1932

Abstract

Hydrogen has been identified as one of the key elements to bolster longer-term climate neutrality and strategic autonomy for several major countries. Multiple road maps emphasize the need to accelerate deployment across its supply chain and utilization. Being one of the major contributors to global CO emissions, the transportation sector finds in hydrogen an appealing alternative to reach sustainable development through either its direct use in fuel cells or further transformation to sustainable fuels. This review summarizes the latest developments in hydrogen use across the major energy-consuming transportation sectors. Rooted in a systems engineering perspective, we present an analysis of the entire hydrogen supply chain across its economic, environmental, and social dimensions. Providing an outlook on the sector, we discuss the challenges hydrogen faces in penetrating the different transportation markets.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-092220-010254
2022-06-07
2024-12-04
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/13/1/annurev-chembioeng-092220-010254.html?itemId=/content/journals/10.1146/annurev-chembioeng-092220-010254&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Environ. Inf. Adm 2021. Annual energy outlook 2021 Rep. Environ. Inf. Adm. Washington, DC:
    [Google Scholar]
  2. 2.
    Int. Energy Agency 2020. Tracking transport 2020 Rep. Int. Energy Agency Paris: https://www.iea.org/reports/tracking-transport-2020
    [Google Scholar]
  3. 3.
    Hydrog. Counc., McKinsey Co 2021. Hydrogen insights: a perspective on hydrogen investment, market development, and cost competitiveness Tech. Rep., Feb. Hydrog. Counc. Belg: https://www.hydrogencouncil.com/wp-content/uploads/2021/02/Hydrogen-Insights-2021.pdf
    [Google Scholar]
  4. 4.
    [Google Scholar]
  5. 5.
    Fuel Cells Hydrog. 2 Joint Undert 2019. Hydrogen roadmap Europe Rep. Fuel Cells Hydrog. 2 Joint Undert. Brussels: https://doi.org/10.2843/249013
    [Crossref] [Google Scholar]
  6. 6.
    Deloitte & Ballard 2020. Fueling the future of mobility hydrogen and fuel cell solutions for transportation, Vol. 1 Tech. Rep. Deloitte China, Shanghai:
    [Google Scholar]
  7. 7.
    Hydrog. Counc 2017. How hydrogen empowers the energy transition Rep. Hydrog. Counc. Belg: https://hydrogencouncil.com/wp-content/uploads/2017/06/Hydrogen-Council-Vision-Document.pdf
    [Google Scholar]
  8. 8.
    Cullen DA, Neyerlin KC, Ahluwalia RK, Mukundan R, More KL et al. 2021. New roads and challenges for fuel cells in heavy-duty transportation. Nat. Energy 6:462–74
    [Google Scholar]
  9. 9.
    Staffell I, Scamman D, Velazquez Abad A, Balcombe P, Dodds PE et al. 2019. The role of hydrogen and fuel cells in the global energy system. Energy Environ. Sci. 12:463–91
    [Google Scholar]
  10. 10.
    Abdelkareem MA, Elsaid K, Wilberforce T, Kamil M, Sayed ET, Olabi A. 2021. Environmental aspects of fuel cells: a review. Sci. Total Environ. 752:141803
    [Google Scholar]
  11. 11.
    Rath R, Kumar P, Mohanty S, Nayak SK. 2019. Recent advances, unsolved deficiencies, and future perspectives of hydrogen fuel cells in transportation and portable sectors. Int. J. Energy Res. 43:8931–55
    [Google Scholar]
  12. 12.
    Mar. Environ. Prot. Comm 2018. Initial IMO strategy on reduction of GHG emissions from ships https://www.imo.org/en/MediaCentre/HotTopics/Pages/Reducing-greenhouse-gas-emissions-from-ships.aspx
    [Google Scholar]
  13. 13.
    Xing H, Stuart C, Spence S, Chen H 2021. Fuel cell power systems for maritime applications: progress and perspectives. Sustainability 13:31213
    [Google Scholar]
  14. 14.
    Gilbert P, Walsh C, Traut M, Kesieme U, Pazouki K, Murphy A. 2018. Assessment of full life-cycle air emissions of alternative shipping fuels. J. Clean. Prod. 172:855–66
    [Google Scholar]
  15. 15.
    Baroutaji A, Wilberforce T, Ramadan M, Olabi AG. 2019. Comprehensive investigation on hydrogen and fuel cell technology in the aviation and aerospace sectors. Renew. Sustain. Energy Rev. 106:31–40
    [Google Scholar]
  16. 16.
    Sacchi R, Bauer C, Cox BL. 2021. Does size matter? The influence of size, load factor, range autonomy, and application type on the life cycle assessment of current and future medium- and heavy-duty vehicles. Environ. Sci. Technol. 55:5224–35
    [Google Scholar]
  17. 17.
    Hydrog. Counc 2021. Hydrogen decarbonization pathways Tech. Rep., Jan. Hydrog. Counc. Belg: https://www.hydrogencouncil.com/wp-content/uploads/2021/04/Hydrogen-Council-Report_Decarbonization-Pathways_Part-1-Lifecycle-Assessment.pdf
    [Google Scholar]
  18. 18.
    Toyota 2020. Toyota launches production model “Sora” FC bus News Rel., March 28. https://global.toyota/en/newsroom/corporate/21863761.html
    [Google Scholar]
  19. 19.
