1932

Abstract

Echinoderms are a major group (phylum) of invertebrate animals with a rich fossil record stretching back to the Cambrian period, approximately 518 million years ago. While all modern species are characterized by pentaradial (i.e., fivefold) symmetry, Cambrian echinoderms also include taxa with different types of symmetry (e.g., bilateral symmetry). These distinct forms were present from very early in the phylum's history, demonstrating that the initial diversification of echinoderm body plans was extremely rapid. The phylogenetic relationships of Cambrian echinoderms have long been debated, hindering efforts to reconstruct the evolution of the phylum, but recent analyses have consistently recovered bilaterally symmetrical forms as the earliest-diverging echinoderms. This reveals the sequence of character acquisition in echinoderm evolution, indicating that radial symmetry is a derived character of the group, which evolved after the acquisition of a mineralized skeleton. Cambrian echinoderms were adapted to diverse modes of life, with ecology an important factor shaping their early evolution. However, the reasons why echinoderms evolved their unique pentaradial body plan remain unclear.

  • ▪  The Cambrian fossil record provides valuable insights into the origin and early evolution of echinoderms over half a billion years ago.
  • ▪  Cambrian echinoderms were morphologically diverse, with several extinct groups exhibiting character combinations that distinguish them from living species.
  • ▪  Phylogenetic analyses of bilateral, asymmetrical, triradial, and pentaradial fossils have allowed us to decipher the assembly of the modern echinoderm body plan.
  • ▪  Echinoderms became ecologically diverse early in their history, with varied modes of feeding, locomotion, and attachment.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-031621-113343
2024-07-23
2024-10-05
Loading full text...

Full text loading...

/deliver/fulltext/earth/52/1/annurev-earth-031621-113343.html?itemId=/content/journals/10.1146/annurev-earth-031621-113343&mimeType=html&fmt=ahah

Literature Cited

  1. Álvarez-Armada N, Cameron CB, Bauer JE, Rahman IA. 2022.. Heterochrony and parallel evolution of echinoderm, hemichordate and cephalochordate internal bars. . Proc. R. Soc. B 289::20220258
    [Crossref] [Google Scholar]
  2. Álvaro JJ, Zamora S, Clausen S, Vizcaïno D, Smith AB. 2013.. The role of abiotic factors in the Cambrian Substrate Revolution: a review from the benthic community replacements of West Gondwana. . Earth-Sci. Rev. 118::6982
    [Crossref] [Google Scholar]
  3. Arshinoff BI, Cary GA, Karimi K, Foley S, Agalakov S, et al. 2021.. Echinobase: leveraging an extant model organism database to build a knowledgebase supporting research on the genomics and biology of echinoderms. . Nucleic Acids Res. 50::D97079
    [Crossref] [Google Scholar]
  4. Bather FA. 1930.. A class of Echinoderma without trace of radiate symmetry. . Arch. Zool. Ital. 14::43139
    [Google Scholar]
  5. Berg-Madsen V. 1986.. Middle Cambrian cystoid (sensu lato) stem columnals from Bornholm, Denmark. . Lethaia 19::6780
    [Crossref] [Google Scholar]
  6. Blake DB, Guensburg TE. 2015.. The class Somasteroidea (Echinodermata, Asterozoa): morphology and occurrence. . J. Paleontol. 89::46586
    [Crossref] [Google Scholar]
  7. Bottjer DJ, Davidson EH, Peterson KJ, Cameron RA. 2006.. Paleogenomics of echinoderms. . Science 314::95660
    [Crossref] [Google Scholar]
