1932

Abstract

The beginning of the Phanerozoic saw two biological events that set the stage for all life that was to come: () the Cambrian Explosion (the appearance of most marine invertebrate phyla) and () the Great Ordovician Biodiversification Event (GOBE), the subsequent substantial accumulation of marine biodiversity. Here, we examine the current state of understanding of marine environments and ecosystems from the late Ediacaran through the Early Ordovician, which spans this biologically important interval. Through a compilation and review of the existing geochemical, mineralogical, sedimentological, and fossil records, we argue that this interval was one of sustained low and variable marine oxygen levels that both led to animal extinction and fostered biodiversification events throughout the Cambrian and Early Ordovician. Therefore, marine ecosystems of this interval existed on the edge—with enough oxygen to sustain them but with the perennial risk of environmental stressors that could overwhelm them.

  • ▪  We review the current research on geochemistry and paleontology of the Cambrian and Early Ordovician periods.
  • ▪  Low and oscillating oxygen levels in the marine realm promoted diversification and evolutionary innovation but also drove several extinction events.
  • ▪  Taphonomic modes and marine authigenic pathways that were abundant in the Cambrian were supported by oceans that were persistently less oxygenated than today's oceans.
Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-031621-070316
2024-07-23
2024-12-07
Loading full text...

Full text loading...

/deliver/fulltext/earth/52/1/annurev-earth-031621-070316.html?itemId=/content/journals/10.1146/annurev-earth-031621-070316&mimeType=html&fmt=ahah

Literature Cited

  1. Adachi N, Ezaki Y, Liu J. 2014.. The late early Cambrian microbial reefs immediately after the demise of archaeocyathan reefs, Hunan Province, South China. . Palaeogeogr. Palaeoclimatol. Palaeoecol. 407::4555
    [Crossref] [Google Scholar]
  2. Algeo TJ, Luo GM, Song HY, Lyons TW, Canfield DE. 2015.. Reconstruction of secular variation in seawater sulfate concentrations. . Biogeosciences 12:(7):213151
    [Crossref] [Google Scholar]
  3. Allison PA, Brett CE. 1995.. In situ benthos and paleo-oxygenation in the middle Cambrian Burgess Shale, British Columbia, Canada. . Geology 23:(12):107982
    [Crossref] [Google Scholar]
  4. Allison PA, Briggs DE. 1993.. Exceptional fossil record: distribution of soft-tissue preservation through the Phanerozoic. . Geology 21:(6):52730
    [Crossref] [Google Scholar]
  5. Anderson RP, Tosca NJ, Gaines RR, Koch NM, Briggs DE. 2018.. A mineralogical signature for Burgess Shale–type fossilization. . Geology 46:(4):34750
    [Crossref] [Google Scholar]
  6. Bambach RK, Knoll AH, Wang SC. 2004.. Origination, extinction, and mass depletions of marine diversity. . Paleobiology 30:(4):52242
    [Crossref] [Google Scholar]
  7. Berkner LV, Marshall LC. 1965.. On the origin and rise of oxygen concentration in the Earth's atmosphere. . J. Atmos. Sci. 22:(3):22561
    [Crossref] [Google Scholar]
  8. Berry WBN, Wilde P. 1978.. Progressive ventilation of the oceans; an explanation for the distribution of the lower Paleozoic black shales. . Am. J. Sci. 278:(3):25775
    [Crossref] [Google Scholar]
  9. Bicknell RD, Holmes JD, Pates S, García-Bellido DC, Paterson JR. 2022.. Cambrian carnage: trilobite predator-prey interactions in the Emu Bay Shale of South Australia. . Palaeogeogr. Palaeoclimatol. Palaeoecol. 591::110877
    [Crossref] [Google Scholar]
  10. Bottjer DJ, Hagadorn JW, Dornbos SQ. 2000.. The Cambrian substrate revolution. . GSA Today 10:(9):17
    [Google Scholar]
  11. Bowyer FT, Zhuravlev AY, Wood R, Shields GA, Zhou Y, et al. 2022.. Calibrating the temporal and spatial dynamics of the Ediacaran-Cambrian radiation of animals. . Earth-Sci. Rev. 225::103913
    [Crossref] [Google Scholar]
  12. Boyle RA, Dahl TW, Bjerrum CJ, Canfield DE. 2018.. Bioturbation and directionality in Earth's carbon isotope record across the Neoproterozoic–Cambrian transition. . Geobiology 16:(3):25278