    Yoshida T, Kojima K. 2015. Toyota MIRAI fuel cell vehicle and progress toward a future hydrogen society. Electrochem. Soc. Interface 24:245–49
    [Google Scholar]
  20. 20.
    Eudy L, Post M. 2020. Fuel cell buses in U.S. transit fleets: current status 2020 Tech. Rep. Natl. Renew. Energy Lab. Golden, CO: https://www.nrel.gov/docs/fy21osti/75583.pdf
    [Google Scholar]
  21. 21.
    Hoffrichter A, Hillmansen S, Roberts C. 2016. Conceptual propulsion system design for a hydrogen-powered regional train. IET Electr. Syst. Transp. 6:256–66
    [Google Scholar]
  22. 22.
    Siddiqui O, Dincer I. 2019. A review on fuel cell-based locomotive powering options for sustainable transportation. Arab. J. Sci. Eng. 44:677–93
    [Google Scholar]
  23. 23.
    Van Hoecke L, Laffineur L, Campe R, Perreault P, Verbruggen SW, Lenaerts S. 2021. Challenges in the use of hydrogen for maritime applications. Energy Environ. Sci. 14:815–43
    [Google Scholar]
  24. 24.
    Ueckerdt F, Bauer C, Dirnaichner A, Everall J, Sacchi R, Luderer G. 2021. Potential and risks of hydrogen-based e-fuels in climate change mitigation. Nat. Clim. Change 11:384–93
    [Google Scholar]
  25. 25.
    R. Soc 2019. Sustainable synthetic carbon-based fuels for transport Policy Brief., R. Soc. London: https://royalsociety.org/topics-policy/projects/low-carbon-energy-programme/sustainable-synthetic-carbon-based-fuels-for-transport/
    [Google Scholar]
  26. 26.
    Kumar R, Kumar A, Pal A. 2021. An overview of conventional and non-conventional hydrogen production methods. Mater. Today 46:5353–59
    [Google Scholar]
  27. 27.
    Kothari R, Buddhi D, Sawhney RL. 2008. Comparison of environmental and economic aspects of various hydrogen production methods. Renew. Sustain. Energy Rev. 12:553–63
    [Google Scholar]
  28. 28.
    Khojasteh Salkuyeh Y, Saville BA, MacLean HL 2017. Techno-economic analysis and life cycle assessment of hydrogen production from natural gas using current and emerging technologies. Int. J. Hydrog. Energy 42:3018894–909
    [Google Scholar]
  29. 29.
    Antonini C, Treyer K, Streb A, van der Spek M, Bauer C, Mazzotti M. 2020. Hydrogen production from natural gas and biomethane with carbon capture and storage—a techno-environmental analysis. Sustain. Energy Fuels 4:62967–86
    [Google Scholar]
  30. 30.
    Tarun CB, Croiset E, Douglas PL, Gupta M, Chowdhury MH. 2007. Techno-economic study of CO2 capture from natural gas based hydrogen plants. Int. J. Greenh. Gas Control 1:155–61
    [Google Scholar]
  31. 31.
    Voldsund M, Jordal K, Anantharaman R. 2016. Hydrogen production with CO2 capture. Int. J. Hydrog. Energy 41:94969–92
    [Google Scholar]
  32. 32.
    Halabi MH, de Croon MH, van der Schaaf J, Cobden PD, Schouten JC. 2008. Modeling and analysis of autothermal reforming of methane to hydrogen in a fixed bed reformer. Chem. Eng. J. 137:3568–78
    [Google Scholar]
  33. 33.
    Aasberg-Petersen K, Christensen TS, Nielsen CS, Dybkjær I. 2003. Recent developments in autothermal reforming and pre-reforming for synthesis gas production in GTL applications. Fuel Proc. Technol. 83:253–61
    [Google Scholar]
  34. 34.
    Kaplan R, Kopacz M. 2020. Economic conditions for developing hydrogen production based on coal gasification with carbon capture and storage in Poland. Energies 13:19 5074.
    [Google Scholar]
  35. 35.
    Kelsall G. 2021. Hydrogen production from coal Rep. ICSC/313 Int. Cent. Sustain. Carbon London: https://www.sustainable-carbon.org/report/hydrogen-production-from-coal-icsc-313/
    [Google Scholar]
  36. 36.
    Hosseini SE, Wahid MA. 2016. Hydrogen production from renewable and sustainable energy resources: promising green energy carrier for clean development. Renew. Sustain. Energy Rev. 57:850–66
    [Google Scholar]
  37. 37.
    Binder M, Kraussler M, Kuba M, Luisser M. 2018. Hydrogen from biomass gasification Tech. Rep. IEA Bioenergy Paris:
    [Google Scholar]
  38. 38.
    Albrecht U, Altmann M, Barth F, Bünger U, Fraile D, Lanoix JC et al. 2015. Study on hydrogen from renewable resources in the EU Final Report Rep. Fuel Cells Hydrog. Joint Undert. Brussels:
    [Google Scholar]
  39. 39.
    Howes J, German L, Robson P, Taylor R, Toop G et al. 2018. Innovation needs assessment for biomass heat Final Rep. Ecofys London:
    [Google Scholar]
  40. 40.
    Hong G, Spritzer M. 2002. Supercritical water partial oxidation Proceedings of the 2002 U.S. DOE Hydrogen Program Review NREL/CP-610-32405
    [Google Scholar]
  41. 41.