  8. Bourlat SJ, Juliusdottir T, Lowe CJ, Freeman R, Aronowicz J, et al. 2006.. Deuterostome phylogeny reveals monophyletic chordates and the new phylum Xenoturbellida. . Nature 444::8588
    [Crossref] [Google Scholar]
  9. Budd GE, Jackson ISC. 2016.. Ecological innovations in the Cambrian and the origins of the crown group phyla. . Philos. Trans. R. Soc. B 371::20150287
    [Crossref] [Google Scholar]
  10. Cameron CB. 2005.. A phylogeny of the hemichordates based on morphological characters. . Can. J. Zool. 83::196215
    [Crossref] [Google Scholar]
  11. Cameron CB, Bishop CD. 2012.. Biomineral ultrastructure, elemental constitution and genomic analysis of biomineralization-related proteins in hemichordates. . Proc. R. Soc. B 279::304148
    [Crossref] [Google Scholar]
  12. Cameron CB, Garey JR, Swalla BJ. 2000.. Evolution of the chordate body plan: new insights from phylogenetic analyses of deuterostome phyla. . PNAS 97::446974
    [Crossref] [Google Scholar]
  13. Candia Carnevali MD. 2006.. Regeneration in echinoderms: repair, regrowth and cloning. . Invert. Surv. J. 3::6476
    [Google Scholar]
  14. Cannon JT, Kocot KM, Waits DS, Weese DA, Swalla BJ, et al. 2014.. Phylogenomic resolution of the Hemichordate and Echinoderm clade. . Curr. Biol. 24::282732
    [Crossref] [Google Scholar]
  15. Cannon JT, Vellutini BC, Smith J, Ronquist F, Jondelius U, Hejnol A. 2016.. Xenacoelomorpha is the sister group to Nephrozoa. . Nature 530::8993
    [Crossref] [Google Scholar]
  16. Caron JB, Conway Morris S, Shu D. 2010.. Tentaculate fossils from the Cambrian of Canada (British Columbia) and China (Yunnan) interpreted as primitive deuterostomes. . PLOS ONE 5::e9586
    [Crossref] [Google Scholar]
  17. Carpenter PH. 1884.. Report upon the Crinoidea collected during the voyage of H.M.S. Challenger during the years 1873–76. Part I.—General morphology, with descriptions of the stalked crinoids. . Rep. Sci. Res. Voy. H.M.S. Challenger Zool. 11::1442
    [Google Scholar]
  18. Chen JY, Zhou GQ, Zhu MY, Yeh KY. 1996.. The Chengjiang Biota: A Unique Window of the Cambrian Explosion. Taichung, Taiwan:: Natl. Mus. Nat. Sci.
    [Google Scholar]
  19. Clark EG, Hutchinson JR, Bishop PJ, Briggs DEG. 2020.. Arm waving in stylophoran echinoderms: Three-dimensional mobility analysis illuminates cornute locomotion. . R. Soc. Open Sci. 7::200191
    [Crossref] [Google Scholar]
  20. Clausen S, Hou X-G, Bergström J, Franzén C. 2010.. The absence of echinoderms from the Lower Cambrian Chengjiang fauna of China: palaeoecological and palaeogeographical implications. . Palaeogeogr. Palaeoclimatol. Palaeoecol. 294::13341
    [Crossref] [Google Scholar]
  21. Clausen S, Smith AB. 2005.. Palaeoanatomy and biological affinities of a Cambrian deuterostome (Stylophora). . Nature 438::35154
    [Crossref] [Google Scholar]
  22. Cracknell K, García–Bellido DC, Gehling JG, Ankor MJ, Darroch SAF, Rahman IA. 2021.. Pentaradial eukaryote suggests expansion of suspension feeding in White Sea–aged Ediacaran communities. . Sci. Rep. 11::4121
    [Crossref] [Google Scholar]
  23. Crimes TP, Jiang Z. 1986.. Trace fossils from the Precambrian–Cambrian boundary candidate at Meishucun, Jinning, Yunnan, China. . Geol. Mag. 123::64149
    [Crossref] [Google Scholar]
  24. Cunningham JA, Liu AG, Bengtson S, Donoghue PCJ. 2017.. The origin of animals: Can molecular clocks and the fossil record be reconciled?. BioEssays 39::112
    [Crossref] [Google Scholar]
  25. Daley PEJ. 1995.. Anatomy, locomotion and ontogeny of the solute Castericystis vali from the Middle Cambrian of Utah. . Geobios 28::585615
    [Crossref] [Google Scholar]