    [Crossref] [Google Scholar]
  13. Brasier M. 1980.. The Lower Cambrian transgression and glauconite-phosphate facies in western Europe. . J. Geolog. Soc. 137:(6):695703
    [Crossref] [Google Scholar]
  14. Brasier M. 1990.. Phosphogenic events and skeletal preservation across the Precambrian-Cambrian boundary interval. . Geolog. Soc. Lond. Spec. Publ. 52:(1):289303
    [Crossref] [Google Scholar]
  15. Brasier M. 1992.. Background to the Cambrian explosion. . J. Geolog. Soc. Lond. 149:(4):58587
    [Crossref] [Google Scholar]
  16. Brennan ST, Lowenstein TK, Horita J. 2004.. Seawater chemistry and the advent of biocalcification. . Geology 32:(6):47376
    [Crossref] [Google Scholar]
  17. Briggs D, Kear A, Martill D, Wilby P. 1993.. Phosphatization of soft-tissue in experiments and fossils. . J. Geolog. Soc. 150:(6):103538
    [Crossref] [Google Scholar]
  18. Briggs DE. 2003.. The role of decay and mineralization in the preservation of soft-bodied fossils. . Annu. Rev. Earth Planet. Sci. 31::275301
    [Crossref] [Google Scholar]
  19. Briggs DE, Wilby PR. 1996.. The role of the calcium carbonate-calcium phosphate switch in the mineralization of soft-bodied fossils. . J. Geolog. Soc. Lond. 153:(5):66568
    [Crossref] [Google Scholar]
  20. Butterfield NJ. 1995.. Secular distribution of Burgess-Shale-type preservation. . Lethaia 28:(1):113
    [Crossref] [Google Scholar]
  21. Butterfield NJ. 2003.. Exceptional fossil preservation and the Cambrian explosion. . Integr. Comp. Biol. 43:(1):16677
    [Crossref] [Google Scholar]
  22. Cai Y, Xiao S, Li G, Hua H. 2019.. Diverse biomineralizing animals in the terminal Ediacaran Period herald the Cambrian explosion. . Geology 47:(4):38084
    [Crossref] [Google Scholar]
  23. Chafetz H, Reid A. 2000.. Syndepositional shallow-water precipitation of glauconitic minerals. . Sediment. Geol. 136:(1–2):2942
    [Crossref] [Google Scholar]
  24. Cole DB, Mills DB, Erwin DH, Sperling EA, Porter SM, et al. 2020.. On the co-evolution of surface oxygen levels and animals. . Geobiology 18:(3):26081
    [Crossref] [Google Scholar]
  25. Conway Morris S. 1992.. Burgess Shale-type faunas in the context of the ‘Cambrian explosion’: a review. . J. Geolog. Soc. 149:(4):63136
    [Crossref] [Google Scholar]
  26. Conway Morris S. 2000.. The Cambrian “explosion”: slow-fuse or megatonnage?. PNAS 97:(9):442629
    [Crossref] [Google Scholar]
  27. Conway Morris S, Bengtson S. 1994.. Cambrian predators: possible evidence from boreholes. . J. Paleontol. 68:(1):123
    [Crossref] [Google Scholar]
  28. Cook PJ, Shergold JH. 1984.. Phosphorus, phosphorites and skeletal evolution at the Precambrian–Cambrian boundary. . Nature 308:(5956):23136
    [Crossref] [Google Scholar]
  29. Creveling JR, Johnston DT, Poulton SW, Kotrc B, März C, et al. 2014.. Phosphorus sources for phosphatic Cambrian carbonates. . Bull. Geolog. Soc. Am. 126:(1–2):14563
    [Crossref] [Google Scholar]
  30. Cribb AT, Van de Velde SJ, Berelson WM, Bottjer DJ, Corsetti FA. 2023.. Ediacaran–Cambrian bioturbation did not extensively oxygenate sediments in shallow marine ecosystems. . Geobiology 21:(4):43553
    [Crossref] [Google Scholar]
  31. Crimes TP, Anderson MM. 1985.. Trace fossils from late Precambrian–Early Cambrian strata of southeastern Newfoundland (Canada): temporal and environmental implications. . J. Paleontol. 59::31043
    [Google Scholar]
  32. Dahl TW, Boyle RA, Canfield DE, Connelly JN, Gill BC, et al. 2014.. Uranium isotopes distinguish two geochemically distinct stages during the later Cambrian SPICE event. . Earth Planet. Sci. Lett. 401::31326
    [Crossref] [Google Scholar]
  33. Dahl TW, Connelly JN, Kouchinsky A, Gill BC, Månsson SF, Bizzarro M. 2017.. Reorganisation of Earth's biogeochemical cycles briefly oxygenated the oceans 520 Myr ago. . Geochem. Perspect. Lett. 3:(2):21020
    [Crossref] [Google Scholar]
  34. Dahl TW, Connelly JN, Li D, Kouchinsky A, Gill BC, et al. 2019.. Atmosphere–ocean oxygen and productivity dynamics during early animal radiations. . PNAS 116:(39):1935261
    [Crossref] [Google Scholar]
