1932

Abstract

Improving the yield and selectivity of chemical reactions is one of the challenging tasks in paving the way for a more sustainable and climate-friendly economy. For the industrially highly relevant gas–liquid reactions, this can be achieved by tailoring the timescales of mixing to the requirements of the reaction. Although this has long been known for idealized reactors and time- and space-averaged processes, considerable progress has been made recently on the influence of local mixing processes. This progress has become possible through joint research between chemists, mathematicians, and engineers. We present the reaction systems with adjustable kinetics that have been developed, which are easy to handle and analyze. We show examples of how the selectivity of competitive-consecutive reactions can be controlled via local bubble wake structures. This is demonstrated for Taylor bubbles and bubbly flows under technical conditions. Highly resolvednumerical simulations confirm the importance of the bubble wake structure for the performance of a particular chemical reaction and indicate tremendous potential for future process improvements.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-092220-100517
2021-06-07
2024-06-16
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/12/1/annurev-chembioeng-092220-100517.html?itemId=/content/journals/10.1146/annurev-chembioeng-092220-100517&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Larkin DR. 1990. The role of catalysts in the air oxidation of aliphatic aldehydes. J. Org. Chem. 55:1563–68
    [Google Scholar]
  2. 2. 
    Weber M. 2002. Large bubble columns for the oxidation of cumene in phenol processes. Chem. Eng. Technol. 25:553–58
    [Google Scholar]
  3. 3. 
    Wiedemann M, Räbiger N, Schlüter M, Eisenlauer J, Riener FX et al. 2010. Scale-down des Strahlzonen-Schlaufenreaktors: Entwicklung eines Screening-Tools für transportlimitierte chemische Reaktionen. Chem. Ing. Tech. 83:349–57
    [Google Scholar]
  4. 4. 
    Zakoshansky VM. 2011. Phenomenology of oxidation of a cumene feed containing hydroperoxide: II. Limiting hydroperoxide concentration: true causes and approaches for overcoming thereof. Russ. J. Gen. Chem. 81:865–83
    [Google Scholar]
  5. 5. 
    Baerns M, Hofmann H, Renken A. 1987. Lehrbuch der Technischen Chemie, Band 1: Chemische Reaktionstechnik Stuttgart, Ger: Georg-Thieme-Verlag
    [Google Scholar]
  6. 6. 
    Brauer H, Mewes D. 1971. Stoffaustausch einschließlich chemischer Reaktion Aarau, Switz: Verlag Sauerländer
    [Google Scholar]
  7. 7. 
    Deckwer WD. 1992. Bubble Column Reactors New York: Wiley
    [Google Scholar]
  8. 8. 
    Fitzer E, Fritz W, Emig G. 1995. Technische Chemie: Einführung in die chemische Reaktionstechnik Berlin-Heidelberg, Ger: Springer-Verlag
    [Google Scholar]
  9. 9. 
    Levenspiel O. 1999. Chemical Reaction Engineering New York: Wiley
    [Google Scholar]
  10. 10. 
    Dudukovic MP. 2009. Frontiers in reactor engineering. Science 325:698–701
    [Google Scholar]
  11. 11. 
    Dudukovic MP. 2010. Reaction engineering: status and future challenges. Chem. Eng. Sci. 65:3–11
    [Google Scholar]
  12. 12. 
    Risso F 2019. Bubble-induced turbulence. Turbulent Cascades II M Gorokhovski, FS Godeferd 189–96 Cham, Switz: Springer Int.
    [Google Scholar]
  13. 13. 
    Fan L, Tuchiya K. 1990. Bubble Wake Dynamics in Liquids and Liquid-Solid Suspensions Boston, MA: Butterworth-Heinemann
    [Google Scholar]
  14. 14. 
    Lindken R, Merzkirch W. 2002. A novel PIV technique for measurements in multiphase flows and its application to two-phase bubbly flows. Exp. Fluids. 33:814–25
    [Google Scholar]
  15. 15. 