  26. Daley PEJ. 1996.. The first solute which is attached as an adult: a Mid-Cambrian fossil from Utah with echinoderm and chordate affinities. . Zool. J. Linn. Soc. 117::40540
    [Crossref] [Google Scholar]
  27. David B, Lefebvre B, Mooi R, Parsley RL. 2000.. Are homalozoans echinoderms? An answer from the extraxial-axial theory. . Paleobiology 26::52955
    [Crossref] [Google Scholar]
  28. David B, Mooi R. 1999.. Comprendre les échinodermes: la contribution du modèle extraxial-axial. . Bull. Soc. Géol. Fr. 170::91101
    [Google Scholar]
  29. Dean J. 1999.. What makes an ophiuroid? A morphological study of the problematic Ordovician stelleroid Stenaster and the palaeobiology of the earliest asteroids and ophiuroids. . Zool. J. Linn. Soc. 126::22550
    [Crossref] [Google Scholar]
  30. Deline B, Thompson JR, Smith NS, Zamora S, Rahman IA, et al. 2020.. Evolution and development at the origin of a phylum. . Curr. Biol. 30::167279
    [Crossref] [Google Scholar]
  31. Dohrmann M, Wörheide G. 2017.. Dating early animal evolution using phylogenomic data. . Sci. Rep. 7::3599
    [Crossref] [Google Scholar]
  32. Dominguez P, Jacobson AG, Jefferies RPS. 2002.. Paired gill slits in a fossil with a calcite skeleton. . Nature 417::84144
    [Crossref] [Google Scholar]
  33. Donovan SK, Paul CRC. 1982.. Lower Cambrian echinoderm plates from Cowley, Shropshire, England. . Geol. Mag. 119::61114
    [Crossref] [Google Scholar]
  34. Dornbos SQ. 2006.. Evolutionary palaeoecology of early epifaunal echinoderms: response to increasing bioturbation levels during the Cambrian. . Palaeogeogr. Palaeoclimatol. Palaeoecol. 237::22539
    [Crossref] [Google Scholar]
  35. Dornbos SQ. 2008.. Tiering history of early epifaunal suspension-feeding echinoderms. . In Echinoderm Paleobiology, ed. WI Ausich, GD Webster , pp. 13243. Bloomington:: Indiana Univ. Press
    [Google Scholar]
  36. Dunn CW, Hejnol A, Matus DQ, Pang K, Browne WE, et al. 2008.. Broad phylogenomic sampling improves resolution of the animal tree of life. . Nature 452::74549
    [Crossref] [Google Scholar]
  37. Durham JW. 1967.. Notes on the Helicoplacoidea and early echinoderms. . J. Paleontol. 41::97102
    [Google Scholar]
  38. Durham JW. 1993.. Observations on the Early Cambrian helicoplacoid echinoderms. . J. Paleontol. 67::590604
    [Crossref] [Google Scholar]
  39. Dylus DV, Czarkwiani A, Blowes LM, Elphick MR, Oliveri P. 2018.. Developmental transcriptomics of the brittle star Amphiura filiformis reveals gene regulatory network rewiring in echinoderm larval skeleton evolution. . Genome Biol. 19::26
    [Crossref] [Google Scholar]
  40. Dzik J. 2003.. Anatomical information content in the Ediacaran fossils and their possible zoological affinities. . Integr. Comp. Biol. 43::11426
    [Crossref] [Google Scholar]
  41. Dzik J, Baliński A, Sun Y. 2017.. The origin of tetraradial symmetry in cnidarians. . Lethaia 50::30621
    [Crossref] [Google Scholar]
  42. Elicki O, Schneider J. 1992.. Lower Cambrian (Atdabanian/Botomian) shallow-marine carbonates of the Görlitz Synclinorium (Saxony/Germany). . Facies 26::5566
    [Crossref] [Google Scholar]
  43. Erwin DH. 2021.. Developmental capacity and the early evolution of animals. . J. Geol. Soc. 178::jgs020-245
    [Crossref] [Google Scholar]
  44. Erwin DH, Laflamme M, Tweedt SM, Sperling EA, Pisani D, Peterson KJ. 2011.. The Cambrian conundrum: early divergence and later ecological success in the early history of animals. . Science 334::109197
    [Crossref] [Google Scholar]