  35. Daley AC, Antcliffe JB, Drage HB, Pates S. 2018.. Early fossil record of Euarthropoda and the Cambrian Explosion. . PNAS 115:(21):532331
    [Crossref] [Google Scholar]
  36. Darroch SA, Cribb AT, Buatois LA, Germs GJ, Kenchington CG, et al. 2021.. The trace fossil record of the Nama Group, Namibia: exploring the terminal Ediacaran roots of the Cambrian explosion. . Earth-Sci. Rev. 212::103435
    [Crossref] [Google Scholar]
  37. Dattilo BF, Freeman RL, Zubovic YM, Brett CE, Straw AM, et al. 2019.. Time-richness and phosphatic microsteinkern accumulation in the Cincinnatian (Katian) Ordovician, USA: an example of polycyclic phosphogenic condensation. . Palaeogeogr. Palaeoclimatol. Palaeoecol. 535::109362
    [Crossref] [Google Scholar]
  38. Droser ML, Gehling JG, Jensen S. 1999.. When the worm turned: concordance of Early Cambrian ichnofabric and trace-fossil record in siliciclastic rocks of South Australia. . Geology 27:(7):62528
    [Crossref] [Google Scholar]
  39. Droser ML, Jensen S, Gehling JG. 2002.. Trace fossils and substrates of the terminal Proterozoic–Cambrian transition: implications for the record of early bilaterians and sediment mixing. . PNAS 99:(20):1257276
    [Crossref] [Google Scholar]
  40. Droser ML, Tarhan LG, Gehling JG. 2017.. The rise of animals in a changing environment: global ecological innovation in the late Ediacaran. . Annu. Rev. Earth Planet. Sci. 45::593617
    [Crossref] [Google Scholar]
  41. Du K, Ortega-Hernández J, Yang J, Yang X, Guo Q, et al. 2020.. A new early Cambrian Konservat-Lagerstätte expands the occurrence of Burgess Shale-type deposits on the Yangtze Platform. . Earth-Sci. Rev. 211::103409
    [Crossref] [Google Scholar]
  42. Dzik J. 1994.. Evolution of ‘small shelly fossils’ assemblages of the Early Paleozoic. . Acta Palaeontol. Pol. 39:(3):247313
    [Google Scholar]
  43. Dzik J. 2005.. Behavioral and anatomical unity of the earliest burrowing animals and the cause of the “Cambrian explosion. .” Paleobiology 31:(3):50321
    [Crossref] [Google Scholar]
  44. Edwards CT, Fike DA, Saltzman MR, Lu W, Lu Z. 2018.. Evidence for local and global redox conditions at an Early Ordovician (Tremadocian) mass extinction. . Earth Planet. Sci. Lett. 481::12535
    [Crossref] [Google Scholar]
  45. Edwards CT, Saltzman MR, Leslie SA, Bergström SM, Sedlacek ARC, et al. 2015.. Strontium isotope (87Sr/86Sr) stratigraphy of Ordovician bulk carbonate: implications for preservation of primary seawater values. . Geolog. Soc. Am. Bull. 127:(9–10):127589
    [Crossref] [Google Scholar]
  46. Edwards CT, Saltzman MR, Royer DL, Fike DA. 2017.. Oxygenation as a driver of the Great Ordovician Biodiversification Event. . Nat. Geosci. 10:(12):92529
    [Crossref] [Google Scholar]
  47. Erwin DH, Laflamme M, Tweedt SM, Sperling EA, Pisani D, Peterson KJ. 2011.. The Cambrian conundrum: early divergence and later ecological success in the early history of animals. . Science 334:(6059):109197
    [Crossref] [Google Scholar]
  48. Erwin DH, Valentine JW. 2013.. The Cambrian Explosion. Genwodd Village, CO:: Roberts & Co.
    [Google Scholar]
  49. Fan H, Wen H, Zhu X. 2016.. Marine redox conditions in the Early Cambrian ocean: insights from the Lower Cambrian phosphorite deposits, South China. . J. Earth Sci. 27::28296
    [Crossref] [Google Scholar]
  50. Fan J, Shen S, Erwin DH, Sadler PM, MacLeod N, et al. 2020.. A high-resolution summary of Cambrian to Early Triassic marine invertebrate biodiversity. . Science 367:(6475):27277
    [Crossref] [Google Scholar]
  51. Fortey R. 2000.. Olenid trilobites: the oldest known chemoautotrophic symbionts?. PNAS 97:(12):657478
    [Crossref] [Google Scholar]
  52. Gaines RR. 2014.. Burgess Shale-type preservation and its distribution in space and time. . Paleontol. Soc. Pap. 20::12346
    [Crossref] [Google Scholar]
  53. Gehling JG, Jensen S, Droser ML, Myrow PM, Narbonne GM. 2001.. Burrowing below the basal Cambrian GSSP, Fortune Head, Newfoundland. . Geol. Mag. 138:(2):21318
    [Crossref] [Google Scholar]
