1932

Abstract

A new generation of catalysts is needed to meet society's energy and resource requirements. Current catalyst synthesis does not fully achieve optimum control of composition, size, and structure. Atomic layer deposition (ALD) is an emerging technique that allows for synthesis of highly controlled catalysts in the form of films, nanoparticles, and single sites. The addition of ALD coatings can also be used to introduce promoters and improve the stability of traditional catalysts. Evolving research shows promise for applying ALD to understand catalytically active sites and create next-generation catalysts using advanced 3D nanostructures.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-060816-101547
2017-06-07
2024-10-09
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/8/1/annurev-chembioeng-060816-101547.html?itemId=/content/journals/10.1146/annurev-chembioeng-060816-101547&mimeType=html&fmt=ahah

Literature Cited

  1. Lee AF, Bennett JA, Manayil JC, Wilson K. 1.  2014. Heterogeneous catalysis for sustainable biodiesel production via esterification and transesterification. Chem. Soc. Rev. 43:227887–916 [Google Scholar]
  2. Gallezot P. 2.  2008. Catalytic conversion of biomass: challenges and issues. ChemSusChem 1:8–9734–37 [Google Scholar]
  3. Pinaud BA, Benck JD, Seitz LC, Forman AJ, Chen Z. 3.  et al. 2013. Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry. Energy Environ. Sci. 6:71983–2002 [Google Scholar]
  4. Arakawa H, Aresta M, Armor JN, Barteau MA, Beckman EJ. 4.  et al. 2001. Catalysis research of relevance to carbon management: progress, challenges, and opportunities. Chem. Rev. 101:4953–96 [Google Scholar]
  5. Wrobleski JT, Boudart M. 5.  1992. Preparation of solid catalysts: an appraisal. Catal. Today 15:3–4349–60 [Google Scholar]
  6. O'Neill BJ, Jackson DHK, Lee J, Canlas C, Stair PC. 6.  et al. 2015. Catalyst design with atomic layer deposition. ACS Catal 5:31804–25 [Google Scholar]
  7. Schwartz TJ, O'Neill BJ, Shanks BH, Dumesic JA. 7.  2014. Bridging the chemical and biological catalysis gap: challenges and outlooks for producing sustainable chemicals. ACS Catal 4:62060–69 [Google Scholar]
  8. Wegener SL, Marks TJ, Stair PC. 8.  2012. Design strategies for the molecular level synthesis of supported catalysts. Acc. Chem. Res. 45:2206–14 [Google Scholar]
  9. Detavernier C, Dendooven J, Sree SP, Ludwig KF, Martens JA. 9.  2011. Tailoring nanoporous materials by atomic layer deposition. Chem. Soc. Rev. 40:115242–53 [Google Scholar]
  10. Munnik P, de Jongh PE, de Jong KP. 10.  2015. Recent developments in the synthesis of supported catalysts. Chem. Rev. 115:146687–718 [Google Scholar]
  11. Lu J, Elam JW, Stair PC. 11.  2016. Atomic layer deposition—sequential self-limiting surface reactions for advanced catalyst “bottom-up” synthesis. Surf. Sci. Rep. 71:2410–72 [Google Scholar]
  12. Leskelä M, Ritala M. 12.  2002. Atomic layer deposition (ALD): from precursors to thin film structures. Thin Solid Films 409:1138–46 [Google Scholar]
  13. Suntola T. 13.  1989. Atomic layer epitaxy. Mater. Sci. Rep. 4:5261–312 [Google Scholar]
  14. George SM. 14.  2010. Atomic layer deposition: an overview. Chem. Rev. 110:1111–31 [Google Scholar]
  15. Johnson RW, Hultqvist A, Bent SF. 15.  2014. A brief review of atomic layer deposition: from fundamentals to applications. Mater. Today 17:5236–46 [Google Scholar]
