1932

Abstract

Synthetic polymers such as plastics exhibit numerous advantageous properties that have made them essential components of our daily lives, with plastic production doubling every 15 years. The relatively low cost of petroleum-based polymers encourages their single use and overconsumption. Synthetic plastics are recalcitrant to biodegradation, and mismanagement of plastic waste leads to their accumulation in the ecosystem, resulting in a disastrous environmental footprint. Enzymes capable of depolymerizing plastics have been reported recently that may provide a starting point for eco-friendly plastic recycling routes. However, some questions remain about the mechanisms by which enzymes can digest insoluble solid substrates. We review the characterization and engineering of plastic-eating enzymes and provide some comparisons with the field of lignocellulosic biomass valorization.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-092120-091054
2022-06-07
2024-06-25
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/13/1/annurev-chembioeng-092120-091054.html?itemId=/content/journals/10.1146/annurev-chembioeng-092120-091054&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Kögel T, Bjorøy Ø, Toto B, Bienfait AM, Sanden M. 2020. Micro- and nanoplastic toxicity on aquatic life: determining factors. Sci. Total Environ. 709:136050
    [Google Scholar]
  2. 2.
    Geyer R, Jambeck JR, Law KL. 2017. Production, use, and fate of all plastics ever made. Sci. Adv. 3:e1700782
    [Google Scholar]
  3. 3.
    Patel M, von Thienen N, Jochem E, Worrell E 2000. Recycling of plastics in Germany. Resour. Conserv. Recycl. 29:65–90
    [Google Scholar]
  4. 4.
    Lin H, Li W, Guo C, Qu S, Ren N. 2011. Advances in the study of directed evolution for cellulases. Front. Environ. Sci. Eng. China 5:519–25
    [Google Scholar]
  5. 5.
    Contreras F, Pramanik S, Rozhkova AM, Zorov IN, Korotkova O et al. 2020. Engineering robust cellulases for tailored lignocellulosic degradation cocktails. Int. J. Mol. Sci. 21:1589
    [Google Scholar]
  6. 6.
    Himmel ME, Ding S-Y, Johnson DK, Adney WS, Nimlos MR et al. 2007. Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804–7
    [Google Scholar]
  7. 7.
    Sinha SK, Goswami S, Das S, Datta S. 2017. Exploiting non-conserved residues to improve activity and stability of Halothermothrix orenii β-glucosidase. Appl. Microbiol. Biotechnol. 101:1455–63
    [Google Scholar]
  8. 8.
    Liu RYF, Hu YS, Schiraldi DA, Hiltner A, Baer E. 2004. Crystallinity and oxygen transport properties of PET bottle walls. J. Appl. Polym. Sci. 94:671–77
    [Google Scholar]
  9. 9.
    Maeda H, Yamagata Y, Abe K, Hasegawa F, Machida M et al. 2005. Purification and characterization of a biodegradable plastic-degrading enzyme from Aspergillus oryzae. Appl. Microbiol. Biotechnol. 67:778–88
    [Google Scholar]
  10. 10.
    Yamashita K, Kikkawa Y, Kurokawa K, Doi Y. 2005. Enzymatic degradation of poly(l-lactide) film by proteinase K: quartz crystal microbalance and atomic force microscopy study. Biomacromolecules 6:850–57
    [Google Scholar]
  11. 11.
    Gaillard T, George M, Gastaldi E, Nallet F, Fabre P. 2019. An experimental and theoretical study of the erosion of semi-crystalline polymers and the subsequent generation of microparticles. Soft Matter 15:8302–12
    [Google Scholar]
  12. 12.
    Tischler D, Eulberg D, Lakner S, Kaschabek SR, van Berkel WJH, Schlömann 2009. Identification of a novel self-sufficient styrene monooxygenase from Rhodococcus opacus 1CP. J. Bacteriol. 191:4996–5009
    [Google Scholar]
  13. 13.
    Restrepo-Flórez J-M, Bassi A, Thompson MR. 2014. Microbial degradation and deterioration of polyethylene—a review. Int. Biodeterior. Biodegrad. 88:83–90
    [Google Scholar]
  14. 14.
    Pathak VM, Navneet 2017. Review on the current status of polymer degradation: a microbial approach. Bioresour. Bioprocess. 4:15
    [Google Scholar]
  15. 15.
