Alonso A 1997. Morphological characteristics of layer II projection neurons in the rat medial entorhinal cortex. Hippocampus 7:5571–83
    [Google Scholar]
  75. Konstantinides N, Kapuralin K, Fadil C, Barboza L, Satija R, Desplan C. 2018. Phenotypic convergence: distinct transcription factors regulate common terminal features. Cell 174:3622–35.e13
    [Google Scholar]
  76. Krienen FM, Goldman M, Zhang Q, del Rosario RCH, Florio M et al. 2020. Innovations present in the primate interneuron repertoire. Nature 586:262–69
    [Google Scholar]
  77. La Manno G, Gyllborg D, Codeluppi S, Nishimura K, Salto C et al. 2016. Molecular diversity of midbrain development in mouse, human, and stem cells. Cell 167:2566–80
    [Google Scholar]
  78. Laberge F, Mühlenbrock-Lenter S, Dicke U, Roth G. 2008. Thalamo-telencephalic pathways in the fire-bellied toad Bombina orientalis. J. Comp. Neurol. 508:5806–23
    [Google Scholar]
  79. Lein ES, Hawrylycz MJ, Ao N, Ayres M, Bensinger A et al. 2007. Genome-wide atlas of gene expression in the adult mouse brain. Nature 445:168–76
    [Google Scholar]
  80. Leitner FC, Melzer S, Lütcke H, Pinna R, Seeburg PH et al. 2016. Spatially segregated feedforward and feedback neurons support differential odor processing in the lateral entorhinal cortex. Nat. Neurosci. 19:7935–44
    [Google Scholar]
  81. Letzkus JJ, Wolff SBE, Lüthi A. 2015. Disinhibition, a circuit mechanism for associative learning and memory. Neuron 88:2264–76
    [Google Scholar]
  82. Liang C, FANTOM Consort., Forrest ARR, Wagner GP. 2015. The statistical geometry of transcriptome divergence in cell-type evolution and cancer. Nat. Commun. 6:6066
    [Google Scholar]
  83. Lodato S, Arlotta P. 2015. Generating neuronal diversity in the mammalian cerebral cortex. Annu. Rev. Cell Dev. Biol. 31:699–720
    [Google Scholar]
  84. Luis de la Iglesia JA, Lopez-Garcia C. 1997. A Golgi study of the principal projection neurons of the medial cortex of the lizard Podarcis hispanica. J. Comp. Neurol. 385:4528–64
    [Google Scholar]
  85. Luzzati F. 2015. A hypothesis for the evolution of the upper layers of the neocortex through co-option of the olfactory cortex developmental program. Front. Neurosci. 9:162
    [Google Scholar]
  86. Mackie GO. 1970. Neuroid conduction and the evolution of conducting tissues. Q. Rev. Biol. 45:4319–32
    [Google Scholar]
  87. Marín-Padilla M. 1978. Dual origin of the mammalian neocortex and evolution of the cortical plate. Anat. Embryol. 152:2109–26
    [Google Scholar]
  88. Marín-Padilla M. 1992. Ontogenesis of the pyramidal cell of the mammalian neocortex and developmental cytoarchitectonics: a unifying theory. J. Comp. Neurol. 321:2223–40
    [Google Scholar]
  89. Martin-Lopez E, Ishiguro K, Greer CA. 2019. The laminar organization of piriform cortex follows a selective developmental and migratory program established by cell lineage. Cereb. Cortex 29:11–16
    [Google Scholar]
  90. Mazo C, Grimaud J, Shima Y, Murthy VN, Lau CG. 2017. Distinct projection patterns of different classes of layer 2 principal neurons in the olfactory cortex. Sci. Rep. 7:8282
    [Google Scholar]
  91. Medina L, Abellán A, Desfilis E. 2013. A never-ending search for the evolutionary origin of the neocortex: rethinking the homology concept. Brain Behav. Evol. 81:3150–53
    [Google Scholar]
  92. Medina L, Abellán A, Desfilis E. 2017. Contribution of genoarchitecture to understanding hippocampal evolution and development. Brain Behav. Evol. 90:125–40
    [Google Scholar]
  93. Montiel JF, Aboitiz F. 2018. Homology in amniote brain evolution: the rise of molecular evidence. Brain Behav. Evol. 91:59–64
    [Google Scholar]
  94. Moreau MX, Saillour Y, Cwetsch AW, Pierani A, Causeret F. 2021. Single-cell transcriptomics of the early developing mouse cerebral cortex disentangles the spatial and temporal components of neuronal fate acquisition. Development 148:14dev197962
