1932

Abstract

Spray drying is a versatile technology that has been applied widely in the chemical, food, and, most recently, pharmaceutical industries. This review focuses on engineering advances and the most significant applications of spray drying for pharmaceuticals. An in-depth view of the process and its use is provided for amorphous solid dispersions, a major, growing drug-delivery approach. Enhanced understanding of the relationship of spray-drying process parameters to final product quality attributes has made robust product development possible to address a wide range of pharmaceutical problem statements. Formulation and process optimization have leveraged the knowledge gained as the technology has matured, enabling improved process development from early feasibility screening through commercial applications. Spray drying's use for approved small-molecule oral products is highlighted, as are emerging applications specific to delivery of biologics and non-oral delivery of dry powders. Based on the changing landscape of the industry, significant future opportunities exist for pharmaceutical spray drying.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-091720-034106
2021-06-07
2024-06-22
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/12/1/annurev-chembioeng-091720-034106.html?itemId=/content/journals/10.1146/annurev-chembioeng-091720-034106&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Percy SR. 1872. Improvement in drying and concentrating liquid substances by atomizing US Patent 125406A
    [Google Scholar]
  2. 2. 
    Masters K. 1985. Spray Drying Handbook London: George Godwin Ltd.
    [Google Scholar]
  3. 3. 
    Dobry DE, Settell DM, Baumann JM, Ray RJ, Graham LJ, Beyerinck RA 2009. A model-based methodology for spray-drying process development. J. Pharm. Innov. 4:133–42
    [Google Scholar]
  4. 4. 
    Gil M, Vicente J, Gaspar F 2010. Scale-up methodology for pharmaceutical spray drying. Chem. Today 28:18–22
    [Google Scholar]
  5. 5. 
    Sandhu H, Shah N, Chokshi H, Malick AW 2014. Overview of amorphous solid dispersion technologies. Amorphous Solid Dispersions N Shah, H Sandhu, DS Choi, H Chokshi, AW Malick 91–122 New York: Springer
    [Google Scholar]
  6. 6. 
    Dobry DE, Settell DM, Baumann JM 2015. Spray drying and scale-up. See Reference 79 315–40
  7. 7. 
    Lipinski CA. 2000. Drug-like properties and the causes of poor solubility and poor permeability. J. Pharmacol. Toxicol. Methods 44:235–49
    [Google Scholar]
  8. 8. 
    Vehring R. 2008. Pharmaceutical particle engineering via spray drying. Pharm. Res. 25:999–1022
    [Google Scholar]
  9. 9. 
    Sollohub K, Cal K. 2010. Spray drying technique: II. Current applications in pharmaceutical technology. J. Pharm. Sci. 99:587–97
    [Google Scholar]
  10. 10. 
    Sarrate R, Ticó JR, Miñarro M, Carrillo C, Fàbregas A et al. 2015. Modification of the morphology and particle size of pharmaceutical excipients by spray drying technique. Powder Technol. 270:244–55
    [Google Scholar]
  11. 11. 
    Gonnissen Y, Verhoeven E, Peeters E, Remon JP, Vervaet C 2008. Coprocessing via spray drying as a formulation platform to improve the compactability of various drugs. Eur. J. Pharm. Biopharm. 69:320–34
    [Google Scholar]
  12. 12. 
    Al-Khattawi A, Bayly A, Phillips A, Wilson D 2018. The design and scale-up of spray dried particle delivery systems. Expert Opin. Drug Deliv. 15:47–63
    [Google Scholar]
  13. 13. 
    Paudel A, Worku ZA, Meeus J, Guns S, Van den Mooter G 2013. Manufacturing of solid dispersions of poorly water soluble drugs by spray drying: formulation and process considerations. Int. J. Pharm. 453:253–84
    [Google Scholar]
  14. 14. 
    Sedo K. 2019. Drug delivery pipeline and technologies, a year in review Presented at Partnerships and Opportunities in Drug Delivery, Boston, MA
    [Google Scholar]
  15. 15. 
    Ziaee A, Albadarin AB, Padrela L, Femmer T, O'Reilly E, Walker G 2019. Spray drying of pharmaceuticals and biopharmaceuticals: critical parameters and experimental process optimization approaches. Eur. J. Pharm. Sci. 127:300–18
    [Google Scholar]
  16. 16. 
    Chavan RB, Rathi S, Jyothi VGSS, Shastri NR 2019. Cellulose based polymers in development of amorphous solid dispersions. Asian J. Pharm. Sci. 14:248–64
    [Google Scholar]
  17. 17. 