    Brücker C. 1999. Structure and dynamics of the wake of bubbles and its relevance for bubble interaction. Phys. Fluids 11:71781–96
    [Google Scholar]
  16. 16. 
    Bröder D. 2003. Anwendung optischer Messtechniken zur Untersuchung disperser Gas-Flüssigkeits-Strömungen PhD Diss., Dep. Eng., Martin-Luther-Univ. Halle-Wittenberg Halle, Ger:.
    [Google Scholar]
  17. 17. 
    Scheid S, John S, Bork O, Parchmann H, Schlüter M, Räbiger N 2004. Improved model for the calculation of homogeneous gas-liquid flows. Bubbly Flows: Analysis, Modelling and Calculation M Sommerfeld 67–83 Berlin, Heidelberg, Ger: Springer
    [Google Scholar]
  18. 18. 
    Haase K, Kück UD, Thöming J, Kähler CJ. 2017. On the emulation of bubble induced turbulence by randomly moving particles in a grid structure. Chem. Eng. Technol. 40:1502–11
    [Google Scholar]
  19. 19. 
    Clift R, Grace JR, Weber ME. 1978. Bubbles, Drops, and Particles New York: Academic
    [Google Scholar]
  20. 20. 
    Tomiyama A, Celata GP, Hosokawa S, Yoshida S. 2002. Terminal velocity of single bubbles in surface tension force dominant regime. Int. J. Multiph. Flow 28:1497–519
    [Google Scholar]
  21. 21. 
    Sardeing R, Painmanakul P, Hébrard G. 2006. Effect of surfactants on liquid-side mass transfer coefficients in gas-liquid systems: a first step to modeling. Chem. Eng. Sci. 61:6249–60
    [Google Scholar]
  22. 22. 
    Lewis WK, Whitman WG. 1924. Principles of gas absorption. Ind. Eng. Chem. Res. 16:1215–20
    [Google Scholar]
  23. 23. 
    Higbie R. 1935. Rate of absorption of a pure gas into still liquid during short periods of exposure Presented at the American Institute of Chemical Engineering Meeting Wilmington, DE: May 13–15
    [Google Scholar]
  24. 24. 
    Deckwer WD. 1985. Reaktionstechnik in Blasensäulen Aarau, Switz: Salle Verlag/Verlag Sauerländer
    [Google Scholar]
  25. 25. 
    Gmehling J, Brehm A. 1996. Grundoperationen, Lehrbuch der Technischen Chemie Stuttgart, Ger: Georg Thiele Verlag
    [Google Scholar]
  26. 26. 
    Bothe D, Fleckenstein S. 2013. A volume-of-fluid-based method for mass transfer processes at fluid particles. Chem. Eng. Sci. 101:283–302
    [Google Scholar]
  27. 27. 
    Kück UD, Schlüter M, Räbiger N. 2012. Local measurement of mass transfer rate of a single bubble with and without a chemical reaction. J. Chem. Eng. Jpn. 45:708–12
    [Google Scholar]
  28. 28. 
    Kück UD, Schlüter M, Räbiger N. 2009. Analyse des grenzschichtnahen Stofftransports an frei aufsteigenden Gasblasen. Chem. Ing. Tech. 81:1599–606
    [Google Scholar]
  29. 29. 
    Toor HL, Marchello JM. 1958. Film-penetration model for mass and heat transfer. AIChE J 5:97–101
    [Google Scholar]
  30. 30. 
    Redfield JA, Houghton G. 1965. Mass transfer and drag coefficients for single bubbles at Reynolds numbers of 0⋅02–5000. Chem. Eng. Sci. 20:131–39
    [Google Scholar]
  31. 31. 
    Redfield JA, Houghton G. 1967. Letters to the editors. Chem. Eng. Sci. 22:477
    [Google Scholar]
  32. 32. 
    Kameke AV, Kastens S, Rüttinger S, Herres-Pawlis S, Schlüter M. 2019. How coherent structures dominate the residence time in a bubble wake: an experimental example. Chem. Eng. Sci. 207:317–26
    [Google Scholar]
  33. 33. 
