1932

Abstract

The application of statistics in pharmaceutical process research and development has evolved significantly over the past decades, motivated in part by the introduction of the Quality by Design paradigm, a landmark change in regulatory expectations for the level of scientific understanding associated with the manufacturing process. Today, statistical methods are increasingly applied to accelerate the characterization and optimization of new drugs created via numerous unit operations well known to the chemical engineering discipline. We offer here a review of the maturity in the implementation of design of experiment techniques, the increased incorporation of latent variable methods in process and material characterization, and the adoption of Bayesian methodology for process risk assessment.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-060816-101418
2017-06-07
2024-04-14
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/8/1/annurev-chembioeng-060816-101418.html?itemId=/content/journals/10.1146/annurev-chembioeng-060816-101418&mimeType=html&fmt=ahah

Literature Cited

  1. McCabe WL, Smith JC, Harriott P. 1.  2005. Unit Operations of Chemical Engineering New York: McGraw-Hill
  2. am Ende DJ. 2.  2011. Chemical Engineering in the Pharmaceutical Industry: R&D to Manufacturing Hoboken, NJ: Wiley
  3. Woodcock J. 3.  2004. The concept of pharmaceutical quality. Am. Pharm. Rev. 7:10–15 [Google Scholar]
  4. Friedman LM, Furberg CD, DeMets D. 4.  2010. Fundamentals of Clinical Trials New York: Springer
  5. 5. ICH. 2011. ICH-endorsed guide for ICH Q8/Q9/Q10 implementation ICH Qual. Implement. Work Group Points to Consider (R2) ICH Geneva, Switzerland: http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q8_9_10_QAs/PtC/Quality_IWG_PtCR2_6dec2011.pdf
  6. Beck DAC, Carothers JM, Subramanian VR, Pfaendtner J. 6.  2016. Data science: accelerating innovation and discovery in chemical engineering. AIChE J 62:1402–16 [Google Scholar]
  7. Troup GM, Georgakis C. 7.  2013. Process systems engineering tools in the pharmaceutical industry. Comput. Chem. Eng. 51:157–71 [Google Scholar]
  8. García-Muñoz S, Luciani CV, Vaidyaraman S, Seibert KD. 8.  2015. Definition of design spaces using mechanistic models and geometric projections of probability maps. Org. Process Res. Dev. 19:1012–23 [Google Scholar]
  9. Peterson JJ. 9.  2006. A review of Bayesian reliability approaches to multiple response surface optimization. Bayesian Process Monitoring, Control and Optimization BM Colosimo, E del Castillo 268–90 Boca Raton, FL: Chapman & Hall/CRC [Google Scholar]
  10. Peterson JJ. 10.  2008. A Bayesian approach to the ICH Q8 definition of design space. J. Biopharm. Stat. 18:959–75 [Google Scholar]
  11. Jouan-Rimbaud D, Walczak B, Massart D, Last I, Prebble K. 11.  1995. Comparison of multivariate methods based on latent vectors and methods based on wavelength selection for the analysis of near-infrared spectroscopic data. Anal. Chim. Acta 304:285–95 [Google Scholar]
  12. Tomba E, Facco P, Bezzo F, Barolo M. 12.  2013. Latent variable modeling to assist the implementation of Quality-by-Design paradigms in pharmaceutical development and manufacturing: a review. Int. J. Pharm. 457:283–97 [Google Scholar]
  13. Pomerantsev AL, Rodionova OY. 13.  2012. Process analytical technology: a critical view of the chemometricians. J. Chemom. 26:299–310 [Google Scholar]