  16. Mackus AJM, Bol AA, Kessels WMM. 16.  2014. The use of atomic layer deposition in advanced nanopatterning. Nanoscale 6:1910941–60 [Google Scholar]
  17. Sobel N, Hess C. 17.  2015. Nanoscale structuring of surfaces by using atomic layer deposition. Angew. Chem. 54:5015014–21 [Google Scholar]
  18. Knez M, Nielsch K, Niinistö L. 18.  2007. Synthesis and surface engineering of complex nanostructures by atomic layer deposition. Adv. Mater. 19:213425–38 [Google Scholar]
  19. Lakomaa EL. 19.  1994. Atomic layer epitaxy (ALE) on porous substrates. Appl. Surf. Sci. 75:1–4185–96 [Google Scholar]
  20. Puurunen RL. 20.  2014. A short history of atomic layer deposition: Tuomo Suntola's atomic layer epitaxy. Chem. Vap. Depos. 20:10–12332–44 [Google Scholar]
  21. Suntola T, Antson J. 21.  1977. Method for producing compound thin films US Patent No. 4058430 [Google Scholar]
  22. Kim H, Lee HBR, Maeng WJ. 22.  2009. Applications of atomic layer deposition to nanofabrication and emerging nanodevices. Thin Solid Films 517:82563–80 [Google Scholar]
  23. Marichy C, Bechelany M, Pinna N. 23.  2012. Atomic layer deposition of nanostructured materials for energy and environmental applications. Adv. Mater. 24:81017–32 [Google Scholar]
  24. Muñoz-Rojas D, MacManus-Driscoll J. 24.  2014. Spatial atmospheric atomic layer deposition: a new laboratory and industrial tool for low-cost photovoltaics. Mater. Horiz. 1:314–20 [Google Scholar]
  25. Peng Q, Lewis JS, Hoertz PG, Glass JT, Parsons GN. 25.  2012. Atomic layer deposition for electrochemical energy generation and storage systems. J. Vac. Sci. Technol. A 30:110803 [Google Scholar]
  26. Ritala M, Niinistö J. 26.  2009. Industrial applications of atomic layer deposition. ECS Trans 2:8641–52 [Google Scholar]
  27. Kim H. 27.  2003. Atomic layer deposition of metal and nitride thin films: current research efforts and applications for semiconductor device processing. J. Vac. Sci. Technol. B 21:62231–61 [Google Scholar]
  28. Ritala M, Niinistö J. 28.  2009. Industrial applications of atomic layer deposition. ECS Trans 2:8641–52 [Google Scholar]
  29. Bakke JR, Pickrahn KL, Brennan TP, Bent SF. 29.  2011. Nanoengineering and interfacial engineering of photovoltaics by atomic layer deposition. Nanoscale 3:93482–508 [Google Scholar]
  30. Haukka S, Lakomaa EL, Suntola T. 30.  1998. Adsorption controlled preparation of heterogeneous catalysts. Adsorpt. Appl. Ind. Environ. Prot. 120:715–50 [Google Scholar]
  31. Jacobs JP, Lindfors LP, Reintjes JGH, Jylhä O, Brongersma HH. 31.  1994. The growth mechanism of nickel in the preparation of Ni/Al2O3 catalysts studied by LEIS, XPS and catalytic activity. Catal. Lett. 25:3–4315–24 [Google Scholar]
  32. Jacobs JP, Hakuli A. 32.  1996. Surface characteristics and activity of chromia/alumina catalysts prepared by atomic layer epitaxy. J. Catal. 197:276190–97 [Google Scholar]
  33. Backman LB, Rautiainen A, Krause AOI, Lindblad M. 33.  1998. A novel Co/SiO2 catalyst for hydrogenation. Catal. Today 43:1–211–19 [Google Scholar]
  34. Puurunen RL. 34.  2005. Surface chemistry of atomic layer deposition: a case study for the trimethylaluminum/water process. J. Appl. Phys. 97:12121301 [Google Scholar]
  35. Knapas K, Ritala M. 35.  2013. In situ studies on reaction mechanisms in atomic layer deposition. Crit. Rev. Solid State Mater. Sci. 38:3167–202 [Google Scholar]
  36. Kim K, Lee HBR, Johnson RW, Tanskanen JT, Liu N. 36.  et al. 2014. Selective metal deposition at graphene line defects by atomic layer deposition. Nat. Commun. 5:4781 [Google Scholar]