    Llamas CG, Spille C, Kastens S, Paz DG, Schlüter M, Kameke A. 2020. Potential of Lagrangian analysis methods in the study of chemical reactors. Chem. Ing. Tech. 92:540–53
    [Google Scholar]
  34. 34. 
    Paul M, Strassl F, Hoffmann A, Hoffmann M, Schlüter M, Herres-Pawlis S. 2018. Reaction systems for bubbly flows. Eur. J. Inorg. Chem. 20–21 2101–24
    [Google Scholar]
  35. 35. 
    Rüttinger S, Hoffmann M, Schlüter M. 2019. How do vortex structures influence boundary layer dynamics in gas-liquid systems?. Chem. Eng. Technol. 42:1421–26
    [Google Scholar]
  36. 36. 
    Bork O. 2006. Einfluss lokaler Phänomene auf den stofftransport an gasblasen in zweiphasenströmungen Diss., Univ. Bremen Bremen, Ger:.
    [Google Scholar]
  37. 37. 
    Sathe JM, Mathpati CS, Deshpande SS, Khan Z, Jyeshtharaj KE, Joshi B. 2011. Investigation of flow structures and transport phenomena in bubble columns using particle image velocimetry and miniature pressure sensors. Chem. Eng. Sci. 66:3087–107
    [Google Scholar]
  38. 38. 
    Bothe D, Kröger M, Warnecke HJ. 2011. A VOF-based conservative method for the simulation of reactive mass transfer from rising bubbles. Fluid Dyn. Mater. Process. 7:303–16
    [Google Scholar]
  39. 39. 
    Gründing D, Fleckenstein S, Bothe D. 2016. A subgrid-scale model for reactive concentration boundary layers for 3D mass transfer simulations with deformable fluid interfaces. Int. J. Heat Mass Transf. 101:476–87
    [Google Scholar]
  40. 40. 
    Falcone M, Bothe D, Marschall H. 2018. 3D direct numerical simulations of reactive mass transfer from deformable single bubbles: an analysis of mass transfer coefficients and reaction selectivities. Chem. Eng. Sci. 177:523–36
    [Google Scholar]
  41. 41. 
    Kastens S, Timmermann J, Strassl F, Rampmaier RF, Hoffmann A et al. 2017. Test system for the investigation of reactive Taylor bubbles. Chem. Eng. Technol. 40:1494–501
    [Google Scholar]
  42. 42. 
    Herres-Pawlis S, Heuwing AJ, Flörke U, Schneider J, Henkel G. 2004–2005. Hydroxylation of a methyl group: synthesis of [Cu2(btmmO)2I]+ and of [Cu2(btmmO)2]2+ containing the novel ligand {bis(trimethylmethoxy)guanidino}propane (btmmO) by copper-assisted oxygen activation. Inorg. Chim. Acta 358:1089–95
    [Google Scholar]
  43. 43. 
    Mirica LM, Vance M, Rudd DJ, Hedman B, Hodgson KOet al 2005. Tyrosinase reactivity in a model complex: an alternative hydroxylation mechanism. Science 308:1890–92
    [Google Scholar]
  44. 44. 
    Huang Z, Lumb J-P. 2016. A catalyst-controlled aerobic coupling of ortho-quinones and phenols applied to the synthesis of aryl ethers. Angew. Chem. Int. Ed. 55:11543–47
    [Google Scholar]
  45. 45. 
    Schneppensieper T, Finkler S, Czap A, van Eldik R, Heus M et al. 2001. Tuning the reversible binding of NO to iron(II) aminocarboxylate and related complexes in aqueous solutions. Eur. J. Inorg. Chem. 2001.491–501
    [Google Scholar]
  46. 46. 
    Schneppensieper T, Wanat A, Stochel G, Goldstein S, Meyerstein D, van Eldik R. 2001. Ligand effects on the kinetics of the reversible binding of NO to selected aminocarboxylato complexes of iron(II) in aqueous solutions. Eur. J. Inorg. Chem. 2001.92317–25
    [Google Scholar]
  47. 47. 