    He Y, Ho C. 2015. Amorphous solid dispersions: utilization and challenges in drug discovery and development. J. Pharm. Sci. 104:3237–58
    [Google Scholar]
  18. 18. 
    Nair R. 2018. The science of solubility and the success of amorphous solid dispersions. ONdrugDelivery Mag 88:26–30
    [Google Scholar]
  19. 19. 
    Davis M, Walker G. 2018. Recent strategies in spray drying for the enhanced bioavailability of poorly water-soluble drugs. J. Control. Release 269:110–27
    [Google Scholar]
  20. 20. 
    Sánchez-Félix M, Burke M, Chen HH, Patterson C, Mittal S 2020. Predicting bioavailability of monoclonal antibodies after subcutaneous administration: open innovation challenge. Adv. Drug Deliv. Rev. 167:66–77
    [Google Scholar]
  21. 21. 
    Walters RH, Bhatnagar B, Tchessalov S, Izutsu K-I, Tsumoto K, Ohtake S 2014. Next generation drying technologies for pharmaceutical applications. J. Pharm. Sci. 103:2673–95
    [Google Scholar]
  22. 22. 
    Weers JG, Miller DP. 2015. Formulation design of dry powders for inhalation. J. Pharm. Sci. 104:3259–88
    [Google Scholar]
  23. 23. 
    de Kruijf W, Ehrhardt C 2017. Inhalation delivery of complex drugs-the next steps. Curr. Opin. Pharmacol. 36:52–57
    [Google Scholar]
  24. 24. 
    Gaspar F, Vicente J, Neves F, Authelin J-R 2014. Spray drying: scale-up and manufacturing. Amorphous Solid Dispersions MJ Rathbone 261–302 New York: Springer
    [Google Scholar]
  25. 25. 
    Cal K, Sollohub K. 2010. Spray drying technique. I: hardware and process parameters. J. Pharm. Sci. 99:575–86
    [Google Scholar]
  26. 26. 
    Vasconcelos T, Marques S das Neves J, Sarmento B 2016. Amorphous solid dispersions: rational selection of a manufacturing process. Adv. Drug Deliv. Rev. 100:85–101
    [Google Scholar]
  27. 27. 
    O'Sullivan JJ, Norwood E-A, O'Mahony JA, Kelly AL 2019. Atomisation technologies used in spray drying in the dairy industry: a review. J. Food Eng. 243:57–69
    [Google Scholar]
  28. 28. 
    Lefebvre AH, McDonell V. 2017. Atomization and Sprays Boca Raton, FL: CRC Press., 2nd ed..
    [Google Scholar]
  29. 29. 
    Omer K, Ashgriz N. 2011. Spray nozzles. See Reference 30 497–579
    [Google Scholar]
  30. 30. 
    Ashgriz N 2011. Handbook of Atomization and Sprays: Theory and Applications New York: Springer
    [Google Scholar]
  31. 31. 
    Eslamian M, Ashgriz N. 2011. Spray drying, spray pyrolysis and spray freeze drying. See Reference 30 849–60
    [Google Scholar]
  32. 32. 
    Zhang T, Dong B, Chen X, Qiu Z, Jiang R, Li W 2017. Spray characteristics of pressure-swirl nozzles at different nozzle diameters. Appl. Therm. Eng. 121:984–91
    [Google Scholar]
  33. 33. 
    Amini G. 2016. Liquid flow in a simplex swirl nozzle. Int. J. Multiph. Flow 79:225–35
    [Google Scholar]
  34. 34. 
    Belhadef A, Vallet A, Amielh M, Anselmet F 2012. Pressure-swirl atomization: modeling and experimental approaches. Int. J. Multiph. Flow 39:13–20
    [Google Scholar]
  35. 35. 
    Tratnig A, Brenn G. 2010. Drop size spectra in sprays from pressure-swirl atomizers. Int. J. Multiph. Flow 36:349–63
    [Google Scholar]
  36. 36. 
    Hede PD, Bach P, Jensen AD 2008. Two-fluid spray atomisation and pneumatic nozzles for fluid bed coating/agglomeration purposes: a review. Chem. Eng. Sci. 63:3821–42
    [Google Scholar]
  37. 37. 
    Keshavarz B, Sharma V, Houze EC, Koerner MR, Moore JR et al. 2015. Studying the effects of elongational properties on atomization of weakly viscoelastic solutions using Rayleigh Ohnesorge Jetting Extensional Rheometry (ROJER). J. Non-Newton. Fluid Mech. 222:171–89
    [Google Scholar]
  38. 38. 