  37. Feng H, Lu J, Stair PC, Elam JW. 37.  2011. Alumina over-coating on Pd nanoparticle catalysts by atomic layer deposition: enhanced stability and reactivity. Catal. Lett. 141:4512–17 [Google Scholar]
  38. Ohring M. 38.  2002. Materials Science of Thin Films: Deposition and Structure. Cambridge, MA: Academic
  39. Elam JW, Routkevitch D, Mardilovich PP, George SM. 39.  2003. Conformal coating on ultrahigh-aspect-ratio nanopores of anodic alumina by atomic layer deposition. Chem. Mater. 15:183507–17 [Google Scholar]
  40. Elam JW, Libera JA, Huynh TH, Feng H, Pellin MJ. 40.  2010. Atomic layer deposition of aluminum oxide in mesoporous silica gel. J. Phys. Chem. C 114:17286–92 [Google Scholar]
  41. Sree SP, Dendooven J, Masschaele K, Hamed HM, Deng S. 41.  et al. 2013. Synthesis of uniformly dispersed anatase nanoparticles inside mesoporous silica thin films via controlled breakup and crystallization of amorphous TiO2 deposited using atomic layer deposition. Nanoscale 5:115001–8 [Google Scholar]
  42. Libera JA, Elam JW, Pellin MJ. 42.  2008. Conformal ZnO coatings on high surface area silica gel using atomic layer deposition. Thin Solid Films 516:186158–66 [Google Scholar]
  43. Wank JR, George SM, Weimer AW. 43.  2004. Nanocoating individual cohesive boron nitride particles in a fluidized bed by ALD. Powder Technol 142:159–69 [Google Scholar]
  44. McCormick JA, Cloutier BL, Weimer AW, George SM. 44.  2007. Rotary reactor for atomic layer deposition on large quantities of nanoparticles. J. Vac. Sci. Technol. A 25:167 [Google Scholar]
  45. van Ommen JR, Kooijman D, de Niet M, Talebi M, Goulas A. 45.  2015. Continuous production of nanostructured particles using spatial atomic layer deposition. J. Vac. Sci. Technol. A 33:221513 [Google Scholar]
  46. Longrie D, Deduytsche D, Detavernier C. 46.  2014. Reactor concepts for atomic layer deposition on agitated particles: a review. J. Vac. Sci. Technol. A 32:110802 [Google Scholar]
  47. Pagán-Torres YJ, Gallo JMR, Wang D, Pham HN, Libera JA. 47.  et al. 2011. Synthesis of highly ordered hydrothermally stable mesoporous niobia catalysts by atomic layer deposition. ACS Catal 1:101234–45 [Google Scholar]
  48. Jeong MG, Kim IH, Han SW, Kim DH, Kim YD. 48.  2016. Room temperature CO oxidation catalyzed by NiO particles on mesoporous SiO2 prepared via atomic layer deposition: influence of pre-annealing temperature on catalytic activity. J. Mol. Catal. A 414:87–93 [Google Scholar]
  49. Enterkin JA, Setthapun W, Elam JW, Christensen ST, Rabu FA. 49.  et al. 2011. Propane oxidation over Pt/SrTiO3 nanocuboids. ACS Catal 1:629–35 [Google Scholar]
  50. Christensen ST, Feng H, Libera JL, Guo N, Miller JT. 50.  et al. 2010. Supported Ru-Pt bimetallic nanoparticle catalysts prepared by atomic layer deposition. Nano Lett 10:83047–51 [Google Scholar]
  51. Lobo R, Marshall CL, Dietrich PJ, Ribeiro FH, Akatay C. 51.  et al. 2012. Understanding the chemistry of H2 production for 1-propanol reforming: pathway and support modification effects. ACS Catal 2:112316–26 [Google Scholar]
  52. Jiang F, Huang J, Niu L, Xiao G. 52.  2015. Atomic layer deposition of ZnO thin films on ZSM-5 zeolite and its catalytic performance in chichibabin reaction. Catal. Lett. 145:3947–54 [Google Scholar]