  45. Ettensohn CA. 2017.. Sea urchins as a model system for studying embryonic development. . In Reference Module in Biomedical Sciences, ed. MJ Caplan . Amsterdam:: Elsevier
    [Google Scholar]
  46. Fedonkin MA. 1985.. Precambrian metazoans: the problems of preservation, systematics and evolution. . Philos. Trans. R. Soc. B 311::2745
    [Google Scholar]
  47. Fell HB. 1962.. A classification of echinoderms. . Tuatara 10::13840
    [Google Scholar]
  48. Foote M. 1992.. Paleozoic record of morphological diversity in blastozoan echinoderms. . PNAS 89::732529
    [Crossref] [Google Scholar]
  49. Formery L, Peluso P, Kohnle I, Malnick J, Pitel M. 2023.. Molecular evidence of anteroposterior patterning in adult echinoderms. . bioRxiv 2023.02.05.527185. https://doi.org/10.1101/2023.02.05.527185
  50. Friend D. 1995.. Palaeobiology of Palaeozoic medusiform stem group echinoderms. PhD Thesis , Univ. Cambridge, UK:
    [Google Scholar]
  51. Gao F, Thompson JR, Petsios E, Erkenbrack E, Moats RA, et al. 2015.. Juvenile skeletogenesis in anciently diverged sea urchin clades. . Dev. Biol. 400::14858
    [Crossref] [Google Scholar]
  52. García-Arrarás JE, Dolmatov IY. 2010.. Echinoderms: potential model systems for studies on muscle regeneration. . Curr. Pharm. Des. 16::94255
    [Crossref] [Google Scholar]
  53. Gehling JG. 1987.. Earliest known echinoderm—a new Ediacaran fossil from the Pound Subgroup of South Australia. . Alcheringa 11::33745
    [Crossref] [Google Scholar]
  54. Gillis JA, Fritzenwanker JH, Lowe CJ. 2012.. A stem-deuterostome origin of the vertebrate pharyngeal transcriptional network. . Proc. R. Soc. B 279::23746
    [Crossref] [Google Scholar]
  55. Glaessner MF, Wade M. 1966.. The Late Precambrian fossils from Ediacara, South Australia. . Palaeontology 9::599628
    [Google Scholar]
  56. Gorzelak P. 2021.. Functional Micromorphology of the Echinoderm Skeleton. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  57. Gorzelak P, Salamon MA, Baumiller TK. 2012.. Predator-induced macroevolutionary trends in Mesozoic crinoids. . PNAS 109::70047
    [Crossref] [Google Scholar]
  58. Gorzelak P, Zamora S. 2013.. Stereom microstructures of Cambrian echinoderms revealed by cathodoluminescence (CL). . Palaeontol. Electron. 16::32A
    [Google Scholar]
  59. Guensburg TE, Mooi R, Mongiardino Koch N. 2023.. Crinoid calyx origin from stem radial echinoderms. . J. Paleontol. 97::1092115
    [Crossref] [Google Scholar]
  60. Guensburg TE, Sprinkle J. 2000.. Ecologic radiation of Cambro-Ordovician echinoderms. . In The Ecology of the Cambrian Radiation, ed. AY Zhuravlev, R Riding , pp. 42844. New York:: Columbia Univ. Press
    [Google Scholar]
  61. Guo J, Li Y, Han H, Ou Q, Zhou J, Zheng Y. 2012.. New macroscopic problematic fossil from the Early Cambrian Yanjiahe Biota, Yichang, Hubei, China. . Acta Geol. Sin. 86::79198
    [Crossref] [Google Scholar]
  62. Hall CMS, Droser ML, Clites EC, Gehling JG. 2020.. The short-lived but successful tri-radial body plan: a view from the Ediacaran of Australia. . Aust. J. Earth Sci. 67::88595
    [Crossref] [Google Scholar]
  63. Haugh BN, Bell BM. 1980.. Fossilized viscera in primitive echinoderms. . Science 209::65357
    [Crossref] [Google Scholar]
  64. Hopkins MJ, Smith AB. 2015.. Dynamic evolutionary change in post-Paleozoic echinoids and the importance of scale when interpreting changes in rates of evolution. . PNAS 112::375863
    [Crossref] [Google Scholar]
  65. Hou X-G, Bergström J, Wang H, Feng X, Chen A. 1999.. The Chengjiang Fauna. Exceptionally Well-Preserved Animals from 530 Million Years Ago. Kunming, China:: Yunnan Sci. & Technol.