    Wei R, Zimmermann W. 2017. Microbial enzymes for the recycling of recalcitrant petroleum-based plastics: How far are we?. Microb. Biotechnol. 10:1308–22
    [Google Scholar]
  16. 16.
    Wong DWS. 2009. Structure and action mechanism of ligninolytic enzymes. Appl. Biochem. Biotechnol. 157:174–209
    [Google Scholar]
  17. 17.
    Knyazev VD. 2007. Effects of chain length on the rates of C–C bond dissociation in linear alkanes and polyethylene. J. Phys. Chem. A 111:3875–83
    [Google Scholar]
  18. 18.
    Huang J-b, Wu S-b, Cheng H, Lei M, Liang J-j, Tong H. 2015. Theoretical study of bond dissociation energies for lignin model compounds. J. Fuel Chem. Technol. 43:429–36
    [Google Scholar]
  19. 19.
    Bonhomme S, Cuer A, Delort A-M, Lemaire J, Sancelme M et al. 2003. Environmental biodegradation of polyethylene. Polym. Degrad. Stab. 81:441–52
    [Google Scholar]
  20. 20.
    Raddadi N, Fava F. 2019. Biodegradation of oil-based plastics in the environment: existing knowledge and needs of research and innovation. Sci. Total Environ. 679:148–58
    [Google Scholar]
  21. 21.
    Howard GT, Mackie RI, Cann IKO, Ohene-Adjei S, Aboudehen KS et al. 2007. Effect of insertional mutations in the pueA and pueB genes encoding two polyurethanases in Pseudomonas chlororaphis contained within a gene cluster. J. Appl. Microbiol. 103:2074–83
    [Google Scholar]
  22. 22.
    Mathur G, Prasad R. 2012. Degradation of polyurethane by Aspergillus flavus (ITCC 6051) isolated from soil. Appl. Biochem. Biotechnol. 167:1595–602
    [Google Scholar]
  23. 23.
    Yasuhira K, Uedo Y, Takeo M, Kato D-I, Negoro S. 2007. Genetic organization of nylon-oligomer-degrading enzymes from alkalophilic bacterium, Agromyces sp. KY5R. J. Biosci. Bioeng. 104:521–24
    [Google Scholar]
  24. 24.
    Urbanek AK, Mirończuk AM, García-Martín A, Sabordio A, de la Mata I, Arroyo M. 2020. Biochemical properties and biotechnological applications of microbial enzymes involved in the degradation of polyester-type plastics. Biochim. Biophys. Acta 1868:140315
    [Google Scholar]
  25. 25.
    Kolattukudy PE. 1981. Structure, biosynthesis, and biodegradation of cutin and suberin. Annu. Rev. Plant Physiol. 32:539–67
    [Google Scholar]
  26. 26.
    Vertommen MAME, Nierstrasz VA, van der Veer M, Warmoeskerken MMCG. 2005. Enzymatic surface modification of poly(ethylene terephthalate). J. Biotechnol. 120:376–86
    [Google Scholar]
  27. 27.
    Neves Petersen MT, Fojan P, Petersen SB 2001. How do lipases and esterases work: the electrostatic contribution. J. Biotechnol. 85:115–47
    [Google Scholar]
  28. 28.
    Anobom CD, Pinheiro AS, De-Andrade RA, Aguieiras ECG, Andrade GC et al. 2014. From structure to catalysis: recent developments in the biotechnological applications of lipases. BioMed Res. Int. 2014:684506
    [Google Scholar]
  29. 29.
    Verger R. 1997.. “ Interfacial activation” of lipases: facts and artifacts. Trends Biotechnol 15:32–38
    [Google Scholar]
  30. 30.
    Carrasco-López C, Godoy C, de Las Rivas B, Fernández-Lorente G, Palomo JM et al. 2009. Activation of bacterial thermoalkalophilic lipases is spurred by dramatic structural rearrangements. J. Biol. Chem. 284:4365–72
    [Google Scholar]
  31. 31.
    Jochens H, Hesseler M, Stiba K, Padhi SK, Kazlauskas RJ, Bornscheuer UT. 2011. Protein engineering of α/β-hydrolase fold enzymes. ChemBioChem 12:1508–17
    [Google Scholar]
  32. 32.
    Tokiwa Y, Calabia B, Ugwu C, Aiba S. 2009. Biodegradability of plastics. Int. J. Mol. Sci. 10:3722–42
    [Google Scholar]
  33. 33.