  53. Vuori H, Silvennoinen RJ, Lindblad M, Österholm H, Krause AOI. 53.  2009. Beta zeolite-supported iridium catalysts by gas phase deposition. Catal. Lett. 131:1–27–15 [Google Scholar]
  54. Sree SP, Dendooven J, Korányi TI, Vanbutsele G, Houthoofd K. 54.  et al. 2011. Aluminium atomic layer deposition applied to mesoporous zeolites for acid catalytic activity enhancement. Catal. Sci. Technol. 1:218 [Google Scholar]
  55. Verheyen E, Pulinthanathu Sree S, Thomas K, Dendooven J, De Prins M. 55.  et al. 2014. Catalytic activation of OKO zeolite with intersecting pores of 10- and 12-membered rings using atomic layer deposition of aluminium. Chem. Commun. 50:354610–12 [Google Scholar]
  56. Sairanen E, Karinen R, Borghei M, Kauppinen EI, Lehtonen J. 56.  2012. Preparation methods for multi-walled carbon nanotube supported palladium catalysts. ChemCatChem 4:122055–61 [Google Scholar]
  57. Wang WN, Wu F, Myung Y, Niedzwiedzki DM, Im HS. 57.  et al. 2015. Surface engineered CuO nanowires with ZnO islands for CO2 photoreduction. ACS Appl. Mater. Interfaces 7:105685–92 [Google Scholar]
  58. Wang CC, Hsueh YC, Su CY, Kei CC, Perng TP. 58.  2015. Deposition of uniform Pt nanoparticles with controllable size on TiO2-based nanowires by atomic layer deposition and their photocatalytic properties. Nanotechnology 26:25254002 [Google Scholar]
  59. Biener J, Baumann TF, Wang Y, Nelson EJ, Kucheyev SO. 59.  et al. 2007. Ruthenium/aerogel nanocomposites via atomic layer deposition. Nanotechnology 18:555303 [Google Scholar]
  60. King JS, Wittstock A, Biener J, Kucheyev SO, Wang YM. 60.  et al. 2008. Ultralow loading Pt nanocatalysts prepared by atomic layer deposition on carbon aerogels. Nano Lett 8:82405–9 [Google Scholar]
  61. Feng H, Elam JW, Libera JA, Pellin MJ, Stair PC. 61.  2009. Catalytic nanoliths. Chem. Eng. Sci. 64:3560–67 [Google Scholar]
  62. Peters AW, Li Z, Farha OK, Hupp JT. 62.  2015. Atomically precise growth of catalytically active cobalt sulfide on flat surfaces and within a metal-organic framework via atomic layer deposition. ACS Nano 9:88484–90 [Google Scholar]
  63. Hämäläinen J, Ritala M, Leskelä M. 63.  2014. Atomic layer deposition of noble metals and their oxides. Chem. Mater. 26:1786–801 [Google Scholar]
  64. Toebes ML, Van Dillen JA, De Jong KP. 64.  2001. Synthesis of supported palladium catalysts. J. Mol. Catal. A 173:1–275–98 [Google Scholar]
  65. Singh JA, Overbury SH, Dudney NJ, Li M, Veith GM. 65.  2012. Gold nanoparticles supported on carbon nitride: influence of surface hydroxyls on low temperature carbon monoxide oxidation. ACS Catal 2:61138–46 [Google Scholar]
  66. Lu J, Low K-B, Lei Y, Libera JA, Nicholls A. 66.  et al. 2014. Toward atomically-precise synthesis of supported bimetallic nanoparticles using atomic layer deposition. Nat. Commun. 5:3264 [Google Scholar]
  67. Lu J, Stair PC. 67.  2010. Low-temperature ABC-type atomic layer deposition: synthesis of highly uniform ultrafine supported metal nanoparticles. Angew. Chem. Int. Ed. 49:142547–51 [Google Scholar]
  68. Lu J, Elam JW, Stair PC. 68.  2013. Synthesis and stabilization of supported metal catalysts by atomic layer deposition. Acc. Chem. Res. 46:81806–15 [Google Scholar]
  69. Haukka S, Kytökivi A, Lakomaa EL, Lehtovirta U, Lindblad M. 69.  et al. 1995. The utilization of saturated gas-solid reactions in the preparation of heterogeneous catalysts. Stud. Surf. Sci. Catal. 91:957–66 [Google Scholar]
