1932

Abstract

The prediction of the crystal structures that a given organic molecule is likely to form is an important theoretical problem of significant interest for the pharmaceutical and agrochemical industries, among others. As evidenced by a series of six blind tests organized over the past 2 decades, methodologies for crystal structure prediction (CSP) have witnessed substantial progress and have now reached a stage of development where they can begin to be applied to systems of practical significance. This article reviews the state of the art in general-purpose methodologies for CSP, placing them within a common framework that highlights both their similarities and their differences. The review discusses specific areas that constitute the main focus of current research efforts toward improving the reliability and widening applicability of these methodologies, and offers some perspectives for the evolution of this technology over the next decade.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-060718-030256
2021-06-07
2024-12-13
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/12/1/annurev-chembioeng-060718-030256.html?itemId=/content/journals/10.1146/annurev-chembioeng-060718-030256&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Price SL, Braun DE, Reutzel-Edens SM. 2016. Can computed crystal energy landscapes help understand pharmaceutical solids?. Chem. Commun. 52:7065–77
    [Google Scholar]
  2. 2. 
    Braun DE, Bhardwaj RM, Florence AJ, Tocher DA, Price SL. 2012. Complex polymorphic system of gallic acid—five monohydrates, three anhydrates, and over 20 solvates. Cryst. Growth Des. 13:19–23
    [Google Scholar]
  3. 3. 
    Habermehl S, Mörschel P, Eisenbrandt P, Hammer SM, Schmidt MU. 2014. Structure determination from powder data without prior indexing, using a similarity measure based on cross-correlation functions. Acta Crystallogr. B 70:347–59
    [Google Scholar]
  4. 4. 
    Baias M, Dumez JN, Svensson PH, Schantz S, Day GM, Emsley L. 2013. De novo determination of the crystal structure of a large drug molecule by crystal structure prediction–based powder NMR crystallography. J. Am. Chem. Soc. 135:17501–7
    [Google Scholar]
  5. 5. 
    Arlin JB, Price LS, Price SL, Florence AJ. 2011. A strategy for producing predicted polymorphs: catemeric carbamazepine form V. Chem. Commun. 47:7074–76
    [Google Scholar]
  6. 6. 
    Neumann M, van de Streek J, Fabbiani F, Hidber P, Grassmann O. 2015. Combined crystal structure prediction and high-pressure crystallization in rational pharmaceutical polymorph screening. Nat. Commun. 6:7793
    [Google Scholar]
  7. 7. 
    Abramov YA. 2012. Current computational approaches to support pharmaceutical solid form selection. Org. Process Res. Dev. 17:472–85
    [Google Scholar]
  8. 8. 
    Chemburkar SR, Bauer J, Deming K, Spiwek H, Patel K et al. 2000. Dealing with the impact of ritonavir polymorphs on the late stages of bulk drug process development. Org. Process Res. Dev. 4:413–17
    [Google Scholar]
  9. 9. 
    Slater AG, Reiss PS, Pulido A, Little MA, Holden DL et al. 2017. Computationally-guided synthetic control over pore size in isostructural porous organic cages. ACS Cent. Sci. 3:734–42
    [Google Scholar]
  10. 10. 
    Pulido A, Chen L, Kaczorowski T, Holden D, Little MA et al. 2017. Functional materials discovery using energy–structure–function maps. Nature 543:657–64
    [Google Scholar]
  11. 11. 
    Rice B, LeBlanc LM, Otero-de-la Roza A, Fuchter MJ, Johnson ER et al. 2018. A computational exploration of the crystal energy and charge-carrier mobility landscapes of the chiral [6]helicene molecule. Nanoscale 10:1865–76
    [Google Scholar]
  12. 12. 
    Yang J, De S, Campbell JE, Li S, Ceriotti M, Day GM. 2018. Large-scale computational screening of molecular organic semiconductors using crystal structure prediction. Chem. Mater. 30:4361–71
    [Google Scholar]
  13. 13. 
    Reilly AM, Cooper RI, Adjiman CS, Bhattacharya S, Boese AD et al. 2016. Report on the sixth blind test of organic crystal structure prediction methods. Acta Crystallogr. B 72:439–59
    [Google Scholar]
  14. 14. 
    Nyman J, Day GM. 2015. Static and lattice vibrational energy differences between polymorphs. CrystEngComm 17:5154–65
    [Google Scholar]
  15. 15. 
    Price SL. 2013. Why don't we find more polymorphs?. Acta Crystallogr. B 69:313–28
    [Google Scholar]
  16. 16. 
    Groom CR, Bruno IJ, Lightfoot MP, Ward SC. 2016. The Cambridge Structural Database. Acta Crystallogr. B 72:171–79
    [Google Scholar]
  17. 17. 
    Cruz-Cabeza AJ, Reutzel-Edens SM, Bernstein J. 2015. Facts and fictions about polymorphism. Chem. Soc. Rev. 44:8619–35
    [Google Scholar]
  18. 18. 
    Price SL. 2018. Is zeroth order crystal structure prediction (CSP_0) coming to maturity? What should we aim for in an ideal crystal structure prediction code?. Faraday Discuss 211:9–30
    [Google Scholar]
  19. 19. 