    Fansler TD, Parrish SE. 2015. Spray measurement technology: a review. Meas. Sci. Technol. 26:012002
    [Google Scholar]
  39. 39. 
    Charlesworth DH, Marshall WR. 1960. Evaporation from drops containing dissolved solids. AIChE J. 6:9–23
    [Google Scholar]
  40. 40. 
    Walton DE, Mumford CJ. 1999. The morphology of spray-dried particles. Chem. Eng. Res. Des. 77:442–60
    [Google Scholar]
  41. 41. 
    Vicente J, Pinto J, Menezes J, Gaspar F 2013. Fundamental analysis of particle formation in spray drying. Powder Technol. 247:1–7
    [Google Scholar]
  42. 42. 
    Graham LJ, Taillon R, Mullin J, Wigle T 2010. Pharmaceutical process/equipment design methodology case study: cyclone design to optimize spray-dried-particle collection efficiency. Comput. Chem. Eng. 34:1041–48
    [Google Scholar]
  43. 43. 
    Peng W, Hoffmann AC, Boot PJAJ, Udding A, Dries HWA et al. 2002. Flow pattern in reverse-flow centrifugal separators. Powder Technol. 127:212–22
    [Google Scholar]
  44. 44. 
    Lapple CE. 1951. Processes use many collector types. Chem. Eng. 58:144
    [Google Scholar]
  45. 45. 
    Cortes C, Gil A. 2007. Modeling the gas and particle flow inside cyclone separators. Prog. Energy Combust. Sci. 33:409–52
    [Google Scholar]
  46. 46. 
    Balestrin E, Decker RK, Noriler D, Bastos JCSC, Meier HF 2017. An alternative for the collection of small particles in cyclones: experimental analysis and CFD modeling. Sep. Purif. Technol. 184:54–65
    [Google Scholar]
  47. 47. 
    Singh A, Van den Mooter G 2016. Spray drying formulation of amorphous solid dispersions. Adv. Drug Deliv. Rev. 100:27–50
    [Google Scholar]
  48. 48. 
    Lipinski C. 2002. Poor aqueous solubility—an industry wide problem in drug discovery. Am. Pharm. Rev. 5:82–85
    [Google Scholar]
  49. 49. 
    Lipinski CA, Lombardo F, Dominy BW, Feeney PJ 1997. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 23:3–25
    [Google Scholar]
  50. 50. 
    Vasconcelos T, Sarmento B, Costa P 2007. Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs. Drug Discov. Today 12:1068–75
    [Google Scholar]
  51. 51. 
    Friesen DT, Shanker R, Crew M, Smithey DT, Curatolo WJ, Nightingale JAS 2008. Hydroxypropyl methylcellulose acetate succinate-based spray-dried dispersions: an overview. Mol. Pharm. 5:1003–19
    [Google Scholar]
  52. 52. 
    Jermain SV, Brough C, Williams RO 3rd 2018. Amorphous solid dispersions and nanocrystal technologies for poorly water-soluble drug delivery—an update. Int. J. Pharm. 535:379–92
    [Google Scholar]
  53. 53. 
    Blagden N, de Matas M, Gavan PT, York P 2007. Crystal engineering of active pharmaceutical ingredients to improve solubility and dissolution rates. Adv. Drug Deliv. Rev. 59:617–30
    [Google Scholar]
  54. 54. 
    Fahr A, Liu X. 2007. Drug delivery strategies for poorly water-soluble drugs. Expert Opin. Drug Deliv. 4:403–16
    [Google Scholar]
  55. 55. 
    Ansari MJ. 2019. An overview of techniques for multifold enhancement in solubility of poorly soluble drugs. Curr. Issues Pharm. Med. Sci. 32:203–9
    [Google Scholar]
  56. 56. 
    Serajuddin AT. 1999. Solid dispersion of poorly water-soluble drugs: early promises, subsequent problems, and recent breakthroughs. J. Pharm. Sci. 88:1058–66
    [Google Scholar]
  57. 57. 
    Sekiguchi K, Obi N. 1961. Studies on absorption of eutectic mixture. I. A comparison of the behavior of eutectic mixture of sulfathiazole and that of ordinary sulfathiazole in man. Chem. Pharm. Bull. 9:866–72
    [Google Scholar]
  58. 58. 
    Taylor LS, Zografi G. 1997. Spectroscopic characterization of interactions between PVP and indomethacin in amorphous molecular dispersions. Pharm. Res. 14:1691–98
    [Google Scholar]
  59. 59. 