    [Google Scholar]
  66. Hou X-G, Siveter DJ, Siveter DJ, Aldridge RJ, Cong P, et al. 2017.. The Cambrian Fossils of Chengjiang, China: The Flowering of Early Animal Life. Chichester, UK:: Wiley
    [Google Scholar]
  67. Hunter AW, Ortega-Hernández J. 2021.. A new somasteroid from the Fezouata Lagerstätte in Morocco and the Early Ordovician origin of Asterozoa. . Biol. Lett. 17::20200809
    [Crossref] [Google Scholar]
  68. Ivantsov AY, Zakrevskaya MA. 2021.. Trilobozoa, Precambrian tri-radial organisms. . Paleontol. J. 55::72741
    [Crossref] [Google Scholar]
  69. Jablonski D. 2017.. Approaches to macroevolution: 2. Sorting of variation, some overarching issues, and general conclusions. . Evol. Biol. 44::45175
    [Crossref] [Google Scholar]
  70. Jaekel O. 1918.. Phylogenie und system der Pelmatozoen. . Paläont. Z. 3::1128
    [Crossref] [Google Scholar]
  71. Janies DA, Witter Z, Linchangco GV, Foltz DW, Miller AK, et al. 2016.. EchinoDB, an application for comparative transcriptomics of deeply-sampled clades of echinoderms. . BMC Bioinform. 17::48
    [Crossref] [Google Scholar]
  72. Jefferies RPS. 1986.. The Ancestry of the Vertebrates. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  73. Jell PA. 2014.. A Tremadocian asterozoan from Tasmania and a late Llandovery edrioasteroid from Victoria. . Alcheringa 38::52840
    [Crossref] [Google Scholar]
  74. Kammer TW, Sumrall CD, Zamora S, Ausich WI, Deline B. 2013.. Oral region homologies in Paleozoic crinoids and other plesiomorphic pentaradial echinoderms. . PLOS ONE 8::e77989
    [Crossref] [Google Scholar]
  75. Kapli P, Natsidis P, Leite DJ, Fursman M, Jeffrie N, et al. 2021.. Lack of support for Deuterostomia prompts reinterpretation of the first Bilateria. . Sci. Adv. 7::eabe2741
    [Crossref] [Google Scholar]
  76. Knaust D, Neumann C. 2016.. Asteriacites von Schlotheim, 1820—the oldest valid ichnogenus name—and other asterozoan-produced trace fossils. . Earth-Sci. Rev. 157::11120
    [Crossref] [Google Scholar]
  77. Kouchinsky A, Bengtson S, Clausen S, Vendrasco MJ. 2015.. An early Cambrian fauna of skeletal fossils from the Emyaksin Formation, northern Siberia. . Acta Palaeontol. Pol. 60::421512
    [Google Scholar]
  78. Kouchinsky A, Bengtson S, Runnegar B, Skovsted C, Steiner M, Vendrasco M. 2012.. Chronology of early Cambrian biomineralization. . Geol. Mag. 149::22151
    [Crossref] [Google Scholar]
  79. Larouche-Bilodeau C, Cameron CB. 2022.. Acorn worm ossicle ultrastructure and composition and the origin of the echinoderm skeleton. . R. Soc. Open Sci. 9::220773
    [Crossref] [Google Scholar]
  80. Lefebvre B. 2003.. Functional morphology of stylophoran echinoderms. . Palaeontology 46::51155
    [Crossref] [Google Scholar]
  81. Lefebvre B, Guensburg TE, Martin ELO, Mooi R, Nardin E, et al. 2019.. Exceptionally preserved soft parts in fossils from the Lower Ordovician of Morocco clarify stylophoran affinities within basal deuterostomes. . Geobios 52::2736
    [Crossref] [Google Scholar]
  82. Lefebvre B, Lerosey-Aubril R. 2018.. Laurentian origin of solutan echinoderms: new evidence from the Guzhangian (Cambrian Series 3) Weeks Formation of Utah, USA. . Geol. Mag. 155::1190204
    [Crossref] [Google Scholar]
  83. Lefebvre B, Sumrall CD, Shroat-Lewis RA, Reich M, Webster GD, et al. 2013.. Palaeobiogeography of Ordovician echinoderms. . Geol. Soc. Lond. Mem. 38::17398
    [Crossref] [Google Scholar]
  84. Lefebvre B, Vizcaino D. 1999.. New Ordovician cornutes (Echinodermata, Stylophora) from Montagne Noire and Brittany (France) and a revision of the order Cornuta Jaekel 1901. . Geobios 32::42158
    [Crossref] [Google Scholar]
  85. Li Y, Dunn FS, Murdock DJE, Guo J, Rahman IA, Cong P. 2023.. Cambrian stem-group ambulacrarians and the nature of the ancestral deuterostome. . Curr. Biol. 33::235966.e2
    [Crossref] [Google Scholar]
  86. Lowe CJ, Clarke DN, Medeiros DM, Rokhsar DS, Gerhart J. 2015.. The deuterostome context of chordate origins. . Nature 520::45665
    [Crossref] [Google Scholar]
  87. Marshall CR. 2006.. Explaining the Cambrian “explosion. .” Annu. Rev. Earth Planet. Sci. 34::35584
    [Crossref] [Google Scholar]
  88. Martín-Durán JM, Janssen R, Wennberg S, Budd GE, Hejnol A. 2012.. Deuterostomic development in the protostome Priapulus caudatus. . Curr. Biol. 22::216166
    [Crossref] [Google Scholar]
  89. Martín-Durán JM, Passamaneck YJ, Martindale MQ, Hejnol A. 2017.. The developmental basis for the recurrent evolution of deuterostomy and protostomy. . Nat. Ecol. Evol. 1::0005
    [Crossref] [Google Scholar]
  90. McClay DR. 2011.. Evolutionary crossroads in developmental biology: sea urchins. . Development 138::263948
    [Crossref] [Google Scholar]
  91. McKie T, Donovan SK. 1992.. Lower Cambrian echinoderm ossicles from the Fucoid Beds, northwest Scotland. . Scott. J. Geol. 28::4953
    [Crossref] [Google Scholar]
  92. Mooi R. 2016.. Phylum Echinodermata. . In Invertebrates, ed. RC Brusca, W Moore, SM Shuster , pp. 9681005. Sunderland, UK:: Sinauer Assoc.