  70. Deng W, Lee S, Libera JA, Elam JW, Vajda S, Marshall CL. 70.  2011. Cleavage of the C-O-C bond on size-selected subnanometer cobalt catalysts and on ALD-cobalt coated nanoporous membranes. Appl. Catal. A 393:1–229–35 [Google Scholar]
  71. Ivanova TV, Toivonen J, Maydannik PS, Kääriäinen T, Sillanpää M. 71.  et al. 2016. Atomic layer deposition of cerium oxide for potential use in diesel soot combustion. J. Vac. Sci. Technol. A 34:331506 [Google Scholar]
  72. Feng H, Elam JW, Libera JA, Pellin MJ, Stair PC. 72.  2010. Oxidative dehydrogenation of cyclohexane over alumina-supported vanadium oxide nanoliths. J. Catal. 269:2421–31 [Google Scholar]
  73. Keränen J, Auroux A, Ek S, Niinistö L. 73.  2002. Preparation, characterization and activity testing of vanadia catalysts deposited onto silica and alumina supports by atomic layer deposition. Appl. Catal. A 228:1–2213–25 [Google Scholar]
  74. Pickrahn KL, Garg A, Bent SF. 74.  2015. ALD of ultrathin ternary oxide electrocatalysts for water splitting. ACS Catal 5:31609–16 [Google Scholar]
  75. Pickrahn KL, Park SW, Gorlin Y, Lee H-B-R, Jaramillo TF, Bent SF. 75.  2012. Active MnOx electrocatalysts prepared by atomic layer deposition for oxygen evolution and oxygen reduction reactions. Adv. Energy Mater. 2:101269–77 [Google Scholar]
  76. Meng X, Yang XQ, Sun X. 76.  2012. Emerging applications of atomic layer deposition for lithium-ion battery studies. Adv. Mater. 24:273589–615 [Google Scholar]
  77. Kim IS, Borycz J, Platero-Prats AE, Tussupbayev S, Wang TC. 77.  et al. 2015. Targeted single-site MOF node modification: trivalent metal loading via atomic layer deposition. Chem. Mater. 27:134772–78 [Google Scholar]
  78. Li Z, Schweitzer NM, League AB, Bernales V, Peters AW. 78.  et al. 2016. Sintering-resistant single-site nickel catalyst supported by metal-organic framework. J. Am. Chem. Soc. 138:61977–82 [Google Scholar]
  79. Weber MJ, Mackus AJM, Verheijen MA, van der Marel C, Kessels WMM. 79.  2012. Supported core/shell bimetallic nanoparticles synthesis by atomic layer deposition. Chem. Mater. 24:152973–77 [Google Scholar]
  80. Lu J, Stair PC. 80.  2010. Nano/subnanometer Pd nanoparticles on oxide supports synthesized by AB-type and low-temperature ABC-type atomic layer deposition: growth and morphology. Langmuir 26:2116486–95 [Google Scholar]
  81. Mackus AJM, Weber MJ, Thissen NFW, Garcia-Alonso D, Vervuurt RHJ. 81.  et al. 2016. Atomic layer deposition of Pd and Pt nanoparticles for catalysis: on the mechanisms of nanoparticle formation. Nanotechnology 27:334001 [Google Scholar]
  82. Lee HBR, Mullings MN, Jiang X, Clemens BM, Bent SF. 82.  2012. Nucleation-controlled growth of nanoparticles by atomic layer deposition. Chem. Mater. 24:214051–59 [Google Scholar]
  83. Cao K, Zhu Q, Shan B, Chen R. 83.  2015. Controlled synthesis of Pd/Pt core shell nanoparticles using area-selective atomic layer deposition. Sci. Rep. 5:8470 [Google Scholar]
  84. Dasgupta NP, Liu C, Andrews S, Prinz FB, Yang P. 84.  2013. Atomic layer deposition of platinum catalysts on nanowire surfaces for photoelectrochemical water reduction. J. Am. Chem. Soc. 135:3512932–35 [Google Scholar]
  85. Hsueh YC, Wang CC, Kei CC, Lin YH, Liu C, Perng TP. 85.  2012. Fabrication of catalyst by atomic layer deposition for high specific power density proton exchange membrane fuel cells. J. Catal. 294:63–68 [Google Scholar]
  86. Lei Y, Lee S, Low KB, Marshall CL, Elam JW. 86.  2016. Combining electronic and geometric effects of ZnO-promoted Pt nanocatalysts for aqueous phase reforming of 1-propanol. ACS Catal 6:3457–60 [Google Scholar]