    Nyman J, Reutzel-Edens SM. 2018. Crystal structure prediction is changing from basic science to applied technology. Faraday Discuss 211:459–76
    [Google Scholar]
  20. 20. 
    Cambridge Crystallogr. Data Cent 2020. CSD space group statistics: space group frequency ordering Data Table Cambridge Crystallogr. Data Cent Cambridge, UK: https://www.ccdc.cam.ac.uk/support-and-resources/ccdcresources/cb57878568114279913f49c22d5958fc.pdf
    [Google Scholar]
  21. 21. 
    Vasileiadis M, Pantelides CC, Adjiman CS. 2015. Prediction of the crystal structures of axitinib, a polymorphic pharmaceutical molecule. Chem. Eng. Sci. 121:60–76
    [Google Scholar]
  22. 22. 
    Neumann MA. 2008. Tailor-made force fields for crystal-structure prediction. J. Phys. Chem. B 112:9810–29
    [Google Scholar]
  23. 23. 
    Zhang P, Wood GP, Ma J, Yang M, Liu Y et al. 2018. Harnessing cloud architecture for crystal structure prediction calculations. Cryst. Growth Des. 18:6891–900
    [Google Scholar]
  24. 24. 
    Karamertzanis PG, Pantelides CC. 2005. Ab initio crystal structure prediction. I. Rigid molecules. J. Comput. Chem. 26:304–24
    [Google Scholar]
  25. 25. 
    Sobol' IM 1967. On the distribution of points in a cube and the approximate evaluation of integrals. Z. Vychisl. Mat. Mat. Fiz. 7:784–802
    [Google Scholar]
  26. 26. 
    Karamertzanis P, Pantelides C. 2007. Ab initio crystal structure prediction. II. Flexible molecules. Mol. Phys. 105:273–91
    [Google Scholar]
  27. 27. 
    Case DH, Campbell JE, Bygrave PJ, Day GM. 2016. Convergence properties of crystal structure prediction by quasi-random sampling. J. Chem. Theory Comput. 12:910–24
    [Google Scholar]
  28. 28. 
    Kirkpatrick S, Gelatt CD, Vecchi MP. 1983. Optimization by simulated annealing. Science 220:671–80
    [Google Scholar]
  29. 29. 
    van Laarhoven PJ, Aarts EH. 1987. Simulated Annealing: Theory and Applications Dordrecht, Neth: Reidel
    [Google Scholar]
  30. 30. 
    Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E. 1953. Equation of state calculations by fast computing machines. J. Chem. Phys. 21:1087–92
    [Google Scholar]
  31. 31. 
    Hukushima K, Nemoto K. 1996. Exchange Monte Carlo method and application to spin glass simulations. J. Phys. Soc. Jpn. 65:1604–8
    [Google Scholar]
  32. 32. 
    Swendsen RH, Wang JS. 1986. Replica Monte Carlo simulation of spin-glasses. Phys. Rev. Lett. 57:2607–9
    [Google Scholar]
  33. 33. 
    Kendrick J, Leusen FJ, Neumann MA, van de Streek J. 2011. Progress in crystal structure prediction. Chem. A Eur. J. 17:10736–44
    [Google Scholar]
  34. 34. 
    Holland JH. 1992. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence Cambridge, MA: MIT Press
    [Google Scholar]
  35. 35. 
    Paszkowicz W. 2009. Genetic algorithms, a nature-inspired tool: survey of applications in materials science and related fields. Mater. Manuf. Process. 24:174–97
    [Google Scholar]
  36. 36. 
    Woodley SM. 2004. Prediction of crystal structures using evolutionary algorithms and related techniques. Applications of Evolutionary Computation in Chemistry RL Johnston 95–132 Berlin: Springer
    [Google Scholar]
  37. 37. 
    Johnston RL. 2003. Evolving better nanoparticles: genetic algorithms for optimising cluster geometries. Dalton Trans 22:4193–207
    [Google Scholar]
  38. 38. 
    Turner GW, Tedesco E, Harris KD, Johnston RL, Kariuki BM. 2000. Implementation of Lamarckian concepts in a genetic algorithm for structure solution from powder diffraction data. Chem. Phys. Lett. 321:183–90
    [Google Scholar]
  39. 39. 
    Curtis F, Ros T, Marom N 2018. Evolutionary niching in the GAtor genetic algorithm for molecular crystal structure prediction. Faraday Discuss 211:61–77
    [Google Scholar]
  40. 40. 
    Kennedy J, Eberhart RC. 1997. A discrete binary version of the particle swarm algorithm. IEEE International Conference on Systems, Man, and Cybernetics: Computational Cybernetics and Simulation 54104–8 Piscataway, NJ: IEEE
    [Google Scholar]
  41. 41. 
    Day GM, Motherwell WS, Jones W. 2007. A strategy for predicting the crystal structures of flexible molecules: the polymorphism of phenobarbital. Phys. Chem. Chem. Phys. 9:1693–704
    [Google Scholar]
  42. 42. 