    [Google Scholar]
  93. Mooi R, David B. 1998.. Evolution within a bizarre phylum: homologies of the first echinoderms. . Amer. Zool. 38::96574
    [Crossref] [Google Scholar]
  94. Mooi R, David B. 2008.. Radial symmetry, the anterior/posterior axis, and echinoderm Hox genes. . Annu. Rev. Ecol. Evol. Syst. 39::4362
    [Crossref] [Google Scholar]
  95. Mooi R, David B, Marchand D. 1994.. Echinoderm skeletal homologies: classical morphology meets modern phylogenetics. . In Echinoderms Through Time, ed. B David, A Guille, J Féral, M Roux , pp. 8795. Rotterdam, Neth:.: Balkema
    [Google Scholar]
  96. Mooi R, David B, Wray GA. 2005.. Arrays in rays: terminal addition in echinoderms and its correlation with gene expression. . Evol. Dev. 7::54255
    [Crossref] [Google Scholar]
  97. Murdock DJE. 2020.. The ‘biomineralization toolkit’ and the origin of animal skeletons. . Biol. Rev. 95::137292
    [Crossref] [Google Scholar]
  98. Na L, Kiessling W. 2015.. Diversity partitioning during the Cambrian radiation. . PNAS 112::47026
    [Crossref] [Google Scholar]
  99. Nanglu K, Caron JB, Cameron CB. 2020.. Cambrian tentaculate worms and the origin of the hemichordate body plan. . Curr. Biol. 30::423844.e1
    [Crossref] [Google Scholar]
  100. Nanglu K, Cole SR, Wright DF, Souto C. 2023.. Worms and gills, plates and spines: the evolutionary origins and incredible disparity of deuterostomes revealed by fossils, genes, and development. . Biol. Rev. 98::31651
    [Crossref] [Google Scholar]
  101. Nardin E, Lefebvre B. 2010.. Unravelling extrinsic and intrinsic factors of the early Palaeozoic diversification of blastozoan echinoderms. . Palaeogeogr. Palaeoclimatol. Palaeoecol. 294::14260
    [Crossref] [Google Scholar]
  102. Nardin E, Lefebvre B, Fatka O, Nohejlová M, Kašička L, et al. 2017.. Evolutionary implications of a new transitional blastozoan echinoderm from the middle Cambrian of the Czech Republic. . J. Paleontol. 91::67284
    [Crossref] [Google Scholar]
  103. Nichols D. 1972.. The water-vascular system in living and fossil echinoderms. . Palaeontology 15::51938
    [Google Scholar]
  104. Noailles F, Lefebvre B, Kašička L. 2014.. A probable case of heterochrony in the solutan Dendrocystites Barrande, 1887 (Echinodermata: Blastozoa) from the Upper Ordovician of the Prague Basin (Czech Republic) and a revision of the family Dendrocystitidae Bassler, 1938. . Bull. Geosci. 89::45176
    [Crossref] [Google Scholar]
  105. Nohejlová M, Nardin E, Fatka O, Kaika L, Szabad M. 2019.. Morphology, palaeoecology and phylogenetic interpretation of the Cambrian echinoderm Vyscystis (Barrandian area, Czech Republic). . J. Syst. Palaeontol. 7::161934
    [Crossref] [Google Scholar]
  106. Novack-Gottshall PM, Sultan A, Smith NS, Purcell J, Hanson KE, et al. 2022.. Morphological volatility precedes ecological innovation in early echinoderms. . Nat. Ecol. Evol. 6::26272
    [Crossref] [Google Scholar]
  107. Paul CRC, Smith AB. 1984.. The early radiation and phylogeny of echinoderms. . Biol. Rev. 59::44381
    [Crossref] [Google Scholar]
  108. Peel JS. 2017.. The oldest pelmatozoan encrusted hardground and holdfasts from Laurentia (Cambrian Series 2–3). . GFF 139::195204
    [Crossref] [Google Scholar]
  109. Peterson KJ, Arenas-Mena C, Davidson EH. 2000.. The A/P axis in echinoderm ontogeny and evolution: evidence from fossils and molecules. . Evol. Dev. 2::93101
    [Crossref] [Google Scholar]