    [Google Scholar]
  95. Narikiyo K, Mizuguchi R, Ajima A, Shiozaki M, Hamanaka H et al. 2020. The claustrum coordinates cortical slow-wave activity. Nat. Neurosci. 23:6741–53
    [Google Scholar]
  96. Naumann RK, Ondracek JM, Reiter S, Shein-Idelson M, Tosches MAet al 2015. The reptilian brain. Curr. Biol 25:8R31721
    [Google Scholar]
  97. Nieuwenhuys R. 2017. Principles of current vertebrate neuromorphology. Brain Behav. Evol. 90:2117–30
    [Google Scholar]
  98. Nilssen ES, Doan TP, Nigro MJ, Ohara S, Witter MP. 2019. Neurons and networks in the entorhinal cortex: a reappraisal of the lateral and medial entorhinal subdivisions mediating parallel cortical pathways. Hippocampus 29:121238–54
    [Google Scholar]
  99. Nilssen ES, Jacobsen B, Fjeld G, Nair RR, Blankvoort S et al. 2018. Inhibitory connectivity dominates the fan cell network in layer II of lateral entorhinal cortex. J. Neurosci. 38:459712–27
    [Google Scholar]
  100. Nomura T, Gotoh H, Ono K. 2013. Changes in the regulation of cortical neurogenesis contribute to encephalization during amniote brain evolution. Nat. Commun. 4:2206
    [Google Scholar]
  101. Nomura T, Yamashita W, Gotoh H, Ono K. 2018. Species-specific mechanisms of neuron subtype specification reveal evolutionary plasticity of amniote brain development. Cell Rep 22:123142–51
    [Google Scholar]
  102. Norimoto H, Fenk LA, Li H-H, Tosches MA, Gallego-Flores T et al. 2020. A claustrum in reptiles and its role in slow-wave sleep. Nature 578:413–18
    [Google Scholar]
  103. Northcutt RG, Kicliter E. 1980. Organization of the amphibian telencephalon. Comparative Neurology of the Telencephalon SOE Ebbesson 203–55 Boston: Springer
    [Google Scholar]
  104. O'Leary TP, Sullivan KE, Wang L, Clements J, Lemire AL, Cembrowski MS. 2020. Extensive and spatially variable within-cell-type heterogeneity across the basolateral amygdala. eLife 9:e59003
    [Google Scholar]
  105. Pattabiraman K, Golonzhka O, Lindtner S, Nord AS, Taher L et al. 2014. Transcriptional regulation of enhancers active in protodomains of the developing cerebral cortex. Neuron 82:5989–1003
    [Google Scholar]
  106. Paul A, Crow M, Raudales R, He M, Gillis J, Huang ZJ. 2017. Transcriptional architecture of synaptic communication delineates GABAergic neuron identity. Cell 171:3522–39.e20
    [Google Scholar]
  107. Pouchelon G, Gambino F, Bellone C, Telley L, Vitali I et al. 2014. Modality-specific thalamocortical inputs instruct the identity of postsynaptic L4 neurons. Nature 511:471–74
    [Google Scholar]
  108. Puelles L, Alonso A, García-Calero E, Martínez-de-la-Torre M. 2019. Concentric ring topology of mammalian cortical sectors and relevance for patterning studies. J. Comp. Neurol. 527:101731–52
    [Google Scholar]
  109. Puelles L, Ayad A, Alonso A, Sandoval JE, Martínez-de-la-Torre M et al. 2016. Selective early expression of the orphan nuclear receptor Nr4a2 identifies the claustrum homolog in the avian mesopallium: impact on sauropsidian/mammalian pallium comparisons. J. Comp. Neurol. 524:3665–703
    [Google Scholar]
  110. Puelles L, Ferran JL. 2012. Concept of neural genoarchitecture and its genomic fundament. Front. Neuroanat. 6:47
    [Google Scholar]
  111. Puelles L, Kuwana E, Puelles E, Bulfone A, Shimamura K et al. 2000. Pallial and subpallial derivatives in the embryonic chick and mouse telencephalon, traced by the expression of the genes Dlx-2, Emx-1, Nkx-2.1, Pax-6, and Tbr-1. J. Comp. Neurol. 424:3409–38
    [Google Scholar]
  112. Puelles L, Rubenstein JLR. 2003. Forebrain gene expression domains and the evolving prosomeric model. Trends Neurosci 26:9469–76
    [Google Scholar]
  113. Puelles L, Sandoval JE, Ayad A, Corral R, Alonso A et al. 2017. The pallium in reptiles and birds in the light of the updated tetrapartite pallium model. Evolution of Nervous Systems, Vol. 1 JH Kaas 519–55 Oxford, UK: Elsevier, 2nd ed..