  14. Roggo Y, Chalus P, Maurer L, Lema-Martinez C, Edmond A, Jent N. 14.  2007. A review of near infrared spectroscopy and chemometrics in pharmaceutical technologies. J. Pharm. Biomed. Anal 44:683–700 [Google Scholar]
  15. Lourenço N, Lopes J, Almeida C, Sarraguça M, Pinheiro H. 15.  2012. Bioreactor monitoring with spectroscopy and chemometrics: a review. Anal. Bioanal. Chem. 404:1211–37 [Google Scholar]
  16. Kourti T, MacGregor JF. 16.  1995. Process analysis, monitoring and diagnosis, using multivariate projection methods. Chemom. Intell. Lab. Syst. 28:3–21 [Google Scholar]
  17. Kourti T. 17.  2015. Multivariate analysis for process understanding, monitoring, control, and optimization of lyophilization processes. Quality by Design for Biopharmaceutical Drug Product Development F Jameel, S Hershenson, MA Khan, S Martin-Moe 537–64 New York: Springer [Google Scholar]
  18. Ottavian M, Tomba E, Barolo M. 18.  2016. Advanced process decision making using multivariate latent variable methods. Process Simulation and Data Modeling in Solid Oral Drug Development and Manufacture MG Ierapetritou, R Ramachandran 159–89 Meth. Pharmacol. Toxicol New York: Springer [Google Scholar]
  19. de Noord OE. 19.  1994. The influence of data preprocessing on the robustness and parsimony of multivariate calibration models. Chemom. Intell. Lab. Syst. 23:65–70 [Google Scholar]
  20. Eriksson L, Byrne T, Johansson E, Trygg J, Vikström C. 20.  2013. Multi- and Megavariate Data Analysis: Basic Principles and Applications San Jose, CA: Umetrics Acad
  21. Wise BM, Gallagher NB, Bro R, Shaver JM, Windig W, Koch RS. 21.  2006. Chemometrics Tutorial for PLS_Toolbox and Solo Wenatachee, WA: Eigenvector Res. Inc
  22. Joliffe IT. 22.  2002. Principal Component Analysis New York: Springer-Verlag
  23. Huang J, Kaul G, Cai C, Chatlapalli R, Hernandez-Abad P. 23.  et al. 2009. Quality by design case study: an integrated multivariate approach to drug product and process development. Int. J. Pharm. 382:23–32 [Google Scholar]
  24. Grohganz H, Lee Y-Y, Rantanen J, Yang M. 24.  2013. The influence of lysozyme on mannitol polymorphism in freeze-dried and spray-dried formulations depends on the selection of the drying process. Int. J. Pharm. 447:224–30 [Google Scholar]
  25. Carlson R, Lundstedt T, Nordahl A, Prochazka M. 25.  1986. Lewis acids in organic synthesis. Approach to a selection strategy for screening experiments. Acta Chem. Scand. B 40:522–33 [Google Scholar]
  26. Lundstedt TC, Carlson R, Shabana R. 26.  1984. Optimum conditions for the Willgerodt-Kindler reaction. 3. Amine variation. Acta Chem. Scand. B 38:157–63 [Google Scholar]
  27. Prochazka MP, Carlson R. 27.  1989. On the roles of Lewis acid catalysts and solvents in the Fischer indole synthesis. Acta Chem. Scand. 43:651i59 [Google Scholar]
  28. Murray PM, Bellany F, Benhamou L, Bucar D-K, Tabor AB, Sheppard TD. 28.  2016. The application of design of experiments (DoE) reaction optimisation and solvent selection in the development of new synthetic chemistry. Org. Biomol. Chem. 14:2373–84 [Google Scholar]
  29. Höskuldsson A. 29.  1988. PLS regression methods. J. Chemom. 2:211–28 [Google Scholar]
  30. Lourenço V, Lochmann D, Reich G, Menezes JC, Herdling T, Schewitz J. 30.  2012. A quality by design study applied to an industrial pharmaceutical fluid bed granulation. Eur. J. Pharm. Biopharm. 81:438–47 [Google Scholar]
  31. MacGregor JF, Yu H, Muñoz SG, Flores-Cerrillo J. 31.  2005. Data-based latent variable methods for process analysis, monitoring and control. Comput. Chem. Eng. 29:1217–23 [Google Scholar]