    Dedroog S, Huygens C, Van den Mooter G 2019. Chemically identical but physically different: a comparison of spray drying, hot melt extrusion and cryo-milling for the formulation of high drug loaded amorphous solid dispersions of naproxen. Eur. J. Pharm. Biopharm. 135:1–12
    [Google Scholar]
  60. 60. 
    Mendonsa N, Almutairy B, Kallakunta VR, Sarabu S, Thipsay P et al. 2020. Manufacturing strategies to develop amorphous solid dispersions: an overview. J. Drug Deliv. Sci. Technol. 55:101459
    [Google Scholar]
  61. 61. 
    Gala UH, Miller DA, Williams RO 2020. Harnessing the therapeutic potential of anticancer drugs through amorphous solid dispersions. Biochim. Biophys. Acta Rev. Cancer 1873:188319
    [Google Scholar]
  62. 62. 
    Walsh D, Serrano DR, Worku ZA, Madi AM, O'Connell P et al. 2018. Engineering of pharmaceutical cocrystals in an excipient matrix: spray drying versus hot melt extrusion. Int. J. Pharm 551:241–56
    [Google Scholar]
  63. 63. 
    Iyer R, Hegde S, Zhang YE, Dinunzio J, Singhal D et al. 2013. The impact of hot melt extrusion and spray drying on mechanical properties and tableting indices of materials used in pharmaceutical development. J. Pharm. Sci. 102:3604–13
    [Google Scholar]
  64. 64. 
    Tian Y, Caron V, Jones DS, Healy AM, Andrews GP 2014. Using Flory-Huggins phase diagrams as a pre-formulation tool for the production of amorphous solid dispersions: a comparison between hot-melt extrusion and spray drying. J. Pharm. Pharmacol. 66:256–74
    [Google Scholar]
  65. 65. 
    Sloth J, Jørgensen K, Bach P, Jensen AD, Kiil S, Dam-Johansen K 2009. Spray drying of suspensions for pharma and bio products-drying kinetics and morphology. Ind. Eng. Chem. Res 48:3657–64
    [Google Scholar]
  66. 66. 
    Qian F, Huang J, Hussain MA 2010. Drug–polymer solubility and miscibility: stability consideration and practical challenges in amorphous solid dispersion development. J. Pharm. Sci. 99:2941–47
    [Google Scholar]
  67. 67. 
    Wegiel LA, Mauer LJ, Edgar KJ, Taylor LS 2013. Crystallization of amorphous solid dispersions of resveratrol during preparation and storage—impact of different polymers. J. Pharm. Sci. 102:171–84
    [Google Scholar]
  68. 68. 
    Rowe RC, Sheskey PJ, Cook WG, Fenton ME 2009. Handbook of Pharmaceutical Excipients Grayslake, IL/Washington, DC: Pharm. Press/Am. Pharm. Assoc.
    [Google Scholar]
  69. 69. 
    Surikutchi BT, Patil SP, Shete G, Patel S, Bansal AK 2013. Drug-excipient behavior in polymeric amorphous solid dispersions. J. Excip. Food Chem. 4:70–94
    [Google Scholar]
  70. 70. 
    Sihorkar V, Dürig T. 2020. The role of polymers and excipients in developing amorphous solid dispersions: an industrial perspective. Drug Delivery Aspects, Vol. 4: Expectations and Realities of Multifunctional Drug Delivery Systems, ed. R Shegokar 79–113 Cambridge, UK: Elsevier
    [Google Scholar]
  71. 71. 
    Patra CN, Priya R, Swain S, Jena GK, Panigrahi KC, Ghose D 2017. Pharmaceutical significance of Eudragit: a review. Future J. Pharm. Sci. 3:33–45
    [Google Scholar]
  72. 72. 
    Patel BB, Patel JK, Chakraborty S, Shukla D 2015. Revealing facts behind spray dried solid dispersion technology used for solubility enhancement. Saudi Pharm. J. 23:352–65
    [Google Scholar]
  73. 73. 
    Paudel A, Van den Mooter G 2012. Influence of solvent composition on the miscibility and physical stability of naproxen/PVP K 25 solid dispersions prepared by cosolvent spray-drying. Pharm. Res. 29:251–70
    [Google Scholar]
  74. 74. 
    Poozesh S, Jafari SM 2019. Are traditional small-scale screening methods reliable to predict pharmaceutical spray drying?. Pharm. Dev. Technol. 24:915–25
    [Google Scholar]
  75. 75. 
    Duarte I, Santos JL, Pinto JF, Temtem M 2015. Screening methodologies for the development of spray-dried amorphous solid dispersions. Pharm. Res. 32:222–37
    [Google Scholar]
  76. 76. 