    Aznar MP, Caballero MA, Corella J, Molina G, Toledo JM 2006. Hydrogen production by biomass gasification with steam O2 mixtures followed by a catalytic steam reformer and a CO-shift system. Energy Fuels 20:31305–9
    [Google Scholar]
  42. 42.
    Parthasarathy P, Narayanan KS. 2014. Hydrogen production from steam gasification of biomass: influence of process parameters on hydrogen yield—a review. Renew. Energy 66:570–79
    [Google Scholar]
  43. 43.
    Loipersböck J, Lenzi M, Rauch R, Hofbauer H. 2017. Hydrogen production from biomass: the behavior of impurities over a CO shift unit and a biodiesel scrubber used as a gas treatment stage. Korean J. Chem. Eng. 34:82198–203
    [Google Scholar]
  44. 44.
    Bharathiraja B, Sudharsanaa T, Bharghavi A, Jayamuthunagai J, Praveenkumar R. 2016. Biohydrogen and biogas—an overview on feedstocks and enhancement process. Fuel 185:810–28
    [Google Scholar]
  45. 45.
    Argun H, Gokfiliz P, Karapinar I 2017. Biohydrogen production potential of different biomass sources. Biohydrogen Production: Sustainability of Current Technology and Future Perspective A Singh, D Rathore 11–48 New Delhi: Springer
    [Google Scholar]
  46. 46.
    Bui M, Fajardy M, Mac Dowell N. 2017. Bio-Energy with CCS (BECCS) performance evaluation: efficiency enhancement and emissions reduction. Appl. Energy 195:289–302
    [Google Scholar]
  47. 47.
    Hart D, Howes J, Lehner F, Dodds PE, Hughes N et al. 2015. Scenarios for deployment of hydrogen in contributing to meeting carbon budgets and the 2050 target Final Rep. Comm. Clim. Change London:
    [Google Scholar]
  48. 48.
    Int. Energy Agency Greenh. Gas Progr 2017. Techno-economic evaluation of SMR based standalone (merchant) hydrogen plant with CCS Rep. 2017/02 Int. Energy Agency Greenh. Gas Progr. Cheltenham, UK:
    [Google Scholar]
  49. 49.
    Bains M, Robinson L 2016. Material comparators for end-of-waste decisions. Materials for fuels: coal Rep. SC130040/R9 Environ. Agency Bristol, UK:
    [Google Scholar]
  50. 50.
    Yan Q, Guo L, Lu Y. 2006. Thermodynamic analysis of hydrogen production from biomass gasification in supercritical water. Energy Convers. Manag. 47:111515–28
    [Google Scholar]
  51. 51.
    Yang C, Wang S, Li Y, Zhang Y, Cui C. 2021. Thermodynamic analysis of hydrogen production via supercritical water gasification of coal, sewage sludge, microalga, and sawdust. Int. J. Hydrog. Energy 46:3418042–50
    [Google Scholar]
  52. 52.
    Lepage T, Kammoun M, Schmetz Q, Richel A. 2021. Biomass-to-hydrogen: a review of main routes production, processes evaluation and techno-economical assessment. Biomass Bioenergy 144:105920
    [Google Scholar]
  53. 53.
    de Lasa H, Salaices E, Mazumder J, Lucky R 2011. Catalytic steam gasification of biomass: catalysts, thermodynamics and kinetics. Chem. Rev. 111:5404–33
    [Google Scholar]
  54. 54.
    Duan T, Lu C, Xiong S, Fu Z, Zhang B. 2016. Evaluation method of the energy conversion efficiency of coal gasification and related applications. Int. J. Energy Res. 40:168–80
    [Google Scholar]
  55. 55.
    Balcombe P, Speirs J, Johnson E, Martin J, Brandon N 2018. The carbon credentials of hydrogen gas networks and supply chains. Renew. Sustain. Energy Rev. 91:1077–88
    [Google Scholar]
  56. 56.
    Ptasinski K. 2008. Thermodynamic efficiency of biomass gasification and biofuels conversion. Biofuels Bioprod. Biorefining 2:239–53
    [Google Scholar]
  57. 57.
    Sikarwar V, Zhao M, Clough P, Yao J, Zhong X et al. 2016. An overview of advances in biomass gasification. Energy Environ. Sci. 9:2939–77
    [Google Scholar]
  58. 58.
    Bui M, Di Z, Fajardy M, Mac Dowell N. 2021. Delivering carbon negative electricity, heat and hydrogen with BECCS—comparing the options. Int. J. Hydrog. Energy 46:15298–321
    [Google Scholar]
  59. 59.
    Antonini C, Treyer K, Moioli E, Bauer C, Schildhauer T, Mazzotti M. 2021. Hydrogen from wood gasification with CCS—a techno-environmental analysis of production and use as transport fuel. Sustain. Energy Fuels 5:2602–21
    [Google Scholar]
  60. 60.
    Muresan M, Cormos CC, Agachi PS. 2013. Techno-economical assessment of coal and biomass gasification-based hydrogen production supply chain system. Chem. Eng. Res. Des. 91:1527–41
    [Google Scholar]
  61. 61.
    Prins M, Ptasinski K, Janssen F. 2007. From coal to biomass gasification: comparison of thermodynamic efficiency. Energy 32:1248–59
    [Google Scholar]
  62. 62.
    Li G, Cui P, Wang Y, Liu Z, Zhu Z. 2020. Life cycle energy consumption and GHG emissions of biomass-to-hydrogen process in comparison with coal-to-hydrogen process. Energy 191:116588
    [Google Scholar]
  63. 63.