    Hoshino A, Isono Y. 2002. Degradation of aliphatic polyester films by commercially available lipases with special reference to rapid and complete degradation of poly(L-lactide) film by lipase PL derived from Alcaligenes. Biodegradation 13:141–47
    [Google Scholar]
  34. 34.
    Martinez C, De Geus P, Lauwereys M, Matthyssens G, Cambillau C. 1992. Fusarium solani cutinase is a lipolytic enzyme with a catalytic serine accessible to solvent. Nature 356:615–18
    [Google Scholar]
  35. 35.
    Liu Z, Gosser Y, Baker PJ, Ravee Y, Lu Z et al. 2009. Structural and functional studies of Aspergillus oryzae cutinase: enhanced thermostability and hydrolytic activity of synthetic ester and polyester degradation. J. Am. Chem. Soc. 131:15711–16
    [Google Scholar]
  36. 36.
    Carvalho CML, Aires-Barros MR, Cabral JMS 1999. Cutinase: from molecular level to bioprocess development. Biotechnol. Bioeng. 66:17–34
    [Google Scholar]
  37. 37.
    Pastorino L, Pioli F, Zilli M, Converti A, Nicolini C. 2004. Lipase-catalyzed degradation of poly(ε-caprolactone). Enzyme Microb. Technol. 35:321–26
    [Google Scholar]
  38. 38.
    Lim H-A, Raku T, Tokiwa Y. 2005. Hydrolysis of polyesters by serine proteases. Biotechnol. Lett. 27:459–64
    [Google Scholar]
  39. 39.
    Shah AA, Eguchi T, Mayumi D, Kato S, Shintani N et al. 2013. Degradation of aliphatic and aliphatic-aromatic co-polyesters by depolymerases from Roseateles depolymerans strain TB-87 and analysis of degradation products by LC-MS. Polym. Degrad. Stab. 98:2722–29
    [Google Scholar]
  40. 40.
    Muroi F, Tachibana Y, Soulenthone P, Yamamoto K, Mizuno T et al. 2017. Characterization of a poly(butylene adipate-co-terephthalate) hydrolase from the aerobic mesophilic bacterium Bacillus pumilus. Polym. Degrad. Stab. 137:11–22
    [Google Scholar]
  41. 41.
    Kleeberg I, Welzel K, VandenHeuvel J, Müller R-J, Deckwer W-D. 2005. Characterization of a new extracellular hydrolase from Thermobifida fusca degrading aliphatic−aromatic copolyesters. Biomacromolecules 6:262–70
    [Google Scholar]
  42. 42.
    Biundo A, Ribitsch D, Steinkellner G, Gruber K, Guebitz GM. 2017. Polyester hydrolysis is enhanced by a truncated esterase: Less is more. Biotechnol. J. 12: https://doi.org/10.1002/biot.201600450
    [Crossref] [Google Scholar]
  43. 43.
    Heredia A. 2003. Biophysical and biochemical characteristics of cutin, a plant barrier biopolymer. Biochim. Biophys. Acta 1620:1–7
    [Google Scholar]
  44. 44.
    Ronkvist ÅM, Xie W, Lu W, Gross RA 2009. Cutinase-catalyzed hydrolysis of poly(ethylene terephthalate). Macromolecules 42:5128–38
    [Google Scholar]
  45. 45.
    Sulaiman S, Yamato S, Kanaya E, Kim J-J, Koga Y et al. 2012. Isolation of a novel cutinase homolog with polyethylene terephthalate-degrading activity from leaf-branch compost by using a metagenomic approach. Appl. Environ. Microbiol. 78:1556–62
    [Google Scholar]
  46. 46.
    Tournier V, Topham CM, Gilles A, David B, Folgoas C et al. 2020. An engineered PET depolymerase to break down and recycle plastic bottles. Nature 580:216–19
    [Google Scholar]
  47. 47.
    Yoshida S, Hiraga K, Takehana T, Taniguchi I, Yamaji H et al. 2016. A bacterium that degrades and assimilates poly(ethylene terephthalate). Science 351:1196–99
    [Google Scholar]
  48. 48.
    Han X, Liu W, Huang J-W, Ma J, Zheng Y et al. 2017. Structural insight into catalytic mechanism of PET hydrolase. Nat. Commun. 8:2106
    [Google Scholar]
  49. 49.