    Vodak DT, Morgen M. 2014. Design and development of HPMCAS-based spray-dried dispersions. Amorphous Solid Dispersions N Shah, H Sandhu, D Choi, H Chokshi, A Malick 303–22 Adv. Deliv. Sci. Technol New York: Springer
    [Google Scholar]
  77. 77. 
    BÜCHI Lab. Nano Spray Dryer B-90 HP: small particles, small samples, high yields AG Prod. Broch., BUCHI Corp., New Castle, DE. https://static1.buchi.com/sites/default/files/downloads/B-90_Product_Brochure_en.pdf?3ec6469cc8558cfb21c72d85ac383df9b4f589b3
    [Google Scholar]
  78. 78. 
    Bellinghausen R. 2018. Spray drying from yesterday to tomorrow: an industrial perspective. Dry. Technol. 37:612–22
    [Google Scholar]
  79. 79. 
    Newman A, ed. 2015. Pharmaceutical Amorphous Solid Dispersions Hoboken, NJ: John Wiley & Sons
    [Google Scholar]
  80. 80. 
    US Food Drug Adm 2009. Q8(R2) pharmaceutical development Guid. Ind. FDA-2005-D-0154, US Food Drug Adm Washington, DC:
    [Google Scholar]
  81. 81. 
    Poozesh S, Bilgili E. 2019. Scale-up of pharmaceutical spray drying using scale-up rules: a review. Int. J. Pharm. 562:271–92
    [Google Scholar]
  82. 82. 
    Lowinger M, Baumann J, Vodak DT, Moser J 2015. Practical considerations for spray dried formulation and process development. Discovering and Developing Molecules with Optimal Drug-Like Properties AC Templeton, RJ Haskell, TE Prisinzano 383–435 New York: Springer Verlag
    [Google Scholar]
  83. 83. 
    Sanghvi T, Katstra J, Quinn BP, Thomas H, Hurter P 2015. Formulation development of amorphous dispersions. See Reference 79 364–97
    [Google Scholar]
  84. 84. 
    Lebrun P, Krier F, Mantanus J, Grohganz H, Yang M et al. 2012. Design space approach in the optimization of the spray-drying process. Eur. J. Pharm. Biopharm. 80:226–34
    [Google Scholar]
  85. 85. 
    Kumar S, Gokhale R, Burgess DJ 2014. Quality by design approach to spray drying processing of crystalline nanosuspensions. Int. J. Pharm. 464:234–42
    [Google Scholar]
  86. 86. 
    Thybo P, Hovgaard L, Lindeløv JS, Brask A, Andersen SK 2008. Scaling up the spray drying process from pilot to production scale using an atomized droplet size criterion. Pharm. Res. 25:1610–20
    [Google Scholar]
  87. 87. 
    Van Buskirk GA, Asotra S, Balducci C, Basu P, DiDonato G et al. 2014. Best practices for the development, scale-up, and post-approval change control of IR and MR dosage forms in the current quality-by-design paradigm. AAPS PharmSciTech 15:665–93
    [Google Scholar]
  88. 88. 
    Chan LW, Tan LH, Heng PWS 2008. Process analytical technology: application to particle sizing in spray drying. AAPS PharmSciTech 9:259–66
    [Google Scholar]
  89. 89. 
    Fonteyne M, Vercruysse J, De Leersnyder F, Van Snick B, Vervaet C et al. 2015. Process analytical technology for continuous manufacturing of solid-dosage forms. TrAC Trends Anal. Chem. 67:159–66
    [Google Scholar]
  90. 90. 
    Lee YC, Zhou G, Ikeda C, Chouzouri G, Howell L 2019. Application of online near infrared for process understanding of spray-drying solution preparation. J. Pharm. Sci. 108:1203–10
    [Google Scholar]
  91. 91. 
    Reay D. 1989. A scientific approach to the design of continuous flow dryers for particulate solids. Multiph. Sci. Technol. 4:1–102
    [Google Scholar]
  92. 92. 
    de Souza Lima R, MI, Arlabosse P 2020. Drying droplet as a template for solid formation: a review. Powder Technol. 359:161–71
    [Google Scholar]
  93. 93. 
    Poozesh S, Lu K, Marsac PJ 2018. On the particle formation in spray drying process for bio-pharmaceutical applications: interrogating a new model via computational fluid dynamics. Int. J. Heat Mass Transf. 122:863–76
    [Google Scholar]
  94. 94. 