    García L, Ábrego J, Bimbela F, Sánchez JL. 2015. Hydrogen production from catalytic biomass pyrolysis. Production of Hydrogen from Renewable Resources Z Fang, RL Smith Jr., X Qi 119–47 Dordrecht: Springer Neth.
    [Google Scholar]
  64. 64.
    Martino M, Ruocco C, Meloni E, Pullumbi P, Palma V. 2021. Main hydrogen production processes: an overview. Catalysts 11:5547
    [Google Scholar]
  65. 65.
    Zhang L, Yu Z, Li J, Zhang S, Hu S et al. 2020. Steam reforming of typical small organics derived from bio-oil: correlation of the irreaction behaviors with molecular structures. Fuel 259:116214
    [Google Scholar]
  66. 66.
    Lehner M, Tichler R, Steinmüller H, Koppe M. 2014. The power-to-gas concept. Power-to-Gas M Lehner, R Tichler, H Steinmüller, M Koppe 7–17 Cham, Switz: Springer https://doi.org/10.1007/978-3-319-03995-4_2
    [Crossref] [Google Scholar]
  67. 67.
    Carmo M, Fritz DL, Mergel J, Stolten D. 2013. A comprehensive review on PEM water electrolysis. Int. J. Hydrog. Energy 38:124901–34
    [Google Scholar]
  68. 68.
    Zeng K, Zhang D. 2010. Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog. Energy Combust. Sci. 36:3307–26
    [Google Scholar]
  69. 69.
    Zhao G, Kraglund MR, Frandsen HL, Wulff AC, Jensen SH et al. 2020. Life cycle assessment of H2O electrolysis technologies. Int. J. Hydrog. Energy 45:4323765–81
    [Google Scholar]
  70. 70.
    Laguna-Bercero MA. 2012. Recent advances in high temperature electrolysis using solid oxide fuel cells: a review. J. Power Sourc. 203:4–16
    [Google Scholar]
  71. 71.
    Kilner JA, Skinner SJ, Irvine SJC, Edwards PP. 2012. Functional Materials for Sustainable Energy Applications Publ. Ser. Energy Swaston, UK: Woodhead Publ.
    [Google Scholar]
  72. 72.
    Fuel Cells Hydrog. Joint Undert 2014. Development of water electrolysis in the European Union Tech. Rep., Feb. Fuel Cells Hydrog. Joint Undert. Brussels:
    [Google Scholar]
  73. 73.
    Schmidt O, Gambhir A, Staffell I, Hawkes A, Nelson J, Few S. 2017. Future cost and performance of water electrolysis: an expert elicitation study. Int. J. Hydrog. Energy 42:5230470–92
    [Google Scholar]
  74. 74.
    Everall J, Ueckerdt F. 2021. Electrolyser capex and efficiency data for: potential and risks of hydrogen-based e-fuels in climate change mitigation. Nat. Clim. Change 11:384–93
    [Google Scholar]
  75. 75.
    Posdziech O, Schwarze K, Brabandt J. 2019. Efficient hydrogen production for industry and electricity storage via high-temperature electrolysis. Int. J. Hydrog. Energy 44:3519089–101
    [Google Scholar]
  76. 76.
    Hacker V, Fankhauser R, Faleschini G, Fuchs H, Friedrich K et al. 2000. Hydrogen production by steam–iron process. J. Power Sources 86:1–2531–35
    [Google Scholar]
  77. 77.
    Bahzad H, Shah N, Mac Dowell N, Boot-Handford M, Soltani SM et al. 2019. Development and techno-economic analyses of a novel hydrogen production process via chemical looping. Int. J. Hydrog. Energy 44:3921251–63
    [Google Scholar]
  78. 78.
    Li M, Du Y, Qiu Y, Ma L, Cui D et al. 2019. The use of ferrites as highly active oxygen storage materials for chemical looping hydrogen production under intermediate temperature. Int. J. Hydrog. Energy 44:5428638–48
    [Google Scholar]
  79. 79.
    Feng Y, Wang N, Guo X, Zhang S. 2020. Dopant screening of modified Fe2O3 oxygen carriers in chemical looping hydrogen production. Fuel 262:116489
    [Google Scholar]
  80. 80.
    Lu C, Li K, Zhu X, Wei Y, Li L et al. 2020. Improved activity of magnetite oxygen carrier for chemical looping steam reforming by ultrasonic treatment. Appl. Energy 261:114437
    [Google Scholar]
  81. 81.
    Zeng D, Kang F, Qiu Y, Cui D, Li M et al. 2020. Iron oxides with gadolinium-doped cerium oxides as active supports for chemical looping hydrogen production. Chem. Eng. J. 396:125153
    [Google Scholar]
  82. 82.
    Ratnasamy C, Wagner JP. 2009. Water gas shift catalysis. Catal. Rev. 51:3325–440
    [Google Scholar]
  83. 83.
    Gao W, Zhou T, Gao Y, Wang Q. 2019. Enhanced water gas shift processes for carbon dioxide capture and hydrogen production. Appl. Energy 254:113700
    [Google Scholar]
  84. 84.