    Cruz-Cabeza AJ, Bernstein J. 2013. Conformational polymorphism. Chem. Rev. 114:2170–91
    [Google Scholar]
  43. 43. 
    Reilly AM, Tkatchenko A. 2014. Role of dispersion interactions in the polymorphism and entropic stabilization of the aspirin crystal. Phys. Rev. Lett. 113:055701
    [Google Scholar]
  44. 44. 
    Brandenburg JG, Grimme S. 2016. Organic crystal polymorphism: a benchmark for dispersion-corrected mean-field electronic structure methods. Acta Crystallogr. B 72:502–13
    [Google Scholar]
  45. 45. 
    Kazantsev AV, Karamertzanis PG, Adjiman CS, Pantelides CC. 2011. Efficient handling of molecular flexibility in lattice energy minimization of organic crystals. J. Chem. Theory Comput. 7:1998–2016
    [Google Scholar]
  46. 46. 
    Mayo SL, Olafson BD, Goddard WA. 1990. DREIDING: a generic force field for molecular simulations. J. Phys. Chem. 94:8897–909
    [Google Scholar]
  47. 47. 
    Motherwell WS, Ammon HL, Dunitz JD, Dzyabchenko A, Erk P et al. 2002. Crystal structure prediction of small organic molecules: a second blind test. Acta Crystallogr. B 58:647–61
    [Google Scholar]
  48. 48. 
    Kazantsev AV, Karamertzanis PG, Adjiman CS, Pantelides CC, Price SL et al. 2011. Successful prediction of a model pharmaceutical in the fifth blind test of crystal structure prediction. Int. J. Pharm. 418:168–78
    [Google Scholar]
  49. 49. 
    Habgood M, Sugden IJ, Kazantsev AV, Adjiman CS, Pantelides CC. 2015. Efficient handling of molecular flexibility in ab initio generation of crystal structures. J. Chem. Theory Comput. 11:1957–69
    [Google Scholar]
  50. 50. 
    Mennucci B, Tomasi J. 1997. Continuum solvation models: a new approach to the problem of solute's charge distribution and cavity boundaries. J. Chem. Phys. 106:5151–58
    [Google Scholar]
  51. 51. 
    Cooper TG, Hejczyk KE, Jones W, Day GM. 2008. Molecular polarization effects on the relative energies of the real and putative crystal structures of valine. J. Chem. Theory Comput. 4:1795–805
    [Google Scholar]
  52. 52. 
    Gelbrich T, Braun DE, Ellern A, Griesser UJ. 2013. Four polymorphs of methyl paraben: structural relationships and relative energy differences. Cryst. Growth Des. 13:1206–17
    [Google Scholar]
  53. 53. 
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA et al. 2010. Gaussian 09, Revis. C.01. Software Package http://gaussian.com/glossary/g09/
    [Google Scholar]
  54. 54. 
    van Eijck BP, Mooij W, Kroon J. 2001. Ab initio crystal structure predictions for flexible hydrogen-bonded molecules. Part II. Accurate energy minimization. J. Comput. Chem. 22:805–15
    [Google Scholar]
  55. 55. 
    Sugden I, Adjiman CS, Pantelides CC. 2016. Accurate and efficient representation of intramolecular energy in ab initio generation of crystal structures. I. Adaptive local approximate models. Acta Crystallogr. B 72:864–74
    [Google Scholar]
  56. 56. 
    Sugden IJ, Adjiman CS, Pantelides CC. 2019. Accurate and efficient representation of intramolecular energy in ab initio generation of crystal structures. II. Smoothed intramolecular potentials. Acta Crystallogr. B 75:423–33
    [Google Scholar]
  57. 57. 
    Stone A. 2013. The Theory of Intermolecular Forces Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  58. 58. 
    Bader RF. 1985. Atoms in molecules. Acc. Chem. Res. 18:9–15
    [Google Scholar]
  59. 59. 
    Mulliken RS. 1955. Electronic population analysis on LCAO–MO molecular wave functions. I. J. Chem. Phys. 23:1833–40
    [Google Scholar]
  60. 60. 
    Breneman CM, Wiberg KB. 1990. Determining atom-centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis. J. Comput. Chem. 11:361–73
    [Google Scholar]
  61. 61. 
    Hu H, Lu Z, Yang W 2007. Fitting molecular electrostatic potentials from quantum mechanical calculations. J. Chem. Theory Comput. 3:1004–13
    [Google Scholar]
  62. 62. 
    Karamertzanis PG, Pantelides CC. 2004. Optimal site charge models for molecular electrostatic potentials. Mol. Simul. 30:413–36
    [Google Scholar]
  63. 63. 
    Gavezzotti A. 2002. Calculation of intermolecular interaction energies by direct numerical integration over electron densities. I. Electrostatic and polarization energies in molecular crystals. J. Phys. Chem. B 106:4145–54
    [Google Scholar]
  64. 64. 
    Day GM, Motherwell WDS, Jones W. 2005. Beyond the isotropic atom model in crystal structure prediction of rigid molecules: atomic multipoles versus point charges. Cryst. Growth Des. 5:1023–33
    [Google Scholar]
  65. 65. 