  54. Gill BC, Dahl TW, Hammarlund EU, LeRoy MA, Gordon GW, et al. 2021.. Redox dynamics of later Cambrian oceans. . Palaeogeogr. Palaeoclimatol. Palaeoecol. 581::110623
    [Crossref] [Google Scholar]
  55. Gill BC, Lyons TW, Saltzman MR. 2007.. Parallel, high-resolution carbon and sulfur isotope records of the evolving Paleozoic marine sulfur reservoir. . Palaeogeogr. Palaeoclimatol. Palaeoecol. 256:(3–4):15673
    [Crossref] [Google Scholar]
  56. Gill BC, Lyons TW, Young SA, Kump LR, Knoll AH, Saltzman MR. 2011.. Geochemical evidence for widespread euxinia in the Later Cambrian ocean. . Nature 469:(7328):8083
    [Crossref] [Google Scholar]
  57. Glass LM, Phillips D. 2006.. The Kalkarindji continental flood basalt province: a new Cambrian large igneous province in Australia with possible links to faunal extinctions. . Geology 34:(6):46164
    [Crossref] [Google Scholar]
  58. Goldberg SL, Present TM, Finnegan S, Bergmann KD. 2021.. A high-resolution record of early Paleozoic climate. . PNAS 118:(6):e2013083118
    [Crossref] [Google Scholar]
  59. Grotzinger J, Adams E, Schroder S. 2005.. Microbial–metazoan reefs of the terminal Proterozoic Nama Group (c. 550–543 Ma), Namibia. . Geol. Mag. 142:(5):499517
    [Crossref] [Google Scholar]
  60. Guilbaud R, Slater BJ, Poulton SW, Harvey THP, Brocks JJ, et al. 2018.. Oxygen minimum zones in the early Cambrian ocean. . Geochem. Perspect. Lett. 6::3338
    [Crossref] [Google Scholar]
  61. Hammarlund EU, Von Stedingk K, Påhlman S. 2018.. Refined control of cell stemness allowed animal evolution in the oxic realm. . Nat. Ecol. Evol. 2:(2):22028
    [Crossref] [Google Scholar]
  62. Harper DA, Topper TP, Cascales-Miñana B, Servais T, Zhang Y-D, Ahlberg P. 2019.. The Furongian (late Cambrian) biodiversity gap: real or apparent?. Palaeoworld 28:(1–2):412
    [Crossref] [Google Scholar]
  63. He T, Zhu M, Mills BJ, Wynn PM, Zhuravlev AY, et al. 2019.. Possible links between extreme oxygen perturbations and the Cambrian radiation of animals. . Nat. Geosci. 12:(6):46874
    [Crossref] [Google Scholar]
  64. Hearing TW, Harvey THP, Williams M, Leng MJ, Lamb AL, et al. 2018.. An early Cambrian greenhouse climate. . Sci. Adv. 4:(5):eaar5690
    [Crossref] [Google Scholar]
  65. Hsieh S, Plotnick RE, Bush AM. 2022.. The Phanerozoic aftermath of the Cambrian information revolution: sensory and cognitive complexity in marine faunas. . Paleobiology 48:(3):397419
    [Crossref] [Google Scholar]
  66. Ivantsov AY, Zhuravlev AY, Leguta AV, Krassilov VA, Melnikova LM, Ushatinskaya GT. 2005.. Palaeoecology of the early Cambrian Sinsk biota from the Siberian platform. . Palaeogeogr. Palaeoclimatol. Palaeoecol. 220:(1–2):6988
    [Crossref] [Google Scholar]
  67. Kendall B, Dahl TW, Anbar AD. 2017.. The stable isotope geochemistry of molybdenum. . Rev. Mineral. Geochem. 82:(1):683732
    [Crossref] [Google Scholar]
  68. Knoll AH, Bambach RK, Payne JL, Pruss S, Fischer WW. 2007.. Paleophysiology and end-Permian mass extinction. . Earth Planet. Sci. Lett. 256:(3–4):295313
    [Crossref] [Google Scholar]
  69. Knoll AH, Carroll SB. 1999.. Early animal evolution: emerging views from comparative biology and geology. . Science 284:(5423):212937
    [Crossref] [Google Scholar]
  70. Knoll AH, Fischer WW, 2011.. Skeletons and ocean chemistry: the long view. . In Ocean Acidification, ed. JP Gattuso, L Hansson , pp. 6782. Oxford, UK:: Oxford Univ. Press
    [Google Scholar]
  71. Knoll AH, Sperling EA. 2014.. Oxygen and animals in Earth history. . PNAS 111:(11):39078
    [Crossref] [Google Scholar]
  72. Krause AJ, Mills BJW, Zhang S, Planavsky NJ, Lenton TM, Poulton SW. 2018.. Stepwise oxygenation of the Paleozoic atmosphere. . Nat. Commun. 9:(1):4081
    [Crossref] [Google Scholar]
  73. Kröger BJ, Desrochers A, Ernst A. 2017.. The reengineering of reef habitats during the Great Ordovician Biodiversification Event. . Palaios 32:(9):58499
    [Crossref] [Google Scholar]
  74. Lau KV, Romaniello SJ, Zhang F. 2019.. The uranium isotope paleoredox proxy. . In Elements in Geochemical Tracers in Earth System Science, Vol. 6454, ed. TW Lyons, AV Turchyn, CT Reinhard , p. 27. New York:: Cambridge Univ. Press