    Lisboa HM, Duarte ME, Cavalcanti-Mata ME 2018. Modeling of food drying processes in industrial spray dryers. Food Bioprod. Process. 107:49–60
    [Google Scholar]
  95. 95. 
    Cotabarren IM, Bertín D, Razuc M, Ramírez-Rigo MV, Piña J 2018. Modelling of the spray drying process for particle design. Chem. Eng. Res. Des. 132:1091–104
    [Google Scholar]
  96. 96. 
    Patel KC, Chen XD. 2005. Prediction of spray-dried product quality using two simple drying kinetics models. J. Food Process Eng. 28:567–94
    [Google Scholar]
  97. 97. 
    Fu N, Woo MW, Lin SXQ, Zhou Z, Chen XD 2011. Reaction Engineering Approach (REA) to model the drying kinetics of droplets with different initial sizes—experiments and analyses. Chem. Eng. Sci. 66:1738–47
    [Google Scholar]
  98. 98. 
    Abdullahi H, Burcham CL, Vetter T 2020. A mechanistic model to predict droplet drying history and particle shell formation in multicomponent systems. Chem. Eng. Sci. 224:115713
    [Google Scholar]
  99. 99. 
    Sturm DR, Moser JD, Sundararajan P, Danner RP 2019. Spray drying of hypromellose acetate succinate. Ind. Eng. Chem. Res. 58:12291–300
    [Google Scholar]
  100. 100. 
    Ploeger KJM, Adack P, Sundararajan P, Valente PC, Henriques JG, Rosenberg KJ 2019. Spray drying and amorphous dispersions. Chemical Engineering in the Pharmaceutical Industry MT am Ende, DJ am Ende 267–92 Hoboken, NJ: John Wiley & Sons
    [Google Scholar]
  101. 101. 
    Pinto M, Kemp I, Bermingham S, Hartwig T, Bisten A 2014. Development of an axisymmetric population balance model for spray drying and validation against experimental data and CFD simulations. Chem. Eng. Res. Des. 92:619–34
    [Google Scholar]
  102. 102. 
    Boel E, Koekoekx R, Dedroog S, Babkin I, Vetrano MR et al. 2020. Unraveling particle formation: from single droplet drying to spray drying and electrospraying. Pharmaceutics 12:625
    [Google Scholar]
  103. 103. 
    Poozesh S, Setiawan N, Arce F, Sundararajan P, Rocca JD et al. 2017. Understanding the process-product-performance interplay of spray dried drug-polymer systems through complete structural and chemical characterization of single spray dried particles. Powder Technol. 320:685–95
    [Google Scholar]
  104. 104. 
    Sturm DR, Danner RP, Moser JD, Chiu S-W 2019. Application of the Vrentas-Duda free-volume theory of diffusion below the glass-transition temperature: application to hypromellose acetate succinate-solvent systems. J. Appl. Polym. Sci. 136:47351
    [Google Scholar]
  105. 105. 
    Vrentas JS, Duda JL. 1977. Diffusion in polymer—solvent systems. I. Reexamination of the free-volume theory. J. Polym. Sci. 15:403–16
    [Google Scholar]
  106. 106. 
    Vrentas JS, Duda JL. 1977. Diffusion in polymer–solvent systems. II. A predictive theory for the dependence of diffusion coefficients on temperature, concentration, and molecular weight. J. Polym. Sci. 15:417–39
    [Google Scholar]
  107. 107. 
    Démuth B, Nagy ZK, Balogh A, Vigh T, Marosi G et al. 2015. Downstream processing of polymer-based amorphous solid dispersions to generate tablet formulations. Int. J. Pharm. 486:268–86
    [Google Scholar]
  108. 108. 
    Lamm MS, Simpson A, McNevin M, Frankenfeld C, Nay R, Variankaval N 2012. Probing the effect of drug loading and humidity on the mechanical properties of solid dispersions with nanoindentation: antiplasticization of a polymer by a drug molecule. Mol. Pharm. 9:3396–402
    [Google Scholar]
  109. 109. 
    Patel S, Kou X, Hou HH, Huang YB, Strong JC et al. 2017. Mechanical properties and tableting behavior of amorphous solid dispersions. J. Pharm. Sci. 106:217–23
    [Google Scholar]
  110. 110. 
    Davis MT, Potter CB, Walker GM 2018. Downstream processing of a ternary amorphous solid dispersion: the impacts of spray drying and hot melt extrusion on powder flow, compression and dissolution. Int. J. Pharm. 544:242–53
    [Google Scholar]
  111. 111. 