    Stone AJ, Alderton M. 1985. Distributed multipole analysis: methods and applications. Mol. Phys. 56:1047–64
    [Google Scholar]
  66. 66. 
    Stone AJ. 2005. Distributed multipole analysis: stability for large basis sets. J. Chem. Theory Comput. 1:1128–32
    [Google Scholar]
  67. 67. 
    Lillestolen TC, Wheatley RJ. 2008. Redefining the atom: atomic charge densities produced by an iterative stockholder approach. Chem. Commun. 2008:5909–11
    [Google Scholar]
  68. 68. 
    Misquitta AJ, Stone AJ, Fazeli F. 2014. Distributed multipoles from a robust basis-space implementation of the iterated stockholder atoms procedure. J. Chem. Theory Comput. 10:5405–18
    [Google Scholar]
  69. 69. 
    Bultinck P, Cooper DL, Van Neck D. 2009. Comparison of the Hirshfeld-I and iterated stockholder atoms in molecules schemes. Phys. Chem. Chem. Phys. 11:3424–29
    [Google Scholar]
  70. 70. 
    Elking DM, Perera L, Pedersen LG. 2012. HPAM: Hirshfeld partitioned atomic multipoles. Comput. Phys. Commun. 183:390–97
    [Google Scholar]
  71. 71. 
    Welch GWA, Karamertzanis PG, Misquitta AJ, Stone AJ, Price SL. 2008. Is the induction energy important for modeling organic crystals?. J. Chem. Theory Comput. 4:522–32
    [Google Scholar]
  72. 72. 
    Aina AA, Misquitta AJ, Price SL. 2017. From dimers to the solid state: distributed intermolecular force-fields for pyridine. J. Chem. Phys. 147:161722
    [Google Scholar]
  73. 73. 
    Misquitta AJ, Stone AJ. 2008. Accurate induction energies for small organic molecules. 1. Theory. J. Chem. Theory Comput. 4:7–18
    [Google Scholar]
  74. 74. 
    Misquitta AJ, Stone AJ, Price SL. 2008. Accurate induction energies for small organic molecules. 2. Development and testing of distributed polarizability models against SAPT(DFT) energies. J. Chem. Theory Comput. 4:19–32
    [Google Scholar]
  75. 75. 
    de Klerk NJJ, van den Ende JA, Bylsma R, Grančič P, de Wijs GA et al. 2016. q-GRID: a new method to calculate lattice and interaction energies for molecular crystals from electron densities. Cryst. Growth Des. 16:662–71
    [Google Scholar]
  76. 76. 
    Chickos JS. 2003. Enthalpies of sublimation after a century of measurement. Netsu Sokutei 30:116–24
    [Google Scholar]
  77. 77. 
    Williams DE, Cox SR. 1984. Nonbonded potentials for azahydrocarbons: the importance of the Coulombic interaction. Acta Crystallogr. B 40:404–17
    [Google Scholar]
  78. 78. 
    Coombes DS, Price SL, Willock DJ, Leslie M. 1996. Role of electrostatic interactions in determining the crystal structures of polar organic molecules. A distributed multipole study. J. Phys. Chem. 100:7352–60
    [Google Scholar]
  79. 79. 
    Beyer T, Price SL. 2000. Dimer or catemer? Low-energy crystal packings for small carboxylic acids. J. Phys. Chem. B 104:2647–55
    [Google Scholar]
  80. 80. 
    Cox SR, Hsu LY, Williams DE. 1981. Nonbonded potential function models for crystalline oxohydrocarbons. Acta Crystallogr. A 37:293–301
    [Google Scholar]
  81. 81. 
    Williams DE, Houpt DJ. 1986. Fluorine nonbonded potential parameters derived from crystalline perfluorocarbons. Acta Crystallogr. B 42:286–95
    [Google Scholar]
  82. 82. 
    Hsu LY, Williams DE. 1980. Intermolecular potential-function models for crystalline perchlorohydrocarbons. Acta Crystallogr. A 36:277–81
    [Google Scholar]
  83. 83. 
    Williams DE. 2001. Improved intermolecular force field for molecules containing H, C, N, and O atoms, with application to nucleoside and peptide crystals. J. Comput. Chem. 22:1154–66
    [Google Scholar]
  84. 84. 
    Pyzer-Knapp EO, Thompson HPG, Day GM. 2016. An optimized intermolecular force field for hydrogen-bonded organic molecular crystals using atomic multipole electrostatics. Acta Crystallogr. B 72:477–87
    [Google Scholar]
  85. 85. 
    Gatsiou CA, Adjiman CS, Pantelides CC. 2018. Repulsion–dispersion parameters for the modelling of organic molecular crystals containing N, O, S and Cl. Faraday Discuss 211:297–323
    [Google Scholar]
  86. 86. 
    Pantelides CC, Adjiman CS, Kazantsev AV. 2014. General computational algorithms for ab initio crystal structure prediction for organic molecules. Prediction and Calculation of Crystal Structures S Atahan-Evrenk, A Aspuru-Guzik 22–58 Berlin: Springer
    [Google Scholar]
  87. 87. 