    [Google Scholar]
  114. Ramsden HL, Sürmeli G, McDonagh SG, Nolan MF. 2015. Laminar and dorsoventral molecular organization of the medial entorhinal cortex revealed by large-scale anatomical analysis of gene expression. PLOS Comput. Biol. 11:1e1004032
    [Google Scholar]
  115. Reilly MB, Cros C, Varol E, Yemini E, Hobert O 2020. Unique homeobox codes delineate all the neuron classes of C. elegans. Nature 584:7822595–601
    [Google Scholar]
  116. Reiner A. 1993. Neurotransmitter organization and connections of the turtle cortex: implications for the evolution of mammalian isocortex. Comp. Biochem. Physiol. A 104:4735–48
    [Google Scholar]
  117. Risold PY, Swanson LW. 1997. Connections of the rat lateral septal complex. Brain Res. Rev. 24:2–3115–95
    [Google Scholar]
  118. Riss W, Halpern M, Scalia F. 1969. The quest for clues to forebrain evolution – the study of reptiles. Brain Behav. Evol. 2:1–25
    [Google Scholar]
  119. Sanides F. 1969. Comparative architectonics of the neocortex of mammals and their evolutionary interpretation. Comparative and Evolutionary Aspects of the Vertebrate Central Nervous System, Vol. 167 JM Petras, CR Noback 404–23 New York: Ann. N. Y. Acad. Sci.
    [Google Scholar]
  120. Sanides F, Sanides D. 1972. The “extraverted neurons” of the mammalian cerebral cortex. Z. Anat. Entwicklungsgesch 136:3272–93
    [Google Scholar]
  121. Saunders A, Macosko EZ, Wysoker A, Goldman M, Krienen FM et al. 2018. Molecular diversity and specializations among the cells of the adult mouse brain. Cell 174:41015–30
    [Google Scholar]
  122. Seress L, Mrzljak L. 1987. Basal dendrites of granule cells are normal features of the fetal and adult dentate gyrus of both monkey and human hippocampal formations. Brain Res 405:1169–74
    [Google Scholar]
  123. Shafer MER. 2019. Cross-species analysis of single-cell transcriptomic data. Front. Cell Dev. Biol. 7:175
    [Google Scholar]
  124. Shein-Idelson M, Ondracek JM, Liaw H, Reiter S, Laurent G. 2016. Slow waves, sharp waves, ripples, and REM in sleeping dragons. Science 352:6285590–95
    [Google Scholar]
  125. Shekhar K, Lapan SW, Whitney IE, Tran NM, Macosko EZ et al. 2016. Comprehensive classification of retinal bipolar neurons by single-cell transcriptomics. Cell 166:51308–23
    [Google Scholar]
  126. Shepherd GM. 2011. The microcircuit concept applied to cortical evolution: from three-layer to six-layer cortex. Front. Neuroanat. 5:30
    [Google Scholar]
  127. Skeen LC, Pindzola RR, Schofield BR. 1984. Tangential organization of olfactory, association, and commissural projections to olfactory cortex in a species of reptile (Trionyx spiniferus), bird (Aix sponsa), and mammal (Tupaia glis). Brain Behav. Evol. 25:4206–16
    [Google Scholar]
  128. Smith JB, Alloway KD, Hof PR, Orman R, Reser DH et al. 2019. The relationship between the claustrum and endopiriform nucleus: a perspective towards consensus on cross-species homology. J. Comp. Neurol. 527:2476–99
    [Google Scholar]
  129. Smith JB, Lee AK, Jackson J 2020. The claustrum. Curr. Biol. 30:23R1401–6
    [Google Scholar]