    [Google Scholar]
  75. Lee J-H, Chen J, Chough SK. 2015.. The middle–late Cambrian reef transition and related geological events: a review and new view. . Earth-Sci. Rev. 145::6684
    [Crossref] [Google Scholar]
  76. Lee J-H, Riding R. 2018.. Marine oxygenation, lithistid sponges, and the early history of Paleozoic skeletal reefs. . Earth-Sci. Rev. 181::98121
    [Crossref] [Google Scholar]
  77. Lee MS, Soubrier J, Edgecombe GD. 2013.. Rates of phenotypic and genomic evolution during the Cambrian explosion. . Curr. Biol. 23:(19):188995
    [Crossref] [Google Scholar]
  78. Lenton TM, Daines SJ, Mills BJW. 2018.. COPSE reloaded: an improved model of biogeochemical cycling over Phanerozoic time. . Earth-Sci. Rev. 178::128
    [Crossref] [Google Scholar]
  79. LeRoy MA, Gill BC. 2019.. Evidence for the development of local anoxia during the Cambrian SPICE event in eastern North America. . Geobiology 17:(4):381400
    [Crossref] [Google Scholar]
  80. LeRoy MA, Gill BC, Sperling EA, McKenzie NR, Park T-YS. 2021.. Variable redox conditions as an evolutionary driver? A multi-basin comparison of redox in the middle and later Cambrian oceans (Drumian-Paibian). . Palaeogeogr. Palaeoclimatol. Palaeoecol. 566::110209
    [Crossref] [Google Scholar]
  81. Li C, Jin C, Planavsky NJ, Algeo TJ, Cheng M, et al. 2017.. Coupled oceanic oxygenation and metazoan diversification during the early–middle Cambrian?. Geology 39:(8):70710
    [Crossref] [Google Scholar]
  82. Li X, Droser ML. 1997.. Nature and distribution of Cambrian shell concentrations: evidence from the Basin and Range Province of the western United States (California, Nevada, and Utah). . Palaios 12:(2):11126
    [Crossref] [Google Scholar]
  83. Lu W, Ridgwell A, Thomas E, Hardisty DS, Luo G, et al. 2018.. Late inception of a resiliently oxygenated upper ocean. . Science 361::17477
    [Crossref] [Google Scholar]
  84. Maas A, Braun A, Dong X-P, Donoghue PCJ, Müller KJ, et al. 2006.. The ‘Orsten’—more than a Cambrian Konservat-Lagerstätte yielding exceptional preservation. . Palaeoworld 15:(3):26682
    [Crossref] [Google Scholar]
  85. Maloof AC, Porter SM, Moore JL, Dudas FO, Bowring SA, et al. 2010.. The earliest Cambrian record of animals and ocean geochemical change. . Geol. Soc. Am. Bull. 122:(11–12):173174
    [Crossref] [Google Scholar]
  86. Mángano MG, Buatois LA. 2017.. The Cambrian revolutions: trace-fossil record, timing, links and geobiological impact. . Earth-Sci. Rev. 173::96108
    [Crossref] [Google Scholar]
  87. Marshall CR. 2006.. Explaining the Cambrian “explosion” of animals. . Annu. Rev. Earth Planet. Sci. 34::35584
    [Crossref] [Google Scholar]
  88. Maxwell V, Thuy B, Pruss SB. 2021.. An Early Triassic small shelly fossil-style assemblage from the Virgin Limestone Member, Moenkopi Formation, western United States. . Lethaia 54:(3):36877
    [Crossref] [Google Scholar]
  89. McKenzie NR, Hughes NC, Gill BC, Myrow PM. 2014.. Plate tectonic influences on Neoproterozoic–early Paleozoic climate and animal evolution. . Geology 42:(2):12730
    [Crossref] [Google Scholar]
  90. Mills DB, Ward LM, Jones C, Sweeten B, Forth M, et al. 2014.. Oxygen requirements of the earliest animals. . PNAS 111:(11):416872
    [Crossref] [Google Scholar]
  91. Montañez IP, Banner JL, Osleger DA, Borg LE, Bosserman PJ. 1996.. Integrated Sr isotope variations and sea-level history of Middle to Upper Cambrian platform carbonates: implications for the evolution of Cambrian seawater 87Sr/86Sr. . Geology 24:(10):91720
    [Crossref] [Google Scholar]
  92. Murdock DJ. 2020.. The ‘biomineralization toolkit’ and the origin of animal skeletons. . Biol. Rev. 95:(5):137292
    [Crossref] [Google Scholar]
  93. Nelson LL, Ramezani J, Almond JE, Darroch SA, Taylor WL, et al. 2022.. Pushing the boundary: a calibrated Ediacaran-Cambrian stratigraphic record from the Nama Group in northwestern Republic of South Africa. . Earth Planet. Sci. Lett. 580::117396
    [Crossref] [Google Scholar]
  94. Newman S, Daye M, Fakra S, Marcus MA, Pajusalu M, et al. 2019.. Experimental preservation of muscle tissue in quartz sand and kaolinite. . Palaios 34:(9):43751