    Kim SM, Armutlulu A, Kierzkowska AM, Hosseini D, Donat F, Müller C. 2020. Development of an effective bi-functional Ni–CaO catalyst-sorbent for the sorption-enhanced water gas shift reaction through structural optimization and the controlled deposition of a stabilizer by atomic layer deposition. Sustain. Energy Fuels 4:2713–29
    [Google Scholar]
  85. 85.
    Hu Y, Cui H, Cheng Z, Zhou Z. 2019. Sorption-enhanced water gas shift reaction by in situ CO2 capture on an alkali metal salt-promoted MgO-CaCO3 sorbent. Chem. Eng. J. 377:119823
    [Google Scholar]
  86. 86.
    Lee CH, Kim S, Yoon HJ, Yoon CW, Lee KB. 2021. Water gas shift and sorption-enhanced water gas shift reactions using hydrothermally synthesized novel Cu-Mg-Al hydrotalcite-based catalysts for hydrogen production. Renew. Sustain. Energy Rev. 145:111064
    [Google Scholar]
  87. 87.
    Lee CH, Lee KB. 2017. Sorption-enhanced water gas shift reaction for high-purity hydrogen production: application of a Na-Mg double salt-based sorbent and the divided section packing concept. Appl. Energy 205:316–22
    [Google Scholar]
  88. 88.
    Bruce S, Temminghoff M, Hayward J, Schmidt E, Munnings C et al. 2018. National Hydrogen Roadmap Canberra, Aust: CSIRO
    [Google Scholar]
  89. 89.
    Al-Qahtani A, Parkinson B, Hellgardt K, Shah N, Guillen-Gosalbez G. 2021. Uncovering the true cost of hydrogen production routes using life cycle monetisation. Appl. Energy 281:115958
    [Google Scholar]
  90. 90.
    Yan Y, Manovic V, Anthony EJ, Clough PT 2020. Techno-economic analysis of low-carbon hydrogen production by sorption enhanced steam methane reforming (SE-SMR) processes. Energy Convers. Manag. 226:113530
    [Google Scholar]
  91. 91.
    Zapantis A, Zhang T. 2020. Replacing 10% of NSW Natural Gas Supply with Clean Hydrogen: Comparison of Hydrogen Production Options Docklands, Aust: Glob. CCS Inst.
    [Google Scholar]
  92. 92.
    Mehmeti A, Angelis-Dimakis A, Arampatzis G, McPhail SJ, Ulgiati S. 2018. Life cycle assessment and water footprint of hydrogen production methods: from conventional to emerging technologies. Environments 5:224
    [Google Scholar]
  93. 93.
    Verma A, Kumar A. 2015. Life cycle assessment of hydrogen production from underground coal gasification. Appl. Energy 147:556–68
    [Google Scholar]
  94. 94.
    Int. Renew. Energy Agency 2019. Hydrogen: A Renewable Energy Perspective Abu Dhabi: Int. Renew. Energy Agency
    [Google Scholar]
  95. 95.
    Int. Energy Agency 2020. Circular carbon economy, cross-cutting: hydrogen Rep. Int. Energy Agency Paris:
    [Google Scholar]
  96. 96.
    Hydrog. Counc 2020. Path to hydrogen competitiveness: a cost perspective Rep. Hydrog. Counc. Belg: https://hydrogencouncil.com/en/path-to-hydrogen-competitiveness-a-cost-perspective/
    [Google Scholar]
  97. 97.
    Glob. CCS Inst 2021. Blue hydrogen Rep. Circ. Carbon Econ. Ser., Global CCS Inst. Melbourne: Aust.
    [Google Scholar]
  98. 98.
    Bui M, Fajardy M, Zhang D, Mac Dowell N. 2020. Delivering negative emissions from biomass-derived hydrogen White Pap. H2FC SUPERGEN, Imp. Coll. London:
    [Google Scholar]
  99. 99.
    Bui M, Zhang D, Fajardy M, Mac Dowell N. 2021. Delivering carbon negative electricity, heat and hydrogen with BECCS—comparing the options. Int. J. Hydrog. Energy 46:2915298–321
    [Google Scholar]
  100. 100.
    Susmozas A, Iribarren D, Zapp P, Linen J, Dufour J. 2016. Life-cycle performance of hydrogen production via indirect biomass gasification with CO2 capture. Int. J. Hydrog. Energy 41:4219484–91
    [Google Scholar]
  101. 101.
    Salkuyeh YK, Saville BA, MacLean HL. 2018. Techno-economic analysis and life cycle assessment of hydrogen production from different biomass gasification processes. Int. J. Hydrog. Energy 43:209514–28
    [Google Scholar]
  102. 102.
    Full J, Merseburg S, Miehe R, Sauer A. 2021. A new perspective for climate change mitigation—introducing carbon-negative hydrogen production from biomass with carbon capture and storage (HyBECCS). Sustainability 13:74026
    [Google Scholar]
  103. 103.
    González-Garay A, Mac Dowell N, Shah N 2021. A carbon neutral chemical industry powered by the sun. Discov. Chem. Eng. 1:12
    [Google Scholar]
  104. 104.
    Felgenhauer M, Hamacher T. 2015. State-of-the-art of commercial electrolyzers and on-site hydrogen generation for logistic vehicles in South Carolina. Int. J. Hydrog. Energy 40:52084–90
    [Google Scholar]
  105. 105.
    Saba SM, Müller M, Robinius M, Stolten D. 2018. The investment costs of electrolysis—a comparison of cost studies from the past 30 years. Int. J. Hydrog. Energy 43:31209–23
    [Google Scholar]
  106. 106.