    Ekdahl A, Mudie D, Malewski D, Amidon G, Goodwin A 2019. Effect of spray-dried particle morphology on mechanical and flow properties of felodipine in PVP VA amorphous solid dispersions. J. Pharm. Sci. 108:3657–66
    [Google Scholar]
  112. 112. 
    Mudie DM, Buchanan S, Stewart AM, Smith A, Shepard KB et al. 2020. A novel architecture for achieving high drug loading in amorphous spray dried dispersion tablets. Int. J. Pharm. 2:100042
    [Google Scholar]
  113. 113. 
    Govender R, Abrahmsén-Alami S, Larsson A, Folestad S 2020. Therapy for the individual: towards patient integration into the manufacturing and provision of pharmaceuticals. Eur. J. Pharm. Biopharm. 149:58–76
    [Google Scholar]
  114. 114. 
    US Food Drug Adm. Cent. Drug Eval. Res 2020. Advancing Health Through Innovation: New Drug Therapy Approvals 2019 Washington, DC: US Food Drug Adm.
    [Google Scholar]
  115. 115. 
    Vicente J, Couto CS, Ferreira R, Temtem M 2019. A spray drying process with continuous preparation of spray solution Patent No. WO2019162688–20190829
    [Google Scholar]
  116. 116. 
    Friesen DT, Newbold DD, Baumann JM, DuBose DB, Millard DL 2017. Spray-drying process US Patent No. 9724664 B2
    [Google Scholar]
  117. 117. 
    Vashishta B, Garg M, Chaudhary R, Sahni H, Khanna R, Rathore AS 2013. Use of computational fluid dynamics for development and scale-up of a helical coil heat exchanger for dissolution of a thermally labile API. Org. Process Res. Dev. 17:1311–19
    [Google Scholar]
  118. 118. 
    Hoppentocht M, Hagedoorn P, Frijlink HW, de Boer AH 2014. Technological and practical challenges of dry powder inhalers and formulations. Adv. Drug Deliv. Rev. 75:18–31
    [Google Scholar]
  119. 119. 
    Lechanteur A, Evrard B. 2020. Influence of composition and spray-drying process parameters on carrier-free DPI properties and behaviors in the lung: a review. Pharmaceutics 12:55
    [Google Scholar]
  120. 120. 
    McShane PJ, Weers JG, Tarara TE, Haynes A, Durbha P et al. 2018. Ciprofloxacin dry powder for inhalation (ciprofloxacin DPI): technical design and features of an efficient drug-device combination. Pulm. Pharmacol. Ther. 50:72–79
    [Google Scholar]
  121. 121. 
    Al-Tabakha MM. 2015. Future prospect of insulin inhalation for diabetic patients: the case of Afrezza versus Exubera. J. Control. Release 215:25–38
    [Google Scholar]
  122. 122. 
    Geller DE, Weers J, Heuerding S 2011. Development of an inhaled dry-powder formulation of tobramycin using PulmoSphere technology. J. Aerosol Med. Pulm. Drug Deliv. 24:175–82
    [Google Scholar]
  123. 123. 
    Kalia P. 2020. US FDA accepts Pharmaxis’ Bronchitol application; November decision expected. S&P Global Market Intelligence May 13. https://www.spglobal.com/marketintelligence/en/news-insights/latest-news-headlines/us-fda-accepts-pharmaxis-bronchitol-application-november-decision-expected-58597211
    [Google Scholar]
  124. 124. 
    Santos JL, Olival L, Palha M, Maia F, Neves F 2015. Multi-nozzle spray dryer, method for scale-up of spray dried inhalation powders, multi-nozzle apparatus and use of multiple nozzles in a spray dryer WIPO Patent No. WO2015150761A1
    [Google Scholar]
  125. 125. 
    Snyder HE, Vosberg MJ, Varga CM 2011. Spray-drying methods and related compositions US Patent No. 8:936,813 B2
    [Google Scholar]
  126. 126. 
    Costa E, Neves F, Andrade G, Winters C 2014. Scale-up & QbD approaches for spray-dried inhalation formulations. ONdrugDelivery Mag 50:3–8
    [Google Scholar]
  127. 127. 
    Muschelknautz U. 2019. Design criteria for multicyclones in a limited space. Powder Technol. 357:2–20
    [Google Scholar]
  128. 128. 
    Truong-Le V, Lovalenti PM, Abdul-Fattah AM 2015. Stabilization challenges and formulation strategies associated with oral biologic drug delivery systems. Adv. Drug Deliv. Rev. 93:95–108
    [Google Scholar]
  129. 129. 
    de Costa S. 2016. Raplixa case study: enabling an innovative drug presentation through aseptic spray drying sidebar to exploring the use of aseptic spray drying in the manufacture of biopharmaceutical injectables. Pharm. Technol 40:26
    [Google Scholar]
  130. 130. 