    [Crossref] [Google Scholar]
  95. Newman S, Klepac-Ceraj V, Mariotti G, Pruss S, Watson N, Bosak T. 2017.. Experimental fossilization of mat-forming cyanobacteria in coarse-grained siliciclastic sediments. . Geobiology 15:(4):48498
    [Crossref] [Google Scholar]
  96. Nursall JR. 1959.. Oxygen as a prerequisite to the origin of the Metazoa. . Nature 183:(4669):117072
    [Crossref] [Google Scholar]
  97. O'Brien G, Milnes A, Veeh H, Heggie D, Riggs S, et al. 1990.. Sedimentation dynamics and redox iron-cycling: controlling factors for the apatite–glauconite association on the East Australian continental margin. . Geol. Soc. Lond. Spec. Publ. 52:(1):6186
    [Crossref] [Google Scholar]
  98. Orr PJ, Briggs DE, Kearns SL. 1998.. Cambrian Burgess Shale animals replicated in clay minerals. . Science 281:(5380):117375
    [Crossref] [Google Scholar]
  99. Pagès A, Schmid S, Edwards D, Barnes S, He N, Grice K. 2016.. A molecular and isotopic study of palaeoenvironmental conditions through the middle Cambrian in the Georgina Basin, central Australia. . Earth Planet. Sci. Lett. 447::2132
    [Crossref] [Google Scholar]
  100. Paterson JR, Edgecombe GD, García-Bellido DC. 2020.. Disparate compound eyes of Cambrian radiodonts reveal their developmental growth mode and diverse visual ecology. . Sci. Adv. 6:(49):eabc6721
    [Crossref] [Google Scholar]
  101. Paterson JR, Edgecombe GD, Lee MS. 2019.. Trilobite evolutionary rates constrain the duration of the Cambrian explosion. . PNAS 116:(10):439499
    [Crossref] [Google Scholar]
  102. Paterson JR, García-Bellido DC, Lee MS, Brock GA, Jago JB, Edgecombe GD. 2011.. Acute vision in the giant Cambrian predator Anomalocaris and the origin of compound eyes. . Nature 480:(7376):23740
    [Crossref] [Google Scholar]
  103. Pates S, Bicknell RDC. 2019.. Elongated thoracic spines as potential predatory deterrents in olenelline trilobites from the lower Cambrian of Nevada. . Palaeogeogr. Palaeoclimatol. Palaeoecol. 516::295306
    [Crossref] [Google Scholar]
  104. Peters SE, Gaines RR. 2012.. Formation of the ‘Great Unconformity’ as a trigger for the Cambrian explosion. . Nature 484:(7394):36366
    [Crossref] [Google Scholar]
  105. Planavsky NJ. 2014.. The elements of marine life. . Nat. Geosci. 7:(12):85556
    [Crossref] [Google Scholar]
  106. Porter SM. 2004.. Closing the phosphatization window: testing for the influence of taphonomic megabias on the pattern of small shelly fossil decline. . Palaios 19:(2):17883
    [Crossref] [Google Scholar]
  107. Pruss SB, Dwyer CH, Smith EF, Macdonald FA, Tosca NJ. 2019c.. Phosphatized early Cambrian archaeocyaths and small shelly fossils (SSFs) of southwestern Mongolia. . Palaeogeogr. Palaeoclimatol. Palaeoecol. 513::16677
    [Crossref] [Google Scholar]
  108. Pruss SB, Finnegan S, Fischer WW, Knoll AH. 2010.. Carbonates in skeleton-poor seas: new insights from Cambrian and Ordovician strata of Laurentia. . Palaios 25:(2):7384
    [Crossref] [Google Scholar]
  109. Pruss SB, Jones DS, Fike DA, Tosca NJ, Wignall PB. 2019a.. Marine anoxia and sedimentary mercury enrichments during the Late Cambrian SPICE event in northern Scotland. . Geology 47:(5):47578
    [Crossref] [Google Scholar]
  110. Pruss SB, Smith EF, Leadbetter O, Nolan RZ, Hicks M, Fike DA. 2019b.. Palaeoecology of the archaeocyathan reefs from the lower Cambrian Harkless Formation, southern Nevada, western United States and carbon isotopic evidence for their demise. . Palaeogeogr. Palaeoclimatol. Palaeoecol. 536::109389
    [Crossref] [Google Scholar]
  111. Pruss SB, Tosca NJ, Stark C. 2018.. Small shelly fossil preservation and the role of early diagenetic redox in the Early Triassic. . Palaios 33:(10):44150
    [Crossref] [Google Scholar]
  112. Reinhard CT, Planavsky NJ, Gill BC, Ozaki K, Robbins LJ, et al. 2017.. Evolution of the global phosphorus cycle. . Nature 541:(7637):38689
    [Crossref] [Google Scholar]
  113. Rowland SM, Gangloff RA. 1988.. Structure and paleoecology of Lower Cambrian reefs. . Palaios 3:(2):11135