    Kawai F. 2021. The current state of research on PET hydrolyzing enzymes available for biorecycling. Catalysts 11:206
    [Google Scholar]
  50. 50.
    Joo S, Cho IJ, Seo H, Son HF, Sagong H-Y et al. 2018. Structural insight into molecular mechanism of poly(ethylene terephthalate) degradation. Nat. Commun. 9:382
    [Google Scholar]
  51. 51.
    Austin HP, Allen MD, Donohoe BS, Rorrer NA, Kearns FL et al. 2018. Characterization and engineering of a plastic-degrading aromatic polyesterase. PNAS 115:E43–57
    [Google Scholar]
  52. 52.
    Liu B, He L, Wang L, Li T, Li C et al. 2018. Protein crystallography and site-direct mutagenesis analysis of the poly(ethylene terephthalate) hydrolase PETase from Ideonella sakaiensis. ChemBioChem 19:1471–75
    [Google Scholar]
  53. 53.
    Herrero Acero E, Ribitsch D, Steinkellner G, Gruber K, Greimel K et al. 2011. Enzymatic surface hydrolysis of PET: effect of structural diversity on kinetic properties of cutinases from Thermobifida. Macromolecules 44:4632–40
    [Google Scholar]
  54. 54.
    Herrero Acero E, Ribitsch D, Dellacher A, Zitzenbacher S, Marold A et al. 2013. Surface engineering of a cutinase from Thermobifida cellulosilytica for improved polyester hydrolysis: surface engineering of a cutinase. Biotechnol. Bioeng. 110:2581–90
    [Google Scholar]
  55. 55.
    Thumarat U, Nakamura R, Kawabata T, Suzuki H, Kawai F. 2012. Biochemical and genetic analysis of a cutinase-type polyesterase from a thermophilic Thermobifida alba AHK119. Appl. Microbiol. Biotechnol. 95:419–30
    [Google Scholar]
  56. 56.
    Then J, Wei R, Oeser T, Barth M, Belisário-Ferrari MR et al. 2015. Ca2+ and Mg2+ binding site engineering increases the degradation of polyethylene terephthalate films by polyester hydrolases from Thermobifida fusca. Biotechnol. J. 10:592–98
    [Google Scholar]
  57. 57.
    Son HF, Cho IJ, Joo S, Seo H, Sagong H-Y et al. 2019. Rational protein engineering of thermo-stable PETase from Ideonella sakaiensis for highly efficient PET degradation. ACS Catal 9:3519–26
    [Google Scholar]
  58. 58.
    Shirke AN, White C, Englaender JA, Zwarycz A, Butterfoss GL et al. 2018. Stabilizing leaf and branch compost cutinase (LCC) with glycosylation: mechanism and effect on PET hydrolysis. Biochemistry 57:1190–200
    [Google Scholar]
  59. 59.
    Floudas D, Binder M, Riley R, Barry K, Blanchette RA et al. 2012. The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science 336:1715–19
    [Google Scholar]
  60. 60.
    Janusz G, Pawlik A, Sulej J, Świderska-Burek U, Jarosz-Wilkołazka A, Paszczyński A. 2017. Lignin degradation: microorganisms, enzymes involved, genomes analysis and evolution. FEMS Microbiol. Rev. 41:941–62
    [Google Scholar]
  61. 61.
    Weng J, Chapple C. 2010. The origin and evolution of lignin biosynthesis. New Phytol 187:273–85
    [Google Scholar]
  62. 62.
    Pauly M, Keegstra K. 2008. Cell-wall carbohydrates and their modification as a resource for biofuels. Plant J 54:559–68
    [Google Scholar]
  63. 63.
    Quiroz-Castañeda RE, Folch-Mallol JL. 2013. Hydrolysis of biomass mediated by cellulases for the production of sugars. Sustainable Degradation of Lignocellulosic Biomass: Techniques, Applications and Commercialization A Chandel London: InTech Open
    [Google Scholar]
  64. 64.
    McCann MC, Wells B, Roberts K. 1990. Direct visualization of cross-links in the primary plant cell wall. J. Cell Sci. 96:323–34
    [Google Scholar]
  65. 65.
    O'Sullivan AC. 1997. Cellulose: The structure slowly unravels. 4173–207
  66. 66.