  87. Sun S, Zhang G, Gauquelin N, Chen N, Zhou J. 87.  et al. 2013. Single-atom catalysis using Pt/graphene achieved through atomic layer deposition. Sci. Rep. 3:1775 [Google Scholar]
  88. Su C, Hsueh Y, Kei C, Lin C, Perng T. 88.  2013. Fabrication of high-activity hybrid Pt@ZnO catalyst on carbon cloth by atomic layer deposition for photoassisted electro-oxidation of methanol. J. Phys. Chem. C 117:2211610–18 [Google Scholar]
  89. Li J, Zhang B, Chen Y, Zhang J, Yang H. 89.  et al. 2015. Styrene hydrogenation performance of Pt nanoparticles with controlled size prepared by atomic layer deposition. Catal. Sci. Technol. 5:84218–23 [Google Scholar]
  90. Feng H, Elam JW, Libera JA, Setthapun W, Stair PC. 90.  2010. Palladium catalysts synthesized by atomic layer deposition for methanol decomposition. Chem. Mater. 22:103133–42 [Google Scholar]
  91. Liang X, Lyon LB, Jiang Y-B, Weimer AW. 91.  2012. Scalable synthesis of palladium nanoparticle catalysts by atomic layer deposition. J. Nanopart. Res. 14:61–12 [Google Scholar]
  92. Wang H, Wang C, Yan H, Yi H, Lu J. 92.  2015. Precisely-controlled synthesis of Au@Pd core-shell bimetallic catalyst via atomic layer deposition for selective oxidation of benzyl alcohol. J. Catal. 3242015:59–68 [Google Scholar]
  93. Hayek K, Kramer R, Paál Z. 93.  1997. Metal-support boundary sites in catalysis. Appl. Catal. A 162:1–15 [Google Scholar]
  94. Tauster SJ. 94.  1987. Strong metal-support interactions. Acc. Chem. Res. 20:11389–94 [Google Scholar]
  95. Fu Q, Wagner T. 95.  2007. Interaction of nanostructured metal overlayers with oxide surfaces. Surf. Sci. Rep. 62:11431–98 [Google Scholar]
  96. Stakheev AY, Kustov L. 96.  1999. Effects of the support on the morphology and electronic properties of supported metal clusters: modern concepts and progress in 1990s. Appl. Catal. A 188:1–23–35 [Google Scholar]
  97. Sereda G, Marshall C, Libera JA, Dreessen J, Grady A, Turner M. 97.  2012. Effect of atomic layer deposition support thickness on structural properties and oxidative dehydrogenation of propane on alumina- and titania-supported vanadia. Catal. Lett. 142:4399–407 [Google Scholar]
  98. Burwell RL. 98.  1976. Manual of Symbols and Terminology for Physicochemical Quantities and Units-Appendix II Oxford, New York: Pergamon [Google Scholar]
  99. Kim DW, Kim KD, Seo HO, Dey NK, Kim MJ. 99.  et al. 2011. TiO2/Ni inverse-catalysts prepared by atomic layer deposition (ALD). Catal. Lett. 141:6854–59 [Google Scholar]
  100. Alba-Rubio AC, O'Neill BJ, Shi F, Akatay C, Canlas C. 100.  et al. 2014. Pore structure and bifunctional catalyst activity of overlayers applied by atomic layer deposition on copper nanoparticles. ACS Catal 4:51554–57 [Google Scholar]
  101. Strempel VE, Löffler D, Kröhnert J, Skorupska K, Johnson B. 101.  et al. 2016. Enhancing of catalytic properties of vanadia via surface doping with phosphorus using atomic layer deposition. J. Vac. Sci. Technol. A 34:101A135 [Google Scholar]
  102. Zhang H, Gu X-K, Canlas C, Kropf AJ, Aich P. 102.  et al. 2014. Atomic layer deposition overcoating: tuning catalyst selectivity for biomass conversion. Angew. Chem. 53:4512132–36 [Google Scholar]
  103. Zhang H, Lei Y, Kropf AJ, Zhang G, Elam WJ. 103.  et al. 2014. Enhancing the stability of copper chromite catalysts for the selective hydrogenation of furfural with ALD overcoating. J. Catal. 317:284–92 [Google Scholar]