    [Crossref] [Google Scholar]
  114. Saltzman MR, Edwards CT, Adrain JM, Westrop SR. 2015.. Persistent oceanic anoxia and elevated extinction rates separate the Cambrian and Ordovician radiations. . Geology 43:(9):80710
    [Crossref] [Google Scholar]
  115. Saltzman MR, Ripperdan RL, Brasier M, Lohmann KC, Robison RA, et al. 2000.. A global carbon isotope excursion (SPICE) during the Late Cambrian: relation to trilobite extinctions, organic-matter burial and sea level. . Palaeogeogr. Palaeoclimatol. Palaeoecol. 162:(3–4):21123
    [Crossref] [Google Scholar]
  116. Saltzman MR, Young SA, Kump LR, Gill BC, Lyons TW, Runnegar B. 2011.. Pulse of atmospheric oxygen during the late Cambrian. . PNAS 108:(10):387681
    [Crossref] [Google Scholar]
  117. Seilacher A, Pflüger F. 1994.. From biomats to benthic agriculture: a biohistoric revolution. . In Biostabilization of Sediments, ed. WE Krumbein, DM Paterson, LJ Stal , pp. 97105. Oldenburg, Ger:.: Bibl. Informationsyst. Univ. Oldenberg
    [Google Scholar]
  118. Servais T, Cascales-Miñana B, Harper DAT, Lefebvre B, Munnecke A, et al. 2023.. No (Cambrian) explosion and no (Ordovician) event: a single long-term radiation in the early Palaeozoic. . Palaeogeogr. Palaeoclimatol. Palaeoecol. 623::111592
    [Crossref] [Google Scholar]
  119. Servais T, Owen AW, Harper DA, Kröger B, Munnecke A. 2010.. The Great Ordovician Biodiversification Event (GOBE): the palaeoecological dimension. . Palaeogeogr. Palaeoclimatol. Palaeoecol. 294:(3–4):99119
    [Crossref] [Google Scholar]
  120. Servais T, Perrier V, Danelian T, Klug C, Martin R, et al. 2016.. The onset of the ‘Ordovician Plankton Revolution’ in the late Cambrian. . Palaeogeogr. Palaeoclimatol. Palaeoecol. 458::1228
    [Crossref] [Google Scholar]
  121. Shields G, Stille P. 2001.. Diagenetic constraints on the use of cerium anomalies as palaeoseawater redox proxies: an isotopic and REE study of Cambrian phosphorites. . Chem. Geol. 175:(1–2):2948
    [Crossref] [Google Scholar]
  122. Shields GA, Carden GAF, Veizer J, Meidla T, Rong J-Y, Li R-Y. 2003.. Sr, C, and O isotope geochemistry of Ordovician brachiopods: a major isotopic event around the Middle-Late Ordovician transition. . Geochim. Cosmochim. Acta 67:(11):200525
    [Crossref] [Google Scholar]
  123. Skovsted CB, Peel JS. 2007.. Small shelly fossils from the argillaceous facies of the Lower Cambrian Forteau Formation of western Newfoundland. . Acta Palaeontol. Pol. 52:(4):72948
    [Google Scholar]
  124. Sperling EA, Frieder CA, Raman AV, Girguis PR, Levin LA, Knoll AH. 2013.. Oxygen, ecology, and the Cambrian radiation of animals. . PNAS 110:(33):1344651
    [Crossref] [Google Scholar]
  125. Sperling EA, Melchin MJ, Fraser T, Stockey RG, Farrell UC, et al. 2021.. A long-term record of early to mid-Paleozoic marine redox change. . Sci. Adv. 7:(28):eabf4382
    [Crossref] [Google Scholar]
  126. Sperling EA, Stockey RG. 2018.. The temporal and environmental context of early animal evolution: considering all the ingredients of an “explosion. .” Integr. Comp. Biol. 58:(4):60522
    [Crossref] [Google Scholar]
  127. Sperling EA, Wolock CJ, Morgan AS, Gill BC, Kunzmann M, et al. 2015.. Statistical analysis of iron geochemical data suggests limited late Proterozoic oxygenation. . Nature 523:(7561):45154
    [Crossref] [Google Scholar]
  128. Stigall AL, Freeman RL, Edwards CT, Rasmussen CM. 2020.. A multidisciplinary perspective on the Great Ordovician Biodiversification Event and the development of the early Paleozoic world. . Palaeogeogr. Palaeoclimatol. Palaeoecol. 543::109521
    [Crossref] [Google Scholar]
  129. Tarhan LG. 2018.. The early Paleozoic development of bioturbation—evolutionary and geobiological consequences. . Earth-Sci. Rev. 178::177207
    [Crossref] [Google Scholar]
  130. Tarhan LG, Droser ML. 2014.. Widespread delayed mixing in early to middle Cambrian marine shelfal settings. . Palaeogeogr. Palaeoclimatol. Palaeoecol. 399::31022
    [Crossref] [Google Scholar]
  131. Tarhan LG, Nolan RZ, Westacott S, Shaw JO, Pruss SB. 2023.. Environmental and temporal patterns in bioturbation in the Cambrian–Ordovician of Western Newfoundland. . Geobiology 21:(5):57191