    Bowskill DH, Sugden IJ, George N, Keates A, Webb J et al. 2020. Efficient parameterization of a surrogate model of molecular interactions in crystals. Comput. Aided Process Eng. 48:493–98
    [Google Scholar]
  88. 88. 
    Tang KT, Toennies JP. 1984. An improved simple model for the van der Waals potential based on universal damping functions for the dispersion coefficients. J. Chem. Phys. 80:3726–41
    [Google Scholar]
  89. 89. 
    Axilrod BM, Teller E. 1943. Interaction of the van der Waals type between three atoms. J. Chem. Phys. 11:299–300
    [Google Scholar]
  90. 90. 
    von Lilienfeld OA, Tkatchenko A. 2010. Two- and three-body interatomic dispersion energy contributions to binding in molecules and solids. J. Chem. Phys. 132:234109
    [Google Scholar]
  91. 91. 
    Misquitta AJ, Stone AJ. 2016. Ab initio atom–atom potentials using CamCASP: theory and application to many-body models for the pyridine dimer. J. Chem. Theory Comput. 12:4184–208
    [Google Scholar]
  92. 92. 
    Podeszwa R, Bukowski R, Rice BM, Szalewicz K. 2007. Potential energy surface for cyclotrimethylene trinitramine dimer from symmetry-adapted perturbation theory. Phys. Chem. Chem. Phys. 9:5561–69
    [Google Scholar]
  93. 93. 
    Podeszwa R, Rice BM, Szalewicz K. 2009. Crystal structure prediction for cyclotrimethylene trinitramine (RDX) from first principles. Phys. Chem. Chem. Phys. 11:5512–18
    [Google Scholar]
  94. 94. 
    Misquitta AJ, Welch GWA, Stone AJ, Price SL. 2008. A first principles prediction of the crystal structure of C6Br2ClFH2. Chem. Phys. Lett. 456:105–9
    [Google Scholar]
  95. 95. 
    Day GM, Cooper TG, Cruz-Cabeza AJ, Hejczyk KE, Ammon HL et al. 2009. Significant progress in predicting the crystal structures of small organic molecules—a report on the fourth blind test. Acta Crystallogr. B 65:107–25
    [Google Scholar]
  96. 96. 
    Hafner J. 2008. Ab-initio simulations of materials using VASP: density-functional theory and beyond. J. Comput. Chem. 29:2044–78
    [Google Scholar]
  97. 97. 
    Dovesi R, Orlando R, Erba A, Zicovich-Wilson CM, Civalleri B et al. 2014. CRYSTAL14: a program for the ab initio investigation of crystalline solids. Int. J. Quantum Chem. 114:1287–317
    [Google Scholar]
  98. 98. 
    Blum V, Gehrke R, Hanke F, Havu P, Havu V et al. 2009. Ab initio molecular simulations with numeric atom-centered orbitals. Comput. Phys. Commun. 180:2175–96
    [Google Scholar]
  99. 99. 
    Perdew JP, Schmidt K. 2001. Jacob's ladder of density functional approximations for the exchange-correlation energy. AIP Conf. Proc. 577:1–20
    [Google Scholar]
  100. 100. 
    LeBlanc LM, Dale SG, Taylor CR, Becke AD, Day GM, Johnson ER. 2018. Pervasive delocalisation error causes spurious proton transfer in organic acid–base co-crystals. Angew. Chem. 130:15122–26
    [Google Scholar]
  101. 101. 
    Otero-De-La-Roza A, Johnson ER. 2012. A benchmark for non-covalent interactions in solids. J. Chem. Phys. 137:054103
    [Google Scholar]
  102. 102. 
    Klimeš J, Michaelides A. 2012. Perspective: advances and challenges in treating van der Waals dispersion forces in density functional theory. J. Chem. Phys. 137:120901
    [Google Scholar]
  103. 103. 
    Grimme S, Antony J, Ehrlich S, Krieg H 2010. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 132:154104
    [Google Scholar]
  104. 104. 
    Caldeweyher E, Bannwarth C, Grimme S. 2017. Extension of the D3 dispersion coefficient model. J. Chem. Phys. 147:034112
    [Google Scholar]
  105. 105. 
    Becke AD, Johnson ER. 2007. Exchange-hole dipole moment and the dispersion interaction revisited. J. Chem. Phys. 127:154108
    [Google Scholar]
  106. 106. 
    Tkatchenko A, DiStasio RA Jr., Car R, Scheffler M. 2012. Accurate and efficient method for many-body van der Waals interactions. Phys. Rev. Lett. 108:236402
    [Google Scholar]
  107. 107. 
    Bučko T, Lebègue S, Ángyán JG, Hafner J. 2014. Extending the applicability of the Tkatchenko-Scheffler dispersion correction via iterative Hirshfeld partitioning. J. Chem. Phys. 141:034114
    [Google Scholar]
  108. 108. 
    Marom N, DiStasio RA Jr., Atalla V, Levchenko S, Reilly AM et al. 2013. Many-body dispersion interactions in molecular crystal polymorphism. Angew. Chem. 52:6629–32
    [Google Scholar]
  109. 109. 