  32. Cunha C, Glassey J, Montague G, Albert S, Mohan P. 32.  2002. An assessment of seed quality and its influence on productivity estimation in an industrial antibiotic fermentation. Biotechnol. Bioeng. 78:658–69 [Google Scholar]
  33. Nucci ER, Cruz AJ, Giordano RC. 33.  2010. Monitoring bioreactors using principal component analysis: production of penicillin G acylase as a case study. Bioprocess Biosyst. Eng. 33:557–64 [Google Scholar]
  34. Fisher RA. 34.  1935. The Design of Experiments Edinburgh: Oliver & Boyd
  35. Box GEP. 35.  2009. Statistics for Experimenters: Design, Innovation, and Discovery, Second Edition + JMP Version 6 Software Set Hoboken, NJ: Wiley
  36. Myers RH, Montgomery DC, Anderson-Cook CM. 36.  2016. Response Surface Methodology: Process and Product Optimization Using Designed Experiments Hoboken, NJ: Wiley
  37. Goos P, Jones B. 37.  2011. Optimal Design of Experiments: A Case Study Approach Hoboken, NJ: Wiley
  38. Box GEP, Cox DR. 38.  1964. An analysis of transformations. J. R. Stat. Soc. B (Methodol.) 26:211–52 [Google Scholar]
  39. Dolby JL. 39.  1963. A quick method for choosing a transformation. Technometrics 5:317–25 [Google Scholar]
  40. Singh B, Kumar R, Ahuja N. 40.  2005. Optimizing drug delivery systems using systematic design of experiments. Part I: fundamental aspects. Crit. Rev. Ther. Drug Carrier Syst. 22:27–105 [Google Scholar]
  41. 41. NIST/SEMATECH (Natl. Inst. Stat. Technol./Semicond. Manuf. Technol.). 2013. Constructing the 23−1 half-fraction design. NIST/SEMATECH e-Handbook of Statistical Methods Section 5.3.3.4.2. http://www.itl.nist.gov/div898/handbook/
  42. Plackett RL, Burman JP. 42.  1946. The design of optimum multifactorial experiments. Biometrika 33:305–25 [Google Scholar]
  43. Box GEP, Behnken DW. 43.  1960. Some new three level designs for the study of quantitative variables. Technometrics 2:455–75 [Google Scholar]
  44. Box J, Wilson W. 44.  1951. Central composites design. J. R. Stat. Soc. 1:1–35 [Google Scholar]
  45. Fellman J. 45.  1999. Gustav Elfving's contribution to the emergence of the optimal experimental design theory. Stat. Sci. 14:197–200 [Google Scholar]
  46. Eriksson L. 46.  2008. Design of Experiments: Principles and Applications San Jose, CA: Umetrics Acad
  47. Dienemann E, Osifchin R. 47.  2000. The role of chemical engineering in process development and optimization. Curr. Opin. Drug Discov. Dev. 3:690–98 [Google Scholar]
  48. Korakianiti E, Rekkas D. 48.  2011. Statistical thinking and knowledge management for quality-driven design and manufacturing in pharmaceuticals. Pharm. Res. 28:1465–79 [Google Scholar]
  49. Mandenius CF, Graumann K, Schultz TW, Premstaller A, Olsson IM. 49.  et al. 2009. Quality-by-design for biotechnology-related pharmaceuticals. Biotechnol. J. 4:600–9 [Google Scholar]
  50. McKay B, Hoogenraad M, Damen EW, Smith AA. 50.  2003. Advances in multivariate analysis in pharmaceutical process development. Curr. Opin. Drug Discov. Dev. 6:966–77 [Google Scholar]
  51. Mills JE. 51.  2003. Design of experiments in pharmaceutical process research and development. Chemical Process Research: The Art of Practical Organic Synthesis AF Abdel-Magid, JA Ragan 87–109 Washington, DC: Am. Chem. Soc [Google Scholar]
  52. Peterson JJ, Lief K. 52.  2010. The ICH Q8 definition of design space: a comparison of the overlapping means and the Bayesian predictive approaches. Stat. Biopharm. Res. 2:249–59 [Google Scholar]