  110. Peterson KJ, Eernisse DJ. 2001.. Animal phylogeny and the ancestry of bilaterians: inferences from morphology and 18S rDNA gene sequences. . Evol. Dev. 3::170205
    [Crossref] [Google Scholar]
  111. Peterson KJ, Eernisse DJ. 2016.. The phylogeny, evolutionary developmental biology, and paleobiology of the Deuterostomia: 25 years of new techniques, new discoveries, and new ideas. . Org. Divers. Ecol. 16::40118
    [Crossref] [Google Scholar]
  112. Philippe H, Brinkmann H, Copley RR, Moroz LL, Nakano H, et al. 2011.. Acoelomorph flatworms are deuterostomes related to Xenoturbella. . Nature 470::25558
    [Crossref] [Google Scholar]
  113. Philippe H, Poustka AJ, Chiodin M, Hoff KJ, Dessimoz C, et al. 2019.. Mitigating anticipated effects of systematic errors supports sister-group relationship between Xenacoelomorpha and Ambulacraria. . Curr. Biol. 29::181826.e6
    [Crossref] [Google Scholar]
  114. Pisani D, Feuda R, Peterson KJ, Smith AB. 2012.. Resolving phylogenetic signal from noise when divergence is rapid: a new look at the old problem of echinoderm class relationships. . Mol. Phylogenet. Evol. 62::2734
    [Crossref] [Google Scholar]
  115. Rahman IA, Clausen S. 2009.. Re-evaluating the palaeobiology and affinities of the Ctenocystoidea (Echinodermata). . J. Syst. Palaeontol. 7::41326
    [Crossref] [Google Scholar]
  116. Rahman IA, Darroch SAF, Racicot RA, Laflamme M. 2015a.. Suspension feeding in the enigmatic Ediacaran organism Tribrachidium demonstrates complexity of Neoproterozoic ecosystems. . Sci. Adv. 1::e1500800
    [Crossref] [Google Scholar]
  117. Rahman IA, O'Shea J, Lautenschlager S, Zamora S. 2020.. Potential evolutionary trade-off between feeding and stability in Cambrian cinctan echinoderms. . Palaeontology 63::689701
    [Crossref] [Google Scholar]
  118. Rahman IA, Sutton MD, Bell MA. 2009.. Evaluating phylogenetic hypotheses of carpoids using stratigraphic congruence indices. . Lethaia 42::42437
    [Crossref] [Google Scholar]
  119. Rahman IA, Zamora S. 2009.. The oldest cinctan carpoid (stem-group Echinodermata) and the evolution of the water vascular system. . Zool. J. Linn. Soc. 157::42032
    [Crossref] [Google Scholar]
  120. Rahman IA, Zamora S, Falkingham PL, Phillips JC. 2015b.. Cambrian cinctan echinoderms shed light on feeding in the ancestral deuterostome. . Proc. R. Soc. B 282::20151964
    [Crossref] [Google Scholar]
  121. Reich A, Dunn C, Akasaka K, Wessel G. 2015.. Phylogenomic analyses of Echinodermata support the sister groups of Asterozoa and Echinozoa. . PLOS ONE 10::e0119627
    [Crossref] [Google Scholar]
  122. Rouse GW, Wilson NG, Carvajal JI, Vrijenhoek RC. 2016.. New deep-sea species of Xenoturbella and the position of Xenacoelomorpha. . Nature 530::9497
    [Crossref] [Google Scholar]
  123. Roux M. 1975.. Microstructural analysis of the crinoid stem. . Paleontol. Contrib. Univ. Kansas 75::17
    [Google Scholar]
  124. Ruppert EE. 2005.. Key characters uniting hemichordates and chordates: homologies or homoplasies?. Can. J. Zool. 83::823
    [Crossref] [Google Scholar]
  125. Seilacher A. 1999.. Biomat-related lifestyles in the Precambrian. . Palaios 14::8693
    [Crossref] [Google Scholar]
  126. Sheffield SL, Limbeck MR, Bauer JE, Hill SA, Nohejlová M. 2022.. A Review of Blastozoan Echinoderm Respiratory Structures. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  127. Shu D-G, Conway Morris S, Han J, Zhang Z-F, Liu J-N. 2004.. Ancestral echinoderms from the Chengjiang deposits of China. . Nature 430::42228
    [Crossref] [Google Scholar]