  130. Smith Fernandez A, Pieau C, Repérant J, Boncinelli E, Wassef M 1998. Expression of the Emx-1 and Dlx-1 homeobox genes define three molecularly distinct domains in the telencephalon of mouse, chick, turtle and frog embryos: implications for the evolution of telencephalic subdivisions in amniotes. Development 125:112099–111
    [Google Scholar]
  131. Sosulski DL, Lissitsyna Bloom M, Cutforth T, Axel R, Datta SR 2011. Distinct representations of olfactory information in different cortical centres. Nature 472:7342213–19
    [Google Scholar]
  132. Stacho M, Herold C, Rook N, Wagner H, Axer M et al. 2020. A cortex-like canonical circuit in the avian forebrain. Science 369:6511eabc5534
    [Google Scholar]
  133. Striedter GF. 1997. The telencephalon of tetrapods in evolution. Brain Behav. Evol. 49:179–213
    [Google Scholar]
  134. Striedter GF. 2016. Evolution of the hippocampus in reptiles and birds. J. Comp. Neurol. 524:3496–517
    [Google Scholar]
  135. Striedter GF, Northcutt RG. 2020. Brains Through Time: A Natural History of Vertebrates Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  136. Stuart T, Satija R. 2019. Integrative single-cell analysis. Nat. Rev. Genet. 20:257–72
    [Google Scholar]
  137. Su C-Y, Menuz K, Carlson JR. 2009. Olfactory perception: receptors, cells, and circuits. Cell 139:145–59
    [Google Scholar]
  138. Suryanarayana SM, Robertson B, Wallén P, Grillner S. 2017. The lamprey pallium provides a blueprint of the mammalian layered cortex. Curr. Biol. 27:213264–77
    [Google Scholar]
  139. Suzuki IK, Kawasaki T, Gojobori T, Hirata T. 2012. The temporal sequence of the mammalian neocortical neurogenetic program drives mediolateral pattern in the chick pallium. Dev. Cell 22:4863–70
    [Google Scholar]
  140. Suzuki N, Bekkers JM. 2011. Two layers of synaptic processing by principal neurons in piriform cortex. J. Neurosci. 31:62156–66
    [Google Scholar]
  141. Svensson V, Vento-Tormo R, Teichmann SA. 2018. Exponential scaling of single-cell RNA-seq in the past decade. Nat. Protoc. 13:4599–604
    [Google Scholar]
  142. Tasic B, Yao Z, Smith KA, Graybuck L, Nguyen TN et al. 2018. Shared and distinct transcriptomic cell types across neocortical areas. Nature 563:72–78
    [Google Scholar]
  143. Terem A, Gonzales BJ, Peretz-Rivlin N, Ashwal-Fluss R, Bleistein N et al. 2020. Claustral neurons projecting to frontal cortex mediate contextual association of reward. Curr. Biol. 30:183522–32.e6
    [Google Scholar]
  144. Tosches MA. 2017. Developmental and genetic mechanisms of neural circuit evolution. Dev. Biol. 431:116–25
    [Google Scholar]
  145. Tosches MA. 2021. Different origins for similar brain circuits. Science 371:6530676–77
    [Google Scholar]
  146. Tosches MA, Laurent G. 2019. Evolution of neuronal identity in the cerebral cortex. Curr. Opin. Neurobiol. 56:199–208
    [Google Scholar]
  147. Tosches MA, Yamawaki TM, Naumann RK, Jacobi AA, Tushev G, Laurent G. 2018. Evolution of pallium, hippocampus, and cortical cell types revealed by single-cell transcriptomics in reptiles. Science 360:6391881–88
    [Google Scholar]
  148. Tremblay R, Lee S, Rudy B 2016. GABAergic interneurons in the neocortex: from cellular properties to circuits. Neuron 91:2260–92