  104. Argyle M, Bartholomew C. 104.  2015. Heterogeneous catalyst deactivation and regeneration: a review. Catalysts 5:1145–269 [Google Scholar]
  105. Pachón LD, Rothenberg G. 105.  2008. Transition-metal nanoparticles: synthesis, stability and the leaching issue. Appl. Organomet. Chem. 22:6288–99 [Google Scholar]
  106. Li Z, Li M, Bian Z, Kathiraser Y, Kawi S. 106.  2016. Design of highly stable and selective core/yolk-shell nanocatalysts—a review. Appl. Catal. B 188:324–41 [Google Scholar]
  107. Lu J, Fu B, Kung MC, Xiao G, Elam JW. 107.  et al. 2012. Coking- and sintering-resistant palladium catalysts achieved through atomic layer deposition. Science 335:60731205–8 [Google Scholar]
  108. Cheng N, Banis MN, Liu J, Riese A, Li X. 108.  et al. 2015. Extremely stable platinum nanoparticles encapsulated in a zirconia nanocage by area-selective atomic layer deposition for the oxygen reduction reaction. Adv. Mater. 27:2277–81 [Google Scholar]
  109. Biener MM, Biener J, Wichmann A, Wittstock A, Baumann TF. 109.  et al. 2011. ALD functionalized nanoporous gold: thermal stability, mechanical properties, and catalytic activity. Nano Lett 11:83085–90 [Google Scholar]
  110. Clark JH, Macquarrie DJ. 110.  1997. Heterogeneous catalysis in liquid phase transformations of importance in the industrial preparation of fine chemicals. Org. Process Res. Dev. 1:2149–62 [Google Scholar]
  111. Lin Y-C, Huber GW. 111.  2009. The critical role of heterogeneous catalysis in lignocellulosic biomass conversion. Energy Environ. Sci. 2:168 [Google Scholar]
  112. Sádaba I, López Granados M, Riisager A, Taarning E. 112.  2015. Deactivation of solid catalysts in liquid media: the case of leaching of active sites in biomass conversion reactions. Green Chem 17:84133–45 [Google Scholar]
  113. Besson M, Gallezot P. 113.  2003. Deactivation of metal catalysts in liquid phase organic reactions. Catal. Today 81:547–59 [Google Scholar]
  114. O'Neill BJ, Jackson DHK, Crisci AJ, Farberow CA, Shi F. 114.  et al. 2013. Stabilization of copper catalysts for liquid-phase reactions by atomic layer deposition. Angew. Chem. 125:5114053–57 [Google Scholar]
  115. O'Neill BJ, Miller JT, Dietrich PJ, Sollberger FG, Ribeiro FH, Dumesic JA. 115.  2014. Operando X-ray absorption spectroscopy studies of sintering for supported copper catalysts during liquid-phase reaction. ChemCatChem 6:92493–96 [Google Scholar]
  116. O'Neill BJ, Sener C, Jackson DHK, Kuech TF, Dumesic JA. 116.  2014. Control of thickness and chemical properties of atomic layer deposition overcoats for stabilizing Cu/γ-Al2O3 catalysts. ChemSusChem 7:123247–51 [Google Scholar]
  117. Lee J, Jackson D, Li T, Winans RE, Dumesic J. 117.  et al. 2014. Enhanced stability of cobalt catalysts by atomic layer deposition for aqueous-phase reactions. Energy Environ. Sci. 7:c1657–60 [Google Scholar]
  118. Onn TM, Zhang S, Arroyo-Ramirez L, Chung Y-C, Graham GW. 118.  et al. 2015. Improved thermal stability and methane-oxidation activity of Pd/Al2O3 catalysts by atomic layer deposition of ZrO2. ACS Catal 5:5696–701 [Google Scholar]
  119. Ma Z, Brown S, Howe JY, Overbury SH, Dai S. 119.  2008. Surface modification of Au/TiO2 catalysts by SiO2 via atomic layer deposition. J. Phys. Chem. C 112:259448–57 [Google Scholar]
  120. Jones G, Bligaard T, Abild-Pedersen F, Nørskov JK. 120.  2008. Using scaling relations to understand trends in the catalytic activity of transition metals. J. Phys. Condens. Matter 20:64239 [Google Scholar]