    Hoja J, Reilly AM, Tkatchenko A. 2017. First-principles modeling of molecular crystals: structures and stabilities, temperature and pressure. Wiley Interdiscip. Rev. Comput. Mol. Sci. 7:e1294
    [Google Scholar]
  110. 110. 
    Hoja J, Tkatchenko A. 2018. First-principles stability ranking of molecular crystal polymorphs with the DFT+MBD approach. Faraday Discuss 211:253–74
    [Google Scholar]
  111. 111. 
    Hoja J, Ko HY, Neumann MA, Car R, DiStasio RA Jr., Tkatchenko A. 2019. Reliable and practical computational description of molecular crystal polymorphs. Sci. Adv. 5:eaau3338
    [Google Scholar]
  112. 112. 
    Brandenburg JG, Grimme S. 2013. Dispersion corrected Hartree–Fock and density functional theory for organic crystal structure prediction. Prediction and Calculation of Crystal Structures S Atahan-Evrenk, A Aspuru-Guzik 1–23 Berlin: Springer
    [Google Scholar]
  113. 113. 
    Sure R, Grimme S. 2013. Corrected small basis set Hartree-Fock method for large systems. J. Comput. Chem. 34:1672–85
    [Google Scholar]
  114. 114. 
    Brandenburg JG, Grimme S. 2014. Accurate modeling of organic molecular crystals by dispersion-corrected density functional tight binding (DFTB). J. Phys. Chem. Lett. 5:1785–89
    [Google Scholar]
  115. 115. 
    Mortazavi M, Brandenburg JG, Maurer RJ, Tkatchenko A. 2018. Structure and stability of molecular crystals with many-body dispersion-inclusive density functional tight binding. J. Phys. Chem. Lett. 9:399–405
    [Google Scholar]
  116. 116. 
    Iuzzolino L, McCabe P, Price SL, Brandenburg JG. 2018. Crystal structure prediction of flexible pharmaceutical-like molecules: density functional tight binding as an intermediate optimisation method and for free energy estimation. Faraday Discuss 211:275–96
    [Google Scholar]
  117. 117. 
    Nyman J, Yu L, Reutzel-Edens SM. 2019. Accuracy and reproducibility in crystal structure prediction: the curious case of ROY. CrystEngComm 21:2080–88
    [Google Scholar]
  118. 118. 
    Wen S, Beran GJO. 2012. Accidental degeneracy in crystalline aspirin: new insights from high-level ab initio calculations. Cryst. Growth Des. 12:2169–72
    [Google Scholar]
  119. 119. 
    Reilly AM, Tkatchenko A. 2013. Understanding the role of vibrations, exact exchange, and many-body van der Waals interactions in the cohesive properties of molecular crystals. J. Chem. Phys. 139:024705
    [Google Scholar]
  120. 120. 
    Perdew JP, Burke K, Ernzerhof M. 1996. Generalized gradient approximation made simple. Phys. Rev. Lett. 77:3865–68
    [Google Scholar]
  121. 121. 
    Tao J, Perdew JP, Staroverov VN, Scuseria GE. 2003. Climbing the density functional ladder: nonempirical meta–generalized gradient approximation designed for molecules and solids. Phys. Rev. Lett. 91:146401
    [Google Scholar]
  122. 122. 
    Moellmann J, Grimme S. 2014. DFT-D3 study of some molecular crystals. J. Phys. Chem. C 118:7615–21
    [Google Scholar]
  123. 123. 
    Price SL, Leslie M, Welch GWA, Habgood M, Price LS et al. 2010. Modelling organic crystal structures using distributed multipole and polarizability-based model intermolecular potentials. Phys. Chem. Chem. Phys. 12:8478–90
    [Google Scholar]
  124. 124. 
    Tan M, Shtukenberg AG, Zhu S, Xu W, Dooryhee E et al. 2018. ROY revisited, again: the eighth solved structure. Faraday Discuss 211:477–91
    [Google Scholar]
  125. 125. 
    Nyman J, Pundyke OS, Day GM. 2016. Accurate force fields and methods for modelling organic molecular crystals at finite temperatures. Phys. Chem. Chem. Phys. 18:15828–37
    [Google Scholar]
  126. 126. 
    Born M, Huang K. 1954. Dynamical Theory of Crystal Lattices Oxford, UK: Clarendon
    [Google Scholar]
  127. 127. 
    Dove MT. 1993. Introduction to Lattice Dynamics Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  128. 128. 
    Brandenburg JG, Potticary J, Sparkes HA, Price SL, Hall SR. 2017. Thermal expansion of carbamazepine: Systematic crystallographic measurements challenge quantum chemical calculations. J. Phys. Chem. Lett. 8:4319–24
    [Google Scholar]
  129. 129. 
    McKinley JL, Beran GJO. 2018. Identifying pragmatic quasi-harmonic electronic structure approaches for modeling molecular crystal thermal expansion. Faraday Discuss 211:181–207
    [Google Scholar]
  130. 130. 
    Abraham NS, Shirts MR. 2018. Thermal gradient approach for the quasi-harmonic approximation and its application to improved treatment of anisotropic expansion. J. Chem. Theory Comput. 14:5904–19
    [Google Scholar]
  131. 131. 