    Ameri M, Maa Y-F. 2006. Spray drying of biopharmaceuticals: stability and process considerations. Dry. Technol. 24:763–68
    [Google Scholar]
  131. 131. 
    Mumenthaler M, Hsu CC, Pearlman R 1994. Feasibility study on spray-drying protein pharmaceuticals: recombinant human growth hormone and tissue-type plasminogen activator. Pharm. Res. 11:12–20
    [Google Scholar]
  132. 132. 
    Daugherty AL, Mrsny RJ. 2006. Formulation and delivery issues for monoclonal antibody therapeutics. Adv. Drug Deliv. Rev. 58:686–706
    [Google Scholar]
  133. 133. 
    Arrighi A, Marquette S, Peerboom C, Denis L, Goole J, Amighi K 2019. Development of PLGA microparticles with high immunoglobulin G-loaded levels and sustained-release properties obtained by spray-drying a water-in-oil emulsion. Int. J. Pharm. 566:291–98
    [Google Scholar]
  134. 134. 
    Bowey K, Neufeld RJ. 2010. Systemic and mucosal delivery of drugs within polymeric microparticles produced by spray drying. BioDrugs 24:359–77
    [Google Scholar]
  135. 135. 
    Kusonwiriyawong C, Pichayakorn W, Lipipun V, Ritthidej GC 2009. Retained integrity of protein encapsulated in spray-dried chitosan microparticles. J. Microencapsul. 26:111–21
    [Google Scholar]
  136. 136. 
    Wang Q, Fu A, Li H, Liu J, Guo P et al. 2014. Preparation of cellulose based microspheres by combining spray coagulating with spray drying. Carbohydr. Polym. 111:393–99
    [Google Scholar]
  137. 137. 
    Carpenter JF, Crowe JH. 1989. An infrared spectroscopic study of the interactions of carbohydrates with dried proteins. Biochemistry 28:3916–22
    [Google Scholar]
  138. 138. 
    Chang L, Pikal MJ. 2009. Mechanisms of protein stabilization in the solid state. J. Pharm. Sci. 98:2886–908
    [Google Scholar]
  139. 139. 
    Tzannis ST, Prestrelski SJ. 1999. Activity-stability considerations of trypsinogen during spray drying: effects of sucrose. J. Pharm. Sci. 88:351–58
    [Google Scholar]
  140. 140. 
    Gikanga B, Turok R, Hui A, Bowen M, Stauch OB, Maa YF 2015. Manufacturing of high-concentration monoclonal antibody formulations via spray drying—the road to manufacturing scale. PDA J. Pharm. Sci. Technol. 69:59–73
    [Google Scholar]
  141. 141. 
    Nova Lab 2020. Sterile manufacturing https://www.novalabs.co.uk/sterile-manufacturing
    [Google Scholar]
  142. 142. 
    Vishali DA, Monisha J, Sivakamasundari SK, Moses JA, Anandharamakrishnan C 2019. Spray freeze drying: emerging applications in drug delivery. J. Control. Release 300:93–101
    [Google Scholar]
  143. 143. 
    Adali MB, Barresi AA, Boccardo G, Pisano R 2020. Spray freeze-drying as a solution to continuous manufacturing of pharmaceutical products in bulk. Processes 8:709
    [Google Scholar]
  144. 144. 
    Herbert P, Murphy K, Johnson O, Dong N, Jaworowicz W et al. 1998. A large-scale process to produce microencapsulated proteins. Pharm. Res. 15:357–61
    [Google Scholar]
  145. 145. 
    Kennedy MT, Ali-Reynolds A, Farrier C, Burke PA 2008. Atomizing into a chilled extraction solvent eliminates liquid gas from a spray-freeze drying microencapsulation process. J. Pharm. Sci. 97:4459–72
    [Google Scholar]
  146. 146. 
    Moura C, Casimiro T, Costa E, Aguiar-Ricardo A 2019. Optimization of supercritical CO2-assisted spray drying technology for the production of inhalable composite particles using quality-by-design principles. Powder Technol. 357:387–97
    [Google Scholar]
  147. 147. 
    Shoyele SA, Cawthorne S. 2006. Particle engineering techniques for inhaled biopharmaceuticals. Adv. Drug Deliv. Rev. 58:1009–29
    [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-091720-034106
Loading
/content/journals/10.1146/annurev-chembioeng-091720-034106
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error