  53. Rubin AE, Tummala S, Both DA, Wang C, Delaney EJ. 53.  2006. Emerging technologies supporting chemical process R&D and their increasing impact on productivity in the pharmaceutical industry. Chem. Rev. 106:2794–810 [Google Scholar]
  54. Stetsko G. 54.  1986. Statistical experimental design and its application to pharmaceutical development problems. Drug Dev. Ind. Pharm. 12:1109–23 [Google Scholar]
  55. Weissman SA, Anderson NG. 55.  2015. Design of Experiments (DoE) and process optimization: a review of recent publications. Org. Process Res. Dev. 19:1605–33 [Google Scholar]
  56. Hallow DM, Mudryk BM, Braem AD, Tabora JE, Lyngberg OK. 56.  et al. 2010. An example of utilizing mechanistic and empirical modeling in quality by design. J. Pharm. Innov. 5:193–203 [Google Scholar]
  57. Burt JL, Braem AD, Ramirez A, Mudryk B, Rossano L, Tummala S. 57.  2011. Model-guided design space development for a drug substance manufacturing process. J. Pharm. Innov. 6:181–92 [Google Scholar]
  58. Makrydaki F, Georgakis C, Saranteas K. 58.  2010. Dynamic optimization of a batch pharmaceutical reaction Using the Design of Dynamic Experiments (DoDE): the case of an asymmetric catalytic hydrogenation reaction Presented at 9th Int. Symp. Dyn. Control Process Syst. (DYCOPS 2010) Leuven, Belg:
  59. Georgakis C. 59.  2013. Design of dynamic experiments: a data-driven methodology for the optimization of time-varying processes. Ind. Eng. Chem. Res. 52:12369–82 [Google Scholar]
  60. Domagalski NR, Mack BC, Tabora JE. 60.  2015. Analysis of design of experiments with dynamic responses. Org. Process Res. Dev. 19:1667–82 [Google Scholar]
  61. Remy B, Kightlinger W, Saurer EM, Domagalski N, Glasser BJ. 61.  2015. Scale-up of agitated drying: effect of shear stress and hydrostatic pressure on active pharmaceutical ingredient powder properties. AIChE J 61:407–18 [Google Scholar]
  62. Togkalidou T, Braatz RD, Johnson BK, Davidson O, Andrews A. 62.  2001. Experimental design and inferential modeling in pharmaceutical crystallization. AIChE J 47:160–68 [Google Scholar]
  63. Castagnoli C, Yahyah M, Cimarosti Z, Peterson JJ. 63.  2010. Application of quality by design principles for the definition of a robust crystallization process for casopitant mesylate. Org. Process Res. Dev. 14:1407–19 [Google Scholar]
  64. Hughes B, Hann LE. 64.  2007. The production of biopharmaceuticals. Biologics in General Medicine W-H Boehncke, HH Radeke 59–66 Berlin: Springer [Google Scholar]
  65. Chhatre S, Farid SS, Coffman J, Bird P, Newcombe AR, Titchener-Hooker NJ. 65.  2011. How implementation of Quality by Design and advances in Biochemical Engineering are enabling efficient bioprocess development and manufacture. J. Chem. Technol. Biotechnol. 86:1125–29 [Google Scholar]
  66. Ziegelbauer K, Light DR. 66.  2008. Monoclonal antibody therapeutics: leading companies to maximise sales and market share. J. Commer. Biotechnol. 14:65–72 [Google Scholar]
  67. Abu-Absi SF, Yang L, Thompson P, Jiang C, Kandula S. 67.  et al. 2010. Defining process design space for monoclonal antibody cell culture. Biotechnol. Bioeng. 106:894–905 [Google Scholar]
  68. Looby M, Ibarra N, Pierce JJ, Buckley K, O'Donovan E. 68.  et al. 2011. Application of quality by design principles to the development and technology transfer of a major process improvement for the manufacture of a recombinant protein. Biotechnol. Prog. 27:1718–29 [Google Scholar]