    Nyman J, Day GM. 2016. Modelling temperature-dependent properties of polymorphic organic molecular crystals. Phys. Chem. Chem. Phys. 18:31132–43
    [Google Scholar]
  132. 132. 
    Abraham NS, Shirts MR. 2019. Adding anisotropy to the standard quasi-harmonic approximation still fails in several ways to capture organic crystal thermodynamics. Cryst. Growth Des. 19:6911–24
    [Google Scholar]
  133. 133. 
    Monserrat B, Drummond ND, Needs RJ. 2013. Anharmonic vibrational properties in periodic systems: energy, electron–phonon coupling, and stress. Phys. Rev. B 87:144302
    [Google Scholar]
  134. 134. 
    Nyman J. 2017. Computational predictions of structures, inclusion behaviour and properties of organic molecular crystals PhD Thesis Univ. Southampton Southampton, UK:
    [Google Scholar]
  135. 135. 
    Vasileiadis MM. 2013. Calculation of the free energy of crystalline solids PhD Thesis Imperial College London London, UK:
    [Google Scholar]
  136. 136. 
    Frenkel D, Smit B. 2001. Understanding Molecular Simulation: From Algorithms to Applications Amsterdam: Elsevier, 2nd ed..
    [Google Scholar]
  137. 137. 
    Dybeck EC, Abraham NS, Schieber NP, Shirts MR. 2017. Capturing entropic contributions to temperature-mediated polymorphic transformations through molecular modeling. Cryst. Growth Des. 17:1775–87
    [Google Scholar]
  138. 138. 
    Yu TQ, Tuckerman ME. 2011. Temperature-accelerated method for exploring polymorphism in molecular crystals based on free energy. Phys. Rev. Lett. 107:015701
    [Google Scholar]
  139. 139. 
    Schneider E, Vogt L, Tuckerman ME. 2016. Exploring polymorphism of benzene and naphthalene with free energy based enhanced molecular dynamics. Acta Crystallogr. B 72:542–50
    [Google Scholar]
  140. 140. 
    Reilly AM, Habershon S, Morrison CA, Rankin DWH. 2010. Simulating thermal motion in crystalline phase-I ammonia. J. Chem. Phys. 132:134511
    [Google Scholar]
  141. 141. 
    Schnieders MJ, Baltrusaitis J, Shi Y, Chattree G, Zheng L et al. 2012. The structure, thermodynamics, and solubility of organic crystals from simulation with a polarizable force field. J. Chem. Theory Comput. 8:1721–36
    [Google Scholar]
  142. 142. 
    Dybeck EC, Schieber NP, Shirts MR. 2016. Effects of a more accurate polarizable Hamiltonian on polymorph free energies computed efficiently by reweighting point-charge potentials. J. Chem. Theory Comput. 12:3491–505
    [Google Scholar]
  143. 143. 
    Gray AE, Day GM, Leslie M, Price SL 2004. Dynamics in crystals of rigid organic molecules: Contrasting the phonon frequencies calculated by molecular dynamics with harmonic lattice dynamics for imidazole and 5-azauracil. Mol. Phys. 102:1067–83
    [Google Scholar]
  144. 144. 
    Laio A, Parrinello M 2002. Escaping free-energy minima. PNAS 99:12562–66
    [Google Scholar]
  145. 145. 
    Martoňák R, Laio A, Parrinello M. 2003. Predicting crystal structures: the Parrinello–Rahman method revisited. Phys. Rev. Lett. 90:075503
    [Google Scholar]
  146. 146. 
    Karamertzanis PG, Raiteri P, Parrinello M, Leslie M, Price SL 2008. The thermal stability of lattice-energy minima of 5-fluorouracil: metadynamics as an aid to polymorph prediction. J. Phys. Chem. B 112:4298–308
    [Google Scholar]
  147. 147. 
    Zykova-Timan T, Raiteri P, Parrinello M. 2008. Investigating the polymorphism in PR179: a combined crystal structure prediction and metadynamics study. J. Phys. Chem. B 112:13231–37
    [Google Scholar]
  148. 148. 
    Taylor R, Wood PA. 2019. A million crystal structures: The whole is greater than the sum of its parts. Chem. Rev. 119:9427–77
    [Google Scholar]
  149. 149. 
    Cruz-Cabeza AJ, Day GM, Jones W. 2011. Structure prediction, disorder and dynamics in a DMSO solvate of carbamazepine. Phys. Chem. Chem. Phys. 13:12808–16
    [Google Scholar]
  150. 150. 
    Habgood M. 2011. Form II caffeine: a case study for confirming and predicting disorder in organic crystals. Cryst. Growth Des. 11:3600–8
    [Google Scholar]
  151. 151. 
    Habgood M, Grau-Crespo R, Price SL. 2011. Substitutional and orientational disorder in organic crystals: a symmetry-adapted ensemble model. Phys. Chem. Chem. Phys. 13:9590–600
    [Google Scholar]
  152. 152. 