    R. Soc 2020. The potential and limitations of using carbon dioxide Proj., R. Soc. London: https://royalsociety.org/topics-policy/projects/low-carbon-energy-programme/potential-limitations-carbon-dioxide/
    [Google Scholar]
  107. 107.
    Daggash HA, Patzschke CF, Heuberger CF, Zhu L, Hellgardt K et al. 2018. Closing the carbon cycle to maximise climate change mitigation: power-to-methanol versus power-to-direct air capture. Sustain. Energy Fuels 2:61153–69
    [Google Scholar]
  108. 108.
    Dawood F, Anda M, Shafiullah GM. 2020. Hydrogen production for energy: an overview. Int. J. Hydrog. Energy 45:73847–69
    [Google Scholar]
  109. 109.
    Du Z, Liu C, Zhai J, Guo X, Xiong Y et al. 2021. A review of hydrogen purification technologies for fuel cell vehicles. Catalysts 11:3393
    [Google Scholar]
  110. 110.
    Chicano J, Dion CT, Pasaogullari U, Valla JA. 2021. Simulation of 12-bed vacuum pressure-swing adsorption for hydrogen separation from methanol-steam reforming off-gas. Int. J. Hydrog. Energy 46:5628626–40
    [Google Scholar]
  111. 111.
    Tagliabue M, Delnero G. 2008. Optimization of a hydrogen purification system. Int. J. Hydrog. Energy 33:133496–98
    [Google Scholar]
  112. 112.
    Adhikari S, Fernando S 2006. Hydrogen membrane separation techniques. Ind. Eng. Chem. Res. 45:3875–81
    [Google Scholar]
  113. 113.
    Dehghani A, Bridjanian H, Farshi A. 2012. Selection separation method for hydrogen and light hydrocarbons gases from waste-gas streams of a petroleum refinery. Pet. Sci. Technol. 30:212196–207
    [Google Scholar]
  114. 114.
    Sircar S, Golden TC. 2000. Purification of hydrogen by pressure swing adsorption. Sep. Sci. Technol. 35:5667–87
    [Google Scholar]
  115. 115.
    Bernardo G, Araújo T, da Silva Lopes T, Sousa J, Mendes A. 2020. Recent advances in membrane technologies for hydrogen purification. Int. J. Hydrog. Energy 45:127313–38
    [Google Scholar]
  116. 116.
    Ye F, Ma S, Tong L, Xiao J, Bénard P, Chahine R. 2019. Artificial neural network based optimization for hydrogen purification performance of pressure swing adsorption. Int. J. Hydrog. Energy 4:5334–44
    [Google Scholar]
  117. 117.
    Xiao J, Fang L, Bénard P, Chahine R. 2018. Parametric study of pressure swing adsorption cycle for hydrogen purification using Cu-BTC. Int. J. Hydrog. Energy 43:3013962–74
    [Google Scholar]
  118. 118.
    Xiao J, Peng Y, Bénard P, Chahine R. 2016. Thermal effects on breakthrough curves of pressure swing adsorption for hydrogen purification. Int. J. Hydrog. Energy 41:198236–45
    [Google Scholar]
  119. 119.
    Khan IU, Othman MHD, Hashim H, Matsuura T, Ismail AF et al. 2017. Biogas as a renewable energy fuel—a review of biogas upgrading, utilisation and storage. Energy Convers. Manag. 150:277–94
    [Google Scholar]
  120. 120.
    Grashoff GJ, Pilkington CE, Corti CW. 1983. Purification of hydrogen. Platin. Metals Rev. 27:4157–69
    [Google Scholar]
  121. 121.
    Aasadnia M, Mehrpooya M, Ghorbani B. 2021. A novel integrated structure for hydrogen purification using the cryogenic method. J. Clean. Prod. 278:123872
    [Google Scholar]
  122. 122.
    Baker RW. 2002. Future directions of membrane gas separation technology. Ind. Eng. Chem. Res. 41:61393–411
    [Google Scholar]
  123. 123.
    Zou X, Zhu G. 2018. Microporous organic materials for membrane-based gas separation. Adv. Mater. 30:31700750
    [Google Scholar]
  124. 124.
    Bakonyi P, Nemestóthy N, Bélafi-Bakó K. 2013. Biohydrogen purification by membranes: an overview on the operational conditions affecting the performance of non-porous, polymeric and ionic liquid based gas separation membranes. Int. J. Hydrog. Energy 38:239673–87
    [Google Scholar]
  125. 125.
    Rahimpour MR, Samimi F, Babapoor A, Tohidian T, Mohebi S. 2017. Palladium membranes applications in reaction systems for hydrogen separation and purification: a review. Chem. Eng. Proc. 121:24–49
    [Google Scholar]
  126. 126.
    Gryaznov VM. 1986. Hydrogen permeable palladium membrane catalysts. Platin. Metals Rev. 30:268–72
    [Google Scholar]
  127. 127.
    Lu GQ, Diniz da Costa JC, Duke M, Giessler S, Socolow R et al. 2007. Inorganic membranes for hydrogen production and purification: a critical review and perspective. J. Colloid Interface Sci. 314:2589–603
    [Google Scholar]
  128. 128.
    He X. 2017. Techno-economic feasibility analysis on carbon membranes for hydrogen purification. Sep. Purif. Technol. 186:117–24
    [Google Scholar]
  129. 129.