    [Google Scholar]
  149. Ulinski PS. 1986. Organizations of corticogeniculate projections in the turtle, Pseudemys scripta. J. Comp. Neurol. 254:529–42
    [Google Scholar]
  150. Ulinski PS 1990. The cerebral cortex of reptiles. Comparative Structure and Evolution of Cerebral Cortex, Part I EG Jones, A Peters 139–215 New York: Springer-Verlag
    [Google Scholar]
  151. Ulinski PS, Rainey WT. 1980. Intrinsic organization of snake lateral cortex. J. Morphol. 165:185–116
    [Google Scholar]
  152. Valentine JW, Collins AG, Meyer PC. 1994. Morphological complexity increase in metazoans. Paleobiology 20:2131–42
    [Google Scholar]
  153. Vandrey B, Garden DLF, Ambrozova V, McClure C, Nolan MF, Ainge JA. 2020. Fan cells in layer 2 of the lateral entorhinal cortex are critical for episodic-like memory. Curr. Biol. 30:1169–75.e5
    [Google Scholar]
  154. Veenman CL, Crzan D, Kern H, Rickmann M, Wahle P, van Mier P. 1989. The Anatomical Substrate for Telencephalic Function Berlin/Heidelberg: Springer-Verlag
    [Google Scholar]
  155. Wagner GP. 2014. Homology, Genes, and Evolutionary Innovations Princeton, NJ: Princeton Univ. Press
    [Google Scholar]
  156. Wang Q, Ng L, Harris JA, Feng D, Li Y et al. 2017. Organization of the connections between claustrum and cortex in the mouse. J. Comp. Neurol. 525:61317–46
    [Google Scholar]
  157. White MG, Panicker M, Mu C, Carter AM, Roberts BM et al. 2018. Anterior cingulate cortex input to the claustrum is required for top-down action control. Cell Rep 22:184–95
    [Google Scholar]
  158. Winterer J, Maier N, Wozny C, Beed P, Breustedt J et al. 2017. Excitatory microcircuits within superficial layers of the medial entorhinal cortex. Cell Rep 19:61110–16
    [Google Scholar]
  159. Witter MP. 2007. The perforant path: projections from the entorhinal cortex to the dentate gyrus. Prog. Brain Res. 163:43–61
    [Google Scholar]
  160. Wullimann MF. 2017. Should we redefine the classic lateral pallium?. J. Comp. Neurol. 525:61509–13
    [Google Scholar]
  161. Yao Z, Nguyen TN, van Velthoven CTJ, Goldy J, Sedeno-Cortes AE et al. 2021. A taxonomy of transcriptomic cell types across the isocortex and hippocampal formation. Cell 184:223222–41.e26
    [Google Scholar]
  162. Yeganegi H, Luksch H, Ondracek JM. 2019. Hippocampal-like network dynamics underlie avian sharp wave-ripples. bioRxiv 825075. https://doi.org/10.1101/825075
    [Crossref]
  163. Yu DX, Marchetto MC, Gage FH. 2014. How to make a hippocampal dentate gyrus granule neuron. Development 141:122366–75
    [Google Scholar]
  164. Yuste R, Hawrylycz M, Aalling N, Aguilar-Valles A, Arendt D et al. 2020. A community-based transcriptomics classification and nomenclature of neocortical cell types. Nat. Neurosci. 23:121456–68
    [Google Scholar]
  165. Zeisel A, Hochgerner H, Lönnerberg P, Johnsson A, Memic F et al. 2018. Molecular architecture of the mouse nervous system. Cell 174:4999–1014.e22
    [Google Scholar]
/content/journals/10.1146/annurev-cellbio-120319-112654
Loading
/content/journals/10.1146/annurev-cellbio-120319-112654
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error