  121. Doyle AD, Montoya JH, Vojvodic A. 121.  2015. Improving oxygen electrochemistry through nanoscopic confinement. ChemCatChem 7:5738–42 [Google Scholar]
  122. Canlas CP, Lu J, Ray NA, Grosso-Giordano NA, Lee S. 122.  et al. 2012. Shape-selective sieving layers on an oxide catalyst surface. Nat. Chem. 4:121030–36 [Google Scholar]
  123. Ge H, Zhang B, Gu X, Liang H, Yang H. 123.  et al. 2016. A tandem catalyst with multiple metal-oxide interfaces produced by atomic layer deposition. Angew. Chem. 100049:1–6 [Google Scholar]
  124. Hashemi FSM, Prasittichai C, Bent SF. 124.  2014. A new resist for area selective atomic and molecular layer deposition on metal-dielectric patterns. J. Phys. Chem. C 118:2010957–62 [Google Scholar]
  125. Honkala K, Hellman A, Remediakis IN, Logadottir A, Carlsson A. 125.  et al. 2005. Ammonia synthesis from first-principles calculations. Science 307:5709555–58 [Google Scholar]
  126. Rostrup-Nielsen J, Nørskov JK. 126.  2006. Step sites in syngas catalysis. Top. Catal. 40:1–445–48 [Google Scholar]
  127. Yang N, Medford AJ, Liu X, Studt F, Bligaard T. 127.  et al. 2016. Intrinsic selectivity and structure sensitivity of rhodium catalysts for C2+ oxygenate production. J. Am. Chem. Soc. 138:113705–14 [Google Scholar]
  128. Tao AR, Habas S, Yang P. 128.  2008. Shape control of colloidal metal nanocrystals. Small 4:3310–25 [Google Scholar]
  129. Lee K, Kim M, Kim H. 129.  2010. Catalytic nanoparticles being facet-controlled. J. Mater. Chem. 20:193791 [Google Scholar]
  130. Xia Y, Xiong Y, Lim B, Skrabalak SE. 130.  2009. Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics?. Angew. Chem. 48:160–103 [Google Scholar]
  131. Lu J, Liu B, Greeley JP, Feng Z, Libera JA. 131.  et al. 2012. Porous alumina protective coatings on palladium nanoparticles by self-poisoned atomic layer deposition. Chem. Mater. 24:112047–55 [Google Scholar]
  132. Ding L, Yi H, Zhang W, You R, Cao T. 132.  et al. 2016. Activating edge sites on Pd catalysts for selective hydrogenation of acetylene via selective Ga2O3 decoration. ACS Catal 6:3700–7 [Google Scholar]
  133. Yang XF, Wang A, Qiao B, Li J, Liu J, Zhang T. 133.  2013. Single-atom catalysts: a new frontier in heterogeneous catalysis. Acc. Chem. Res. 46:81740–48 [Google Scholar]
  134. Feng H, Libera JA, Stair PC, Miller JT, Elam JW. 134.  2011. Subnanometer palladium particles synthesized by atomic layer deposition. ACS Catal 1:6665–73 [Google Scholar]
  135. Camacho-Bunquin J, Shou H, Aich P, Beaulieu DR, Klotzsch H. 135.  et al. 2015. Catalyst synthesis and evaluation using an integrated atomic layer deposition synthesis-catalysis testing tool. Rev. Sci. Instrum. 86:81–8 [Google Scholar]
  136. Cronauer DC, Elam JW, Kropf AJ, Marshall CL, Gao P. 136.  et al. 2012. Fischer-Tropsch synthesis: preconditioning effects upon Co-containing promoted and unpromoted catalysts. Catal. Lett. 142:6698–713 [Google Scholar]
  137. Cronauer DC, Jacobs G, Linganiso L, Kropf AJ, Elam JW. 137.  et al. 2011. CO hydrogenation: exploring iridium as a promoter for supported cobalt catalysts by TPR-EXAFS/XANES and reaction testing. Catal. Lett. 141:968–76 [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-060816-101547
Loading
/content/journals/10.1146/annurev-chembioeng-060816-101547
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error