    Somerville C. 2004. Toward a systems approach to understanding plant cell walls. Science 306:2206–11
    [Google Scholar]
  67. 67.
    Heinze T 2005. Polysaccharides I, Vol. 186 Structure, Characterization and Use. Berlin: Springer
    [Google Scholar]
  68. 68.
    Feldman D. 1985. Wood—chemistry, ultrastructure, reactions, by D Fengel and G Wegener. Walter de Gruyter, Berlin and New York, 1984, 613 pp. Price: 245 DM. J. Polym. Sci. Polym. Lett. Ed. 23:601–2
    [Google Scholar]
  69. 69.
    Grabber JH. 2005. How do lignin composition, structure, and cross-linking affect degradability? A review of cell wall model studies. Crop Sci 45:820–31
    [Google Scholar]
  70. 70.
    Boerjan W, Ralph J, Baucher ML. 2003. Lignin biosynthesis. Annu. Rev. Plant Biol. 54:519–46
    [Google Scholar]
  71. 71.
    Mansfield SD, Mooney C, Saddler JN. 1999. Substrate and enzyme characteristics that limit cellulose hydrolysis. Biotechnol. Prog. 15:804–16
    [Google Scholar]
  72. 72.
    Zhou W, Xu Y, Schüttler H.-B. 2010. Cellulose hydrolysis in evolving substrate morphologies III: time-scale analysis. Biotechnol. Bioeng. 107:224–34
    [Google Scholar]
  73. 73.
    Saritha M, Arora A, Lata 2012. Biological pretreatment of lignocellulosic substrates for enhanced delignification and enzymatic digestibility. Indian J. Microbiol. 52:122–30
    [Google Scholar]
  74. 74.
    Zhang Y-HP, Lynd LR. 2004. Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol. Bioeng. 88:797–824
    [Google Scholar]
  75. 75.
    Taherzadeh M, Karimi K. 2008. Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int. J. Mol. Sci. 9:1621–51
    [Google Scholar]
  76. 76.
    Arnold S, Moss K, Dahmen N, Henkel M, Hausmann R. 2019. Pretreatment strategies for microbial valorization of bio-oil fractions produced by fast pyrolysis of ash-rich lignocellulosic biomass. GCB Bioenergy 11:181–90
    [Google Scholar]
  77. 77.
    Ishizawa CI, Davis MF, Schell DF, Johnson DK. 2007. Porosity and its effect on the digestibility of dilute sulfuric acid pretreated corn stover. J. Agric. Food Chem. 55:2575–81
    [Google Scholar]
  78. 78.
    Chundawat SPS, Beckham GT, Himmel ME, Dale BE. 2011. Deconstruction of lignocellulosic biomass to fuels and chemicals. Annu. Rev. Chem. Biomol. Eng. 2:121–45
    [Google Scholar]
  79. 79.
    Kumar R, Mago G, Balan V, Wyman CE. 2009. Physical and chemical characterizations of corn stover and poplar solids resulting from leading pretreatment technologies. Bioresour. Technol. 100:3948–62
    [Google Scholar]
  80. 80.
    Lee YY, Wu Z, Torget RW. 2000. Modeling of countercurrent shrinking-bed reactor in dilute-acid total-hydrolysis of lignocellulosic biomass. Bioresour. Technol. 71:29–39
    [Google Scholar]
  81. 81.
    Brunecky R, Vinzant TB, Porter SE, Donohoe BS, Johnson DK, Himmel ME. 2009. Redistribution of xylan in maize cell walls during dilute acid pretreatment. Biotechnol. Bioeng. 102:1537–43
    [Google Scholar]
  82. 82.
    Pingali SV, Urban VS, Heller WT, McGaughey J, O'Neill H et al. 2010. Breakdown of cell wall nanostructure in dilute acid pretreated biomass. Biomacromolecules 11:2329–35
    [Google Scholar]
  83. 83.
    Selig MJ, Viamajala S, Decker SR, Tucker MP, Himmel ME, Vinzant TB. 2007. Deposition of lignin droplets produced during dilute acid pretreatment of maize stems retards enzymatic hydrolysis of cellulose. Biotechnol. Prog. 23:1333–39
    [Google Scholar]
  84. 84.
    Sanderson K. 2011. Lignocellulose: a chewy problem. Nature 474:S12–S14
    [Google Scholar]
  85. 85.