    Li P, Wang Z, Qiao Z, Liu Y, Cao X et al. 2015. Recent developments in membranes for efficient hydrogen purification. J. Membr. Sci. 495:130–68
    [Google Scholar]
  130. 130.
    Shao L, Low BT, Chung TS, Greenberg AR. 2009. Polymeric membranes for the hydrogen economy: contemporary approaches and prospects for the future. J. Membr. Sci. 327:1–218–31
    [Google Scholar]
  131. 131.
    Andersson J, Grönkvist S. 2019. Large-scale storage of hydrogen. Int. J. Hydrog. Energy 44:2311901–19
    [Google Scholar]
  132. 132.
    Panfilov M 2015. Underground and pipeline hydrogen storage. Compendium of Hydrogen Energy V Subramani, A Basile, TN Veziroğlu 91–115 Swaston, UK: Woodhead Publ.
    [Google Scholar]
  133. 133.
    Speirs J, Balcombe P, Johnson E, Martin J, Brandon N, Hawkes A 2018. A greener gas grid: What are the options. Energy Policy 118:291–97
    [Google Scholar]
  134. 134.
    Kruck O, Crotogino F, Prelicz R, Rudolph T. 2013. Overview on all known underground storage technologies for hydrogen Grant Agreem. 303417 HyUnder, Huesca Spain:
    [Google Scholar]
  135. 135.
    Tietze V, Luhr S, Stolten D 2016. Bulk storage vessels for compressed and liquid hydrogen. Hydrogen Science and Engineering: Materials, Processes, Systems and Technology D Stolten, B Emonts 659–90 Weinheim, Ger: Wiley-VCH
    [Google Scholar]
  136. 136.
    Elberry AM, Thakur J, Santasalo-Aarnio A, Larmi M. 2021. Large-scale compressed hydrogen storage as part of renewable electricity storage systems. Int. J. Hydrog. Energy 46:2915671–90
    [Google Scholar]
  137. 137.
    Ratnakar RR, Gupta N, Zhang K, van Doorne C, Fesmire J et al. 2021. Hydrogen supply chain and challenges in large-scale H2 storage and transportation. Int. J. Hydrog. Energy 46:4724149–68
    [Google Scholar]
  138. 138.
    Abdin Z, Tang C, Liu Y, Catchpole K. 2021. Large-scale stationary hydrogen storage via liquid organic hydrogen carriers. Science 24:9102966
    [Google Scholar]
  139. 139.
    Tarasov BP, Fursikov PV, Volodin AA, Bocharnikov MS, Shimkus YY et al. 2021. Metal hydride hydrogen storage and compression systems for energy storage technologies. Int. J. Hydrog. Energy 46:2513647–57
    [Google Scholar]
  140. 140.
    Hirscher M, Yartys VA, Baricco M, Bellosta von Colbe J, Blanchard D et al. 2020. Materials for hydrogen-based energy storage—past, recent progress and future outlook. J. Alloys Compd. 827:153548
    [Google Scholar]
  141. 141.
    Aakko-Saksa PT, Cook C, Kiviaho J, Repo T. 2018. Liquid organic hydrogen carriers for transportation and storing of renewable energy—review and discussion. J. Power Sourc. 396:803–23
    [Google Scholar]
  142. 142.
    Off. Energy Effic. Renew. Energy 2021. Hydrogen tube trailers https://www.energy.gov/eere/fuelcells/hydrogen-tube-trailers
    [Google Scholar]
  143. 143.
    Int. Energy Agency 2019. The future of hydrogen Tech. Rep., June Int. Energy Agency Paris: https://doi.org/10.1787/1e0514c4-en
    [Crossref] [Google Scholar]
  144. 144.
    Creos, DESFA, Elering, Enagás, Energinet et al. 2021. Extending the European hydrogen backbone Tech. Rep., April. https://gasforclimate2050.eu/wp-content/uploads/2021/06/European-Hydrogen-Backbone_April-2021_V3.pdf
    [Google Scholar]
  145. [Google Scholar]
  146. 146.
    Natl. Res. Counc., Natl. Acad. Eng 2004. The Hydrogen Economy: Opportunities, Costs, Barriers, and R&D Needs Washington, DC: Natl. Acad. Press
    [Google Scholar]
  147. 147.
    Taylor R, Howes J, Cotton E, Raphael E, Kiri P et al. 2021. Options for a UK low carbon hydrogen standard Final Rep. Dep. Bus. Energy Ind. Stand. London:
    [Google Scholar]
  148. 148.
    Wang Y, Ruiz Diaz DF, Chen KS, Wang Z, Adroher XC 2020. Materials, technological status, and fundamentals of PEM fuel cells—a review. Mater. Today 32:178–203
    [Google Scholar]
  149. 149.
    Cox B, Bauer C, Mendoza Beltran A, van Vuuren DP, Mutel CL 2020. Life cycle environmental and cost comparison of current and future passenger cars under different energy scenarios. Appl. Energy 269:115021
    [Google Scholar]
  150. 150.
    Lee DY, Elgowainy A, Vijayagopal R. 2019. Well-to-wheel environmental implications of fuel economy targets for hydrogen fuel cell electric buses in the United States. Energy Policy 128:565–83
    [Google Scholar]
  151. 151.
    Ribau J, Viegas R, Angelino A, Moutinho A, Silva C. 2014. A new offline optimization approach for designing a fuel cell hybrid bus. Transp. Res. C 42:14–27
    [Google Scholar]
  152. 152.