    Schneppensieper T, Wanat A, Stochel G, van Eldik R. 2002. Mechanistic in-formation on the reversible binding of NO to selected iron (II) chelates from activation parameters. Inorg. Chem. 41:2565–73
    [Google Scholar]
  48. 48. 
    McDonald CC, Phillips WD, Mower HF. 1965. An electron spin resonance study of some complexes of iron, nitric oxide, and anionic ligands. J. Am. Chem. Soc. 87:3319–26
    [Google Scholar]
  49. 49. 
    Gwost D, Caulton KG. 1973. Reductive nitrosylation of Group VIIIb compounds. Inorg. Chem. 12:92095–99
    [Google Scholar]
  50. 50. 
    Specht P, Oßberger M, Klüfers P, Schindler S. 2020. Kinetic studies on the reaction of NO with iron(II) complexes using low temperature stopped-flow techniques. Dalton Trans 49:9480–86
    [Google Scholar]
  51. 51. 
    Koynov A, Khinast JG, Tryggvason G. 2005. Mass transfer and chemical reactions in bubble swarms with dynamic interfaces. AIChE J 51:2786–800
    [Google Scholar]
  52. 52. 
    Schurr D, Strassl F, Liebhäuser P, Rinke G, Dittmeyer R, Herres-Pawlis S. 2016. Decay kinetics of sensitive bioinorganic species in a SuperFocus mixer at ambient conditions. React. Chem. Eng. 1:485–93
    [Google Scholar]
  53. 53. 
    Timmermann J. 2018. Experimental Analysis of Fast Reactions in Gas-Liquid Flows Ber. Inst. Mehrphasenströmungen 3 Göttingen, Ger: Cuvillier Verlag
    [Google Scholar]
  54. 54. 
    Kexel F, Kameke AV, Hoffmann M, Oßberger M, Schlüter M, Klüfers P. 2020. Investigation of the influence of fluid dynamics on the formation of main and by-product in fast competing consecutive gas-liquid reactions using imaging UV/VIS-spectroscopy. Chem. Ing. Tech. 93:1–2297–305
    [Google Scholar]
  55. 55. 
    Schäfer R. 2005. Bubble interactions, bubble size distributions and reaction kinetics for the autocatalytic oxidation of cyclohexane in a bubble column reactor Diss., Univ. Stuttgart, Stuttgart, Ger.
    [Google Scholar]
  56. 56. 
    Schäfer R, Merten C, Eigenberger G. 2002. Bubble size distributions in a bubble column reactor under industrial conditions. Exp. Therm. Fluid Sci. 26:595–604
    [Google Scholar]
  57. 57. 
    Schäfer R, Merten C, Eigenberger G. 2003. Autocatalytic cyclohexane oxidation in a bubble column reactor. Can. J. Chem. Eng. 81:741–48
    [Google Scholar]
  58. 58. 
    Colombet D, Legendre D, Tuttlies A, Cockx M, Guiraud P et al. 2018. On single bubble mass transfer in a volatile liquid. Int. J. Heat Mass Transf. 125:1144–55
    [Google Scholar]
  59. 59. 
    Gast S, Tuttlies U, Nieken U 2021. Determination of intrinsic gas-liquid reaction kinetics in homogeneous liquid phase and the impact of the bubble wake on effective reaction rates. Reactive Bubbly Flows M Schlüter, S Herres-Pawlis, U Nieken, D Bothe Berlin: Springer Verlag. In press
    [Google Scholar]
  60. 60. 
    Gast S, Tuttlies U, Laurini L, Kexel F, Merker D et al. 2021. Investigation of reactive bubbly flows in technical apparatuses. Reactive Bubbly Flows M Schlüter, S Herres-Pawlis, U Nieken, D Bothe Berlin: Springer Verlag. In press
    [Google Scholar]
  61. 61. 
    Mühlbauer A, Hlawitschka MW, Bart H-J. 2019. Models for the numerical simulation of bubble columns: a review. Chem. Ing. Tech. 91:1747–65
    [Google Scholar]
  62. 62. 