    Sukumaran RK, Singhania RR, Pandey A. 2005. Microbial cellulases—production, applications and challenges. J. Sci. Ind. Res. 64:832–44
    [Google Scholar]
  86. 86.
    Chandra RP, Bura R, Mabee WE, Berlin A, Pan X, Saddler JN. 2007. Substrate pretreatment: The key to effective enzymatic hydrolysis of lignocellulosics?. Adv. Biochem. Eng. Biotechnol. 108:67–93
    [Google Scholar]
  87. 87.
    Sweeney MD, Xu F. 2012. Biomass converting enzymes as industrial biocatalysts for fuels and chemicals: recent developments. Catalysts 2:244–63
    [Google Scholar]
  88. 88.
    Humbird D, Davis R, Tao L, Kinchin C, Hsu D, Aden A et al. 2011. Process design and economics for biochemical conversion of lignocellulosic biomass to ethanol: dilute-acid pretreatment and enzymatic hydrolysis of corn stover Tech. Rep. NREL/TP-5100-47764, 1013269 Natl. Renew. Energy Lab. Golden, CO:
    [Google Scholar]
  89. 89.
    Chovau S, Degrauwe D, Van der Bruggen B. 2013. Critical analysis of techno-economic estimates for the production cost of lignocellulosic bio-ethanol. Renew. Sustain. Energy Rev. 26:307–21
    [Google Scholar]
  90. 90.
    Percival Zhang Y-H, Himmel ME, Mielenz JR 2006. Outlook for cellulase improvement: screening and selection strategies. Biotechnol. Adv. 24:452–81
    [Google Scholar]
  91. 91.
    Payne CM, Knott BC, Mayes HB, Hansson H, Himmel ME et al. 2015. Fungal cellulases. Chem. Rev. 115:1308–448
    [Google Scholar]
  92. 92.
    Lopes AM, Ferreira Filho EX, Moreira LRS. 2018. An update on enzymatic cocktails for lignocellulose breakdown. J. Appl. Microbiol. 125:632–45
    [Google Scholar]
  93. 93.
    Bhattacharya AS, Bhattacharya A, Pletschke BI. 2015. Synergism of fungal and bacterial cellulases and hemicellulases: a novel perspective for enhanced bio-ethanol production. Biotechnol. Lett. 37:1117–29
    [Google Scholar]
  94. 94.
    Adsul M, Sandhu SK, Singhania RR, Gupta R, Puri SK, Mathur A. 2020. Designing a cellulolytic enzyme cocktail for the efficient and economical conversion of lignocellulosic biomass to biofuels. Enzyme Microb. Technol. 133:109442
    [Google Scholar]
  95. 95.
    Pérez J, Muñoz-Dorado J, de la Rubia T, Martínez J. 2002. Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. Int. Microbiol. 5:53–63
    [Google Scholar]
  96. 96.
    Eriksson T, Karlsson J, Tjerneld F. 2002. A model explaining declining rate in hydrolysis of lignocellulose substrates with cellobiohydrolase I (Cel7A) and endoglucanase I (Cel7B) of Trichoderma reesei. Appl. Biochem. Biotechnol. 101:41–60
    [Google Scholar]
  97. 97.
    Rye CS, Withers SG. 2000. Glycosidase mechanisms. Curr. Opin. Chem. Biol. 4:573–80
    [Google Scholar]
  98. 98.
    Méndez-Líter JA, de Eugenio LI, Nieto-Domínguez M, Prieto A, Martínez MJ. 2021. Hemicellulases from Penicillium and Talaromyces for lignocellulosic biomass valorization: a review. Bioresour. Technol. 324:124623
    [Google Scholar]
  99. 99.
    Manavalan T, Manavalan A, Heese K. 2015. Characterization of lignocellulolytic enzymes from white-rot fungi. Curr. Microbiol. 70:485–98
    [Google Scholar]
  100. 100.
    Chen C-C, Dai L, Ma L, Guo R-T. 2020. Enzymatic degradation of plant biomass and synthetic polymers. Nat. Rev. Chem. 4:114–26
    [Google Scholar]
  101. 101.
    Hofrichter M, Ullrich R, Pecyna MJ, Liers C, Lundell T. 2010. New and classic families of secreted fungal heme peroxidases. Appl. Microbiol. Biotechnol. 87:871–97
    [Google Scholar]
  102. 102.