    Eudy L, Post M. 2018. Fuel Cell Buses in U.S. Transit Fleets: Current Status 2018 Tech. Rep. Natl. Renew. Energy Lab. Golden, CO: www.nrel.gov/docs/fy19osti/72208.pdf
    [Google Scholar]
  153. 153.
    Valente A, Tulus V, Galán-Martín A, Huijbregts MAJ, Guillén-Gosálbez G. 2021. The role of hydrogen in heavy transport to operate within planetary boundaries. Sustain. Energy Fuels 5:4637–49
    [Google Scholar]
  154. 154.
    Piraino F, Genovese M, Fragiacomo P. 2021. Towards a new mobility concept for regional trains and hydrogen infrastructure. Energy Convers. Manag. 228:113650
    [Google Scholar]
  155. 155.
    van Biert L, Godjevac M, Visser K, Aravind PV. 2016. A review of fuel cell systems for maritime applications. J. Power Sourc. 327:345–64
    [Google Scholar]
  156. 156.
    Inal OB, Deniz C. 2020. Assessment of fuel cell types for ships: based on multi-criteria decision analysis. J. Clean. Prod. 265:121734
    [Google Scholar]
  157. 157.
    Bicer Y, Dincer I. 2018. Environmental impact categories of hydrogen and ammonia driven transoceanic maritime vehicles: a comparative evaluation. Int. J. Hydrog. Energy 43:94583–96
    [Google Scholar]
  158. 158.
    Int. Air Transp. Assoc 2020. IATA Industry Statistics Fact Sheet June 2020 Fact Sheet, Int. Air Transp. Assoc. Montreal, Can: https://www.iata.org/en/iata-repository/publications/economic-reports/airline-industry-economic-performance-june-2020-data-tables/
    [Google Scholar]
  159. 159.
    Int. Civ. Aviat. Organ 2019. 2019 environmental report Tech. Rep. 3 Int. Civ. Aviat. Organ. Montreal, Can:.
    [Google Scholar]
  160. 160.
    Le Feuvre P 2019. Are aviation biofuels ready for take off?IEA Comment. March 18. https://www.iea.org/commentaries/are-aviation-biofuels-ready-for-take-off
    [Google Scholar]
  161. 161.
    Terwel R, Kerkhoven J, Saris FW. 2019. Carbon neutral aviation. Europhys. News 50:5–629–32
    [Google Scholar]
  162. 162.
    Becattini V, Gabrielli P, Mazzotti M. 2021. Role of carbon capture, storage, and utilization to enable a net-zero-CO2-emissions aviation sector. Ind. Eng. Chem. Res. 60:186848–62
    [Google Scholar]
  163. 163.
    HESC 2021. Hydrogen Energy Supply Chain (HESC) Project Hydrogen Engineering Australia https://hydrogenenergysupplychain.com/
    [Google Scholar]
  164. 164.
    Stenberg V, Ryden M, Mattisson T, Lyngfelt A. 2018. Exploring novel hydrogen production processes by integration of steam methane reforming with chemical-looping combustion (CLC-SMR) and oxygen carrier aided combustion (OCAC-SMR). Int. J. Greenh. Gas Control 74:28–39
    [Google Scholar]
  165. 165.
    Borole AP. 2017. Renewable hydrogen production from biomass pyrolysis aqueous phase Proj. Peer Rev., Bioenergy Technol. Off., US Dep. Energy Washington, DC:
    [Google Scholar]
  166. 166.
    Lin CY, Wu SY, Lin PJ, Chang JS, Hung CH et al. 2011. A pilot-scale high-rate biohydrogen production system with mixed microflora. Int. J. Hydrog. Energy 36:148758–64
    [Google Scholar]
  167. 167.
    Oberti R, Tenca A, Perazzolo F, Riva E, Finzi A et al. 2013. A farm-scale pilot plant for biohydrogen and biomethane production by two-stage fermentation. J. Agric. Eng. 44:115583–86
    [Google Scholar]
  168. 168.
    Zhang Q, Zhang Z, Wang Y, Lee DJ, Li G et al. 2018. Sequential dark and photo fermentation hydrogen production from hydrolyzed corn stover: a pilot test using 11 m3 reactor. Bioresource Technol 253:382–86
    [Google Scholar]
  169. 169.
    Fernando R. 2012. Cofiring high ratios of biomass with coal Rep. Clean Coal Cent., Int. Energy Agency Paris: https://usea.org/sites/default/files/012012_Cofiring%20high%20ratios%20of%20biomass%20with%20coal_ccc194.pdf
    [Google Scholar]
  170. 170.
    Freire Ordóñez D, Shah N, Guillén-Gosálbez G. 2021. Economic and full environmental assessment of electrofuels via electrolysis and co-electrolysis considering externalities. Appl. Energy 286:116488
    [Google Scholar]
  171. 171.
    Li XJ, Allen JD, Stager JA, Ku AY. 2020. Paths to low-cost hydrogen energy at a scale for transportation applications in the USA and China via liquid-hydrogen distribution networks. Clean Energy 4:126–47
    [Google Scholar]
  172. 172.
    Patrizio P, Pratama YW, Dowell NM. 2020. Socially equitable energy system transitions. Joule 4:81700–13
    [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-092220-010254
Loading
/content/journals/10.1146/annurev-chembioeng-092220-010254
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error