    Woollam GR, Neumann MA, Wagner T, Davey RJ. 2018. The importance of configurational disorder in crystal structure prediction: the case of loratadine. Faraday Discuss 211:209–34
    [Google Scholar]
  153. 153. 
    Braun DE, McMahon JA, Bhardwaj RM, Nyman J, Neumann MA et al. 2019. Inconvenient truths about solid form landscapes revealed in the polymorphs and hydrates of gandotinib. Cryst. Growth Des. 19:2947–62
    [Google Scholar]
  154. 154. 
    Li X, Curtis FS, Rose T, Schober C, Vazquez-Mayagoitia A et al. 2018. Genarris: random generation of molecular crystal structures and fast screening with a Harris approximation. J. Chem. Phys. 148:241701
    [Google Scholar]
  155. 155. 
    Curtis F, Li X, Rose T, Vázquez-Mayagoitia Á, Bhattacharya S et al. 2018. GAtor: a first-principles genetic algorithm for molecular crystal structure prediction. J. Chem. Theory Comput. 14:2246–64
    [Google Scholar]
  156. 156. 
    Aradi B, Hourahine B, Frauenheim T. 2007. DFTB+, a sparse matrix-based implementation of the DFTB method. J. Phys. Chem. A 111:5678–84
    [Google Scholar]
  157. 157. 
    Bhardwaj RM, Price LS, Price SL, Reutzel-Edens SM, Miller GJ et al. 2013. Exploring the experimental and computed crystal energy landscape of olanzapine. Cryst. Growth Des. 13:1602–17
    [Google Scholar]
  158. 158. 
    McMahon DP, Stephenson A, Chong SY, Little MA, Jones JT et al. 2018. Computational modelling of solvent effects in a prolific solvatomorphic porous organic cage. Faraday Discuss 211:383–99
    [Google Scholar]
  159. 159. 
    Beran GJO. 2016. Modeling polymorphic molecular crystals with electronic structure theory. Chem. Rev. 116:5567–613
    [Google Scholar]
  160. 160. 
    Bludský O, Rubeš M, Soldán P. 2008. Ab initio investigation of intermolecular interactions in solid benzene. Phys. Rev. B 77:092103
    [Google Scholar]
  161. 161. 
    Yang J, Hu W, Usvyat D, Matthews D, Schütz M, Chan GKL. 2014. Ab initio determination of the crystalline benzene lattice energy to sub-kilojoule/mole accuracy. Science 345:640–43
    [Google Scholar]
  162. 162. 
    Taylor CR, Bygrave PJ, Hart JN, Allan NL, Manby FR. 2012. Improving density functional theory for crystal polymorph energetics. Phys. Chem. Chem. Phys. 14:7739–43
    [Google Scholar]
  163. 163. 
    Tsuzuki S, Orita H, Honda K, Mikami M. 2010. First-principles lattice energy calculation of urea and hexamine crystals by a combination of periodic DFT and MP2 two-body interaction energy calculations. J. Phys. Chem. B 114:6799–805
    [Google Scholar]
  164. 164. 
    Wen S, Beran GJO. 2011. Accurate molecular crystal lattice energies from a fragment QM/MM approach with on-the-fly ab initio force field parametrization. J. Chem. Theory Comput. 7:3733–42
    [Google Scholar]
  165. 165. 
    Wen S, Nanda K, Huang Y, Beran GJO. 2012. Practical quantum mechanics–based fragment methods for predicting molecular crystal properties. Phys. Chem. Chem. Phys. 14:7578–90
    [Google Scholar]
  166. 166. 
    Červinka C, Beran GJO. 2018. Ab initio prediction of the polymorph phase diagram for crystalline methanol. Chem. Sci. 9:4622–29
    [Google Scholar]
  167. 167. 
    Foulkes WMC, Mitas L, Needs RJ, Rajagopal G. 2001. Quantum Monte Carlo simulations of solids. Rev. Mod. Phys. 73:33–83
    [Google Scholar]
  168. 168. 
    Zen A, Brandenburg JG, Klimeš J, Tkatchenko A, Alfè D, Michaelides A 2018. Fast and accurate quantum Monte Carlo for molecular crystals. PNAS 115:1724–29
    [Google Scholar]
  169. 169. 
    Hongo K, Watson MA, Sánchez-Carrera RS, Iitaka T, Aspuru-Guzik A. 2010. Failure of conventional density functionals for the prediction of molecular crystal polymorphism: a quantum Monte Carlo study. J. Phys. Chem. Lett. 1:1789–94
    [Google Scholar]
  170. 170. 
    Červinka C, Beran GJO. 2017. Ab initio thermodynamic properties and their uncertainties for crystalline α-methanol. Phys. Chem. Chem. Phys. 19:29940–53
    [Google Scholar]
  171. 171. 
    Egorova O, Hafizi R, Woods DC, Day GM. 2020. Multi-fidelity statistical machine learning for molecular crystal structure prediction. chemRxiv 12407831. https://doi.org/10.26434/chemrxiv.12407831.v1
    [Crossref]
/content/journals/10.1146/annurev-chembioeng-060718-030256
Loading
/content/journals/10.1146/annurev-chembioeng-060718-030256
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error