    Sommerfeld M, Muniz M, Reichardt T. 2018. On the importance of modelling bubble dynamics for point-mass numerical calculations of bubble columns. J. Chem. Eng. Jpn. 51:301–17
    [Google Scholar]
  63. 63. 
    Besagni G, Inzoli F, Ziegenhein T. 2018. Two-phase bubble columns: a comprehensive review. ChemEngineering 2:13
    [Google Scholar]
  64. 64. 
    Rzehak R, Krauß M, Kováts P, Zähringer K. 2017. Fluid dynamics in a bubble column: new experiments and simulations. Int. J. Multiph. Flow 89:299–312
    [Google Scholar]
  65. 65. 
    Davidson MR, Rudman M. 2002. Volume-of-fluid calculation of heat or mass transfer across deforming interfaces in two-fluid flow. Numer. Heat Transf. B 41:291–308
    [Google Scholar]
  66. 66. 
    Bothe D, Koebe M, Wielage K, Prüss J, Warnecke HJ 2004. Direct numerical simulation of mass transfer between rising gas bubbles and water. Bubbly Flows D Mewes, F Mayinger, M Sommerfeld 159–74 Berlin/Heidelberg, Ger: Springer
    [Google Scholar]
  67. 67. 
    Darmana D, Deen NG, Kuipers JAM. 2006. Detailed 3D modeling of mass transfer processes in two-phase flows with dynamic interfaces. Chem. Eng. Technol. 29:1027–33
    [Google Scholar]
  68. 68. 
    Hayashi K, Tomiyama A. 2011. Interface tracking simulation of mass transfer from a dissolving bubble. J. Comput. Multiph. Flows 3:247–61
    [Google Scholar]
  69. 69. 
    Onea A, Wörner M, Cacuci DG. 2009. A qualitative computational study of mass transfer in upward bubble train flow through square and rectangular mini-channels. Chem. Eng. Sci. 64:1416–35
    [Google Scholar]
  70. 70. 
    Balcázar-Arciniega N, Antepara O, Rigola J, Oliva A. 2019. A level-set model for mass transfer in bubbly flows. Int. J. Heat Mass Transf. 138:335–56
    [Google Scholar]
  71. 71. 
    Aboulhasanzadeh S, Taeibi-Rahni TM, Tryggvason G. 2012. Multiscale computations of mass transfer from buoyant bubbles. Chem. Eng. Sci. 75:456–67
    [Google Scholar]
  72. 72. 
    Claassen CMY, Islam S, Peters EAJF, Deen NG, Kuipers JAM, Baltussen MW. 2020. An improved subgrid scale model for front-tracking based simulations of mass transfer from bubbles. AIChE J 66:e16889
    [Google Scholar]
  73. 73. 
    Alke A, Bothe D, Kröger M, Weigand B, Weirich D, Weking H. 2010. Direct numerical simulation of high Schmidt number mass transfer from air bubbles rising in liquids using the volume-of-fluid-method. ERCOFTAC Bull 82:5–10
    [Google Scholar]
  74. 74. 
    Weiner A. 2020. Modeling and simulation of convection-dominated species transfer at rising bubbles. PhD thesis Tech. Univ. Darmstadt Darmstadt, Ger:.
    [Google Scholar]
  75. 75. 
    Weiner A, Bothe D. 2017. Advanced subgrid-scale modeling for convection-dominated species transport at fluid interfaces with application to mass transfer from rising bubbles. J. Comput. Phys. 347:261–89
    [Google Scholar]
  76. 76. 
    Weber PS, Marschall H, Bothe D. 2018. Highly accurate two-phase species transfer based on ALE Interface Tracking. Int. J. Heat Mass Transf. 104:759–73
    [Google Scholar]
  77. 77. 
    Deising D, Bothe D, Marschall H. 2018. Direct numerical simulation of mass transfer in bubbly flows. Comput. Fluids 172:524–37
    [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-092220-100517
Loading
/content/journals/10.1146/annurev-chembioeng-092220-100517
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error