  69. Barker G, Calzada J, Ouyang Z, Domagalski N, Herzer S, Rieble S. 69.  2016. A systematic approach to improve data quality in high-throughput batch adsorption experiments. Eng. Life Sci. 16:124–32 [Google Scholar]
  70. Bhambure R, Rathore AS. 70.  2013. Chromatography process development in the quality by design paradigm I: establishing a high-throughput process development platform as a tool for estimating “characterization space” for an ion exchange chromatography step. Biotechnol. Prog. 29:403–14 [Google Scholar]
  71. Mollerup JM, Hansen TB, Kidal S, Staby A. 71.  2008. Quality by design—thermodynamic modelling of chromatographic separation of proteins. J. Chromatogr. A 1177:200–6 [Google Scholar]
  72. Pieracci J, Perry L, Conley L. 72.  2010. Using partition designs to enhance purification process understanding. Biotechnol. Bioeng. 107:814–24 [Google Scholar]
  73. Perry LA, Montgomery DC, Fowler JW. 73.  2001. Partition experimental designs for sequential processes: Part I—first-order models. Q. Reliab. Eng. Int. 17:429–38 [Google Scholar]
  74. Perry LA, Montgomery DC, Fowler JW. 74.  2002. Partition experimental designs for sequential processes: Part II—second-order models. Q. Reliab. Eng. Int. 18:373–82 [Google Scholar]
  75. Zidan AS, Sammour OA, Hammad MA, Megrab NA, Habib MJ, Khan MA. 75.  2007. Quality by design: understanding the formulation variables of a cyclosporine A self-nanoemulsified drug delivery systems by Box-Behnken design and desirability function. Int. J. Pharm. 332:55–63 [Google Scholar]
  76. Li S, Lin S, Daggy BP, Mirchandani HL, Chien YW. 76.  2002. Effect of formulation variables on the floating properties of gastric floating drug delivery system. Drug Dev. Ind. Pharm. 28:783–93 [Google Scholar]
  77. Rosas JG, Blanco M, Gonzalez JM, Alcala M. 77.  2011. Quality by design approach of a pharmaceutical gel manufacturing process, part 1: determination of the design space. J. Pharm. Sci. 100:4432–41 [Google Scholar]
  78. Wu H, Tawakkul M, White M, Khan MA. 78.  2009. Quality-by-design (QbD): an integrated multivariate approach for the component quantification in powder blends. Int. J. Pharm. 372:39–48 [Google Scholar]
  79. Herting MG, Kleinebudde P. 79.  2007. Roll compaction/dry granulation: effect of raw material particle size on granule and tablet properties. Int. J. Pharm. 338:110–18 [Google Scholar]
  80. Cui Y, Song X, Chuang K, Venkatramani C, Lee S. 80.  et al. 2012. Variable selection in multivariate modeling of drug product formula and manufacturing process. J. Pharm. Sci. 101:4597–607 [Google Scholar]
  81. Fahmy R, Kona R, Dandu R, Xie W, Claycamp G, Hoag SW. 81.  2012. Quality by design I: application of failure mode effect analysis (FMEA) and Plackett-Burman design of experiments in the identification of “main factors” in the formulation and process design space for roller-compacted ciprofloxacin hydrochloride immediate-release tablets. AAPS PharmSciTech 13:1243–54 [Google Scholar]
  82. Ring DT, Oliveira JCO, Crean A. 82.  2011. Evaluation of the influence of granulation processing parameters on the granule properties and dissolution characteristics of a modified release drug. Adv. Powder Technol. 22:245–52 [Google Scholar]
  83. Huang J, Kaul G, Cai C, Chatlapalli R, Hernandez-Abad P. 83.  et al. 2009. Quality by design case study: an integrated multivariate approach to drug product and process development. Int. J. Pharm. 382:23–32 [Google Scholar]