    Blodig W, Smith AT, Doyle WA, Piontek K. 2001. Crystal structures of pristine and oxidatively processed lignin peroxidase expressed in Escherichia coli and of the W171F variant that eliminates the redox active tryptophan 171. Implications for the reaction mechanism. J. Mol. Biol. 305:851–61
    [Google Scholar]
  103. 103.
    Ruiz-Dueñas FJ, Morales M, García E, Miki Y, Martínez MJ, Martínez AT. 2009. Substrate oxidation sites in versatile peroxidase and other basidiomycete peroxidases. J. Exp. Bot. 60:441–52
    [Google Scholar]
  104. 104.
    Arnold FH, Wintrode PL, Miyazaki K, Gershenson A. 2001. How enzymes adapt: lessons from directed evolution. Trends Biochem. Sci. 26:100–6
    [Google Scholar]
  105. 105.
    Cherry JR, Fidantsef AL. 2003. Directed evolution of industrial enzymes: an update. Curr. Opin. Biotechnol. 14:438–43
    [Google Scholar]
  106. 106.
    Hibbert EG, Dalby PA. 2005. Directed evolution strategies for improved enzymatic performance. Microb. Cell Fact. 4:29
    [Google Scholar]
  107. 107.
    Baek M, Dimaio F, Anischchenko I, Dauparas J, Ovchinnikov S et al. 2021. Accurate prediction of protein structures and interactions using a three-track neural network. Science 373:871–76
    [Google Scholar]
  108. 108.
    Chokhawala HA, Roche CM, Kim T-W, Atreya ME, Vegesna N et al. 2015. Mutagenesis of Trichoderma reesei endoglucanase I: impact of expression host on activity and stability at elevated temperatures. BMC Biotechnol 15:11
    [Google Scholar]
  109. 109.
    Bayram Akcapinar G, Venturini A, Martelli PL, Casadio R, Sezerman UO. 2015. Modulating the thermostability of endoglucanase I from Trichoderma reesei using computational approaches. Protein Eng. Des. Sel. 28:127–35
    [Google Scholar]
  110. 110.
    Zhang J, Shi H, Xu L, Zhu X, Li X. 2015. Site-directed mutagenesis of a hyperthermophilic endoglucanase cel12B from Thermotoga maritima based on rational design. PLOS ONE 10:e0133824
    [Google Scholar]
  111. 111.
    Korkegian A. 2005. Computational thermostabilization of an enzyme. Science 308:857–60
    [Google Scholar]
  112. 112.
    Lantz SE, Goedegebuur F, Hommes R, Kaper T, Kelemen BR et al. 2010. Hypocrea jecorina CEL6A protein engineering. Biotechnol. Biofuels 3:20
    [Google Scholar]
  113. 113.
    Liu M, Xie W, Xu H, Gu J, Lv X et al. 2014. Directed evolution of an exoglucanase facilitated by a co-expressed β-glucosidase and construction of a whole engineered cellulase system in Escherichia coli. Biotechnol. Lett. 36:1801–7
    [Google Scholar]
  114. 114.
    Larue K, Melgar M, Martin VJJ. 2016. Directed evolution of a fungal β-glucosidase in Saccharomyces cerevisiae. Biotechnol. Biofuels 9:52
    [Google Scholar]
  115. 115.
    Liu G, Zhang J, Bao J 2016. Cost evaluation of cellulase enzyme for industrial-scale cellulosic ethanol production based on rigorous Aspen Plus modeling. Bioprocess Biosyst. Eng. 39:133–40
    [Google Scholar]
  116. 116.
    Körfer G, Pitzler C, Vojcic L, Martinez R, Schwaneberg U. 2016. In vitro flow cytometry-based screening platform for cellulase engineering. Sci. Rep. 6:26128
    [Google Scholar]
  117. 117.
    Wang T, Liu X, Yu Q, Zhang X, Qu Y et al. 2005. Directed evolution for engineering pH profile of endoglucanase III from Trichoderma reesei. Biomol. Eng. 22:89–94
    [Google Scholar]
  118. 118.
    Anbar M, Gul O, Lamed R, Sezerman UO, Bayer EA. 2012. Improved thermostability of Clostridium thermocellum endoglucanase Cel8A by using consensus-guided mutagenesis. Appl. Environ. Microbiol. 78:3458–64
    [Google Scholar]
  119. 119.