    [Crossref] [Google Scholar]
  132. Taylor JF. 2006.. History and status of the biomere concept. . Mem. Assoc. Australas. Palaeontol. 32::247
    [Google Scholar]
  133. Topper T, Betts MJ, Dorjnamjaa D, Li G, Li L, et al. 2022.. Locating the BACE of the Cambrian: Bayan Gol in southwestern Mongolia and global correlation of the Ediacaran–Cambrian boundary. . Earth-Sci. Rev. 229::104017
    [Crossref] [Google Scholar]
  134. Tostevin R, Wood R, Shields G, Poulton S, Guilbaud R, et al. 2016.. Low-oxygen waters limited habitable space for early animals. . Nat. Commun. 7:(1):12818
    [Crossref] [Google Scholar]
  135. Trotter JA, Williams IS, Barnes CR, Lécuyer C, Nicoll RS. 2008.. Did cooling oceans trigger Ordovician biodiversification? Evidence from conodont thermometry. . Science 321:(5888):55054
    [Crossref] [Google Scholar]
  136. van de Velde S, Mills BJW, Meysman FJR, Lenton TM, Poulton SW. 2018.. Early Palaeozoic ocean anoxia and global warming driven by the evolution of shallow burrowing. . Nat Commun. 9::2554
    [Crossref] [Google Scholar]
  137. Vermeij GJ. 1989.. The origin of skeletons. . Palaios 4:(6):58589
    [Crossref] [Google Scholar]
  138. Wang J, Tarhan LG, Jacobson AD, Oehlert AM, Planavsky NJ. 2023.. The evolution of the marine carbonate factory. . Nature 615::26569
    [Crossref] [Google Scholar]
  139. Wei G-Y, Planavsky NJ, He T, Zhang F, Stockey RG, et al. 2021.. Global marine redox evolution from the late Neoproterozoic to the early Paleozoic constrained by the integration of Mo and U isotope records. . Earth-Sci. Rev. 214::103506
    [Crossref] [Google Scholar]
  140. Wei G-Y, Planavsky NJ, Tarhan LG, Chen X, Wei W, et al. 2018.. Marine redox fluctuation as a potential trigger for the Cambrian explosion. . Geology 46:(8):58790
    [Crossref] [Google Scholar]
  141. Wood R, Erwin DH. 2018.. Innovation not recovery: Dynamic redox promotes metazoan radiations. . Biol. Rev. 93:(2):86373
    [Crossref] [Google Scholar]
  142. Wood R, Liu AG, Bowyer F, Wilby PR, Dunn FS, et al. 2019.. Integrated records of environmental change and evolution challenge the Cambrian Explosion. . Nat. Ecol. Evol. 3:(4):52838
    [Crossref] [Google Scholar]
  143. Wotte T, Strauss H, Fugmann A, Garbe-Schönberg D. 2012.. Paired δ34S data from carbonate-associated sulfate and chromium-reducible sulfur across the traditional Lower–Middle Cambrian boundary of W-Gondwana. . Geochim. Cosmochim. Acta 85::22853
    [Crossref] [Google Scholar]
  144. Zhang H, Fan H, Wen H, Han T, Zhou T, Xia Y. 2022.. Controls of REY enrichment in the early Cambrian phosphorites. . Geochim. Cosmochim. Acta 324::11739
    [Crossref] [Google Scholar]
  145. Zhang H, Xiao S. 2017.. Three-dimensionally phosphatized meiofaunal bivalved arthropods from the Upper Cambrian of Western Hunan, South China. . Neues Jahrb. Geol. Paläontol. Abh. 285:(1):3952
    [Crossref] [Google Scholar]
  146. Zhang L, Algeo TJ, Zhao L, Dahl TW, Chen Z-Q, et al. 2023.. Environmental and trilobite diversity changes during the middle-late Cambrian SPICE event. . Geol. Soc. Am. Bull. https://doi.org/10.1130/B36421.1
    [Google Scholar]
  147. Zhao Z, Pang X, Zou C, Dickson AJ, Basu A, et al. 2023.. Dynamic oceanic redox conditions across the late Cambrian SPICE event constrained by molybdenum and uranium isotopes. . Earth Planet. Sci. Lett. 604::118013
    [Crossref] [Google Scholar]
  148. Zhuravlev AY, Mitchell EG, Bowyer F, Wood R, Penny A. 2022.. Increases in reef size, habitat and metacommunity complexity associated with Cambrian radiation oxygenation pulses. . Nat. Commun. 13:(1):7523
    [Crossref] [Google Scholar]
  149. Zhuravlev AY, Wood RA. 1996.. Anoxia as the cause of the mid-Early Cambrian (Botomian) extinction event. . Geology 24:(4):31114
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-earth-031621-070316
Loading
/content/journals/10.1146/annurev-earth-031621-070316
Loading

Data & Media loading...

Supplemental Materials

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error