  84. Rozet E, Lebrun P, Hubert P, Debrus B, Boulanger B. 84.  2013. Design spaces for analytical methods. Trends Anal. Chem. 42:157–67 [Google Scholar]
  85. Peterson JJ. 85.  2004. A posterior predictive approach to multiple response surface optimization. J. Q. Technol. 36:139–53 [Google Scholar]
  86. Debrus B, Lebrun P, Ceccato A, Caliaro G, Rozet E. 86.  et al. 2011. Application of new methodologies based on design of experiments, independent component analysis and design space for robust optimization in liquid chromatography. Anal. Chim. Acta 691:33–42 [Google Scholar]
  87. Boulanger B, Chiap P, Dewe W, Crommen J, Hubert P. 87.  2003. An analysis of the SFSTP guide on validation of chromatographic bioanalytical methods: progress and limitations. J. Pharm. Biomed. Anal 32:753–65 [Google Scholar]
  88. Furlanetto S, Orlandini S, Mura P, Sergent M, Pinzauti S. 88.  2003. How experimental design can improve the validation process. Studies in pharmaceutical analysis. Anal. Bioanal. Chem. 377:937–44 [Google Scholar]
  89. Thomson NM, Singer R, Seibert KD, Luciani CV, Srivastava S. 89.  et al. 2015. Case studies in the development of drug substance control strategies. Org. Process Res. Dev. 19:935–48 [Google Scholar]
  90. Chudiwal SS, Dehghan MHG. 90.  2016. Quality by design approach for development of suspension nasal spray products: a case study on budesonide nasal suspension. Drug Dev. Ind. Pharm. 42:1643–52 [Google Scholar]
  91. Hakemeyer C, McKnight N, John RS, Meier S, Trexler-Schmidt M. 91.  et al. 2016. Process characterization and Design Space definition. Biologicals 44:306–18 [Google Scholar]
  92. Gelman A, Hill J. 92.  2006. Data Analysis using Regression and Multilevel/Hierarchical Models Cambridge, UK: Cambridge Univ. Press
  93. Albrecht J. 93.  2013. Estimating reaction model parameter uncertainty with Markov Chain Monte Carlo. Comput. Chem. Eng. 48:14–28 [Google Scholar]
  94. Gelman A, Carlin JB, Stern HS, Rubin DB. 94.  2014. Bayesian Data Analysis Boca Raton, FL: Chapman & Hall/CRC
  95. Zacour BM, Drennen JK, Anderson CA. 95.  2012. Development of a fluid bed granulation design space using critical quality attribute weighted tolerance intervals. J. Pharm. Sci. 101:2917–29 [Google Scholar]
  96. McCabe WL, Thiele EW. 96.  1925. Graphical design of fractionating columns. Ind. Eng. Chem. 17:605–11 [Google Scholar]
  97. van Heerden C. 97.  1953. Autothermic processes. Ind. Eng. Chem. 45:1242–47 [Google Scholar]
  98. Lepore J, Spavins J. 98.  2008. PQLI design space. J. Pharm. Innov. 3:79–87 [Google Scholar]
  99. Tabora JE. 99.  2012. Data driven modelling and control of batch processes in the pharmaceutical industry. IFAC Proc 45:708–14 [Google Scholar]
  100. Takayama K, Fujikawa M, Obata Y, Morishita M. 100.  2003. Neural network based optimization of drug formulations. Adv. Drug Deliv. Rev. 55:1217–31 [Google Scholar]
  101. Jia Z, Davis E, Muzzio FJ, Ierapetritou MG. 101.  2009. Predictive modeling for pharmaceutical processes using kriging and response surface. J. Pharm. Innov. 4:174–86 [Google Scholar]
  102. Boukouvala F, Muzzio FJ, Ierapetritou MG. 102.  2011. Dynamic data-driven modeling of pharmaceutical processes. Ind. Eng. Chem. Res. 50:6743–54 [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-060816-101418
Loading
/content/journals/10.1146/annurev-chembioeng-060816-101418
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error