    Telke AA, Zhuang N, Ghatge SS, Lee S-H, Shah AA et al. 2013. Engineering of family-5 glycoside hydrolase (Cel5A) from an uncultured bacterium for efficient hydrolysis of cellulosic substrates. PLOS ONE 8:e65727
    [Google Scholar]
  120. 120.
    Chang C-J, Lee C-C, Chan Y-T, Trudeau DL, Wu M-H et al. 2016. Exploring the mechanism responsible for cellulase thermostability by structure-guided recombination. PLOS ONE 11:e0147485
    [Google Scholar]
  121. 121.
    Lülsdorf N, Pitzler C, Biggel M, Martinez R, Vojcic L, Shwaneberg U. 2015. A flow cytometer-based whole cell screening toolbox for directed hydrolase evolution through fluorescent hydrogels. Chem. Commun. 51:8679–82
    [Google Scholar]
  122. 122.
    Saavedra JM, Azócar MA, Rodríguez V, Ramírez-Sarmiento CA, Andrews BA et al. 2018. Relevance of local flexibility near the active site for enzymatic catalysis: biochemical characterization and engineering of cellulase Cel5A from Bacillus agaradherans. Biotechnol. J. 13:1700669
    [Google Scholar]
  123. 123.
    Longwell CK, Labanieh L, Cochran JR. 2017. High-throughput screening technologies for enzyme engineering. Curr. Opin. Biotechnol. 48:196–202
    [Google Scholar]
  124. 124.
    Monge EC, Levi M, Forbin JN, Legesse MD, Udo BA et al. 2020. High-throughput screening of environmental polysaccharide-degrading bacteria using biomass containment and complex insoluble substrates. Appl. Microbiol. Biotechnol. 104:3379–89
    [Google Scholar]
  125. 125.
    Baral NR, Sundstrom ER, Das L, Gladden J, Eudes A et al. 2019. Approaches for more efficient biological conversion of lignocellulosic feedstocks to biofuels and bioproducts. ACS Sustain. Chem. Eng. 7:9062–79
    [Google Scholar]
  126. 126.
    Knoll M, Hamm TM, Wagner F, Martinez V, Pleiss J. 2009. The PHA depolymerase engineering database: a systematic analysis tool for the diverse family of polyhydroxyalkanoate (PHA) depolymerases. BMC Bioinform. 10:89
    [Google Scholar]
  127. 127.
    Gusakov AV, Berlin A, Popova NN, Okunev ON, Sinitsyna OA et al. 2000. A comparative study of different cellulase preparations in the enzymatic treatment of cotton fabrics. Appl. Biochem. Biotechnol. 88:119–26
    [Google Scholar]
  128. 128.
    Pham TH. 2004. The role of polyhydroxyalkanoate biosynthesis by Pseudomonas aeruginosa in rhamnolipid and alginate production as well as stress tolerance and biofilm formation. Microbiology 150:3405–13
    [Google Scholar]
  129. 129.
    Perz V, Hromic A, Baumschlager A, Steinkellner G, Pavkov-Keller T et al. 2016. An esterase from anaerobic Clostridium hathewayi can hydrolyze aliphatic-aromatic polyesters. Environ. Sci. Technol. 50:2899–907
    [Google Scholar]
  130. 130.
    Ribitsch D, Acero EH, Przylucka A, Zitzenbacher S, Marold A et al. 2015. Enhanced cutinase-catalyzed hydrolysis of polyethylene terephthalate by covalent fusion to hydrophobins. Appl. Environ. Microbiol. 81:3586–92
    [Google Scholar]
  131. 131.
    Kulakova A, Indrakumar S, Tuelung PS, Mahapatra S, Streicher WW et al. 2020. Albumin-neprilysin fusion protein: understanding stability using small angle X-ray scattering and molecular dynamic simulations. Sci. Rep. 10:10089
    [Google Scholar]
  132. 132.
    Marowa P, Ding A, Kong Y. 2016. Expansins: roles in plant growth and potential applications in crop improvement. Plant Cell Rep 35:949–65
    [Google Scholar]
  133. 133.
    Schutyser W, Renders T, Van den Bosch S, Koelewijn S-F, Beckham GT, Sels BF. 2018. Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading. Chem. Soc. Rev. 47:852–908
    [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-092120-091054
Loading
/content/journals/10.1146/annurev-chembioeng-092120-091054
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error