  128. Simakov O, Kawashima T, Marlétaz F, Jenkins J, Koyanagi R, et al. 2015.. Hemichordate genomes and deuterostome origins. . Nature 527::45965
    [Crossref] [Google Scholar]
  129. Smith AB. 1980.. Stereom microstructure of the echinoid test. . Spec. Pap. Palaeontol. 25::181
    [Google Scholar]
  130. Smith AB. 1988.. Patterns of diversification and extinction in Early Palaeozoic echinoderms. . Palaeontology 31::799828
    [Google Scholar]
  131. Smith AB. 2005.. The pre-radial history of echinoderms. . Geol. J. 40::25580
    [Crossref] [Google Scholar]
  132. Smith AB. 2008.. Deuterostomes in a twist: the origins of a radical new body plan. . Evol. Dev. 10::493503
    [Crossref] [Google Scholar]
  133. Smith AB, Peterson KJ, Wray G, Littlewood DTJ. 2004.. From bilateral symmetry to pentaradiality. . In Assembling the Tree of Life, ed. J Cracraft, MJ Donoghue , pp. 36583. New York:: Oxford Univ. Press
    [Google Scholar]
  134. Smith AB, Zamora S. 2013.. Cambrian spiral-plated echinoderms from Gondwana reveal the earliest pentaradial body plan. . Proc. R. Soc. B 280::20131197
    [Crossref] [Google Scholar]
  135. Smith AB, Zamora S, Álvaro JJ. 2013.. The oldest echinoderm faunas from Gondwana show that echinoderm body plan diversification was rapid. . Nat. Commun. 4::1385
    [Crossref] [Google Scholar]
  136. Sprinkle J. 1973.. Morphology and Evolution of Blastozoan Echinoderms. Cambridge, MA:: Harvard Univ. Mus. Comp. Zool.
    [Google Scholar]
  137. Sprinkle J, Wilbur BC. 2005.. Deconstructing helicoplacoids: reinterpreting the most enigmatic Cambrian echinoderms. . Geol. J. 40::28193
    [Crossref] [Google Scholar]
  138. Stephenson DG. 1967.. Pentameral symmetry in echinoderms. . Nature 216::994
    [Crossref] [Google Scholar]
  139. Stephenson DG. 1974.. Pentamerism and the ancestral echinoderm. . Nature 250::8283
    [Crossref] [Google Scholar]
  140. Sumrall CD. 1997.. The role of fossils in the phylogenetic reconstruction of Echinodermata. . Geobiology of Echinoderms, , 26988. Paleontol. Soc. Pap. Vol. 3. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  141. Sumrall CD, Wray GA. 2007.. Ontogeny in the fossil record: diversification of body plans and the evolution of “aberrant” symmetry in Paleozoic echinoderms. . Paleobiology 33::14963
    [Crossref] [Google Scholar]
  142. Swalla BJ, Smith AB. 2008.. Deciphering deuterostome phylogeny: molecular, morphological and palaeontological perspectives. . Philos. Trans. R. Soc. B 363::155768
    [Crossref] [Google Scholar]
  143. Telford MJ, Lowe CJ, Cameron CB, Ortega-Martinez O, Aronowicz J, et al. 2014.. Phylogenomic analysis of echinoderm class relationships supports Asterozoa. . Proc. R. Soc. B 281::20140479
    [Crossref] [Google Scholar]
  144. Thompson JR. 2022.. Molecular Paleobiology of the Echinoderm Skeleton. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  145. Topper TP, Guo J, Clausen S, Skovsted CB, Zhang Z. 2019.. A stem group echinoderm from the basal Cambrian of China and the origins of Ambulacraria. . Nat. Commun. 10::1366
    [Crossref] [Google Scholar]
  146. Topper TP, Guo J, Clausen S, Skovsted CB, Zhang Z. 2020.. Reply to ‘Re-evaluating the phylogenetic position of the enigmatic early Cambrian deuterostome Yanjiahella. .’ Nat. Commun. 11::1287
    [Crossref] [Google Scholar]
  147. Ubaghs G. 1975.. Early Paleozoic echinoderms. . Annu. Rev. Earth Planet. Sci. 3::7998
    [Crossref] [Google Scholar]
  148. Ubaghs G, Vizcaïno D. 1990.. A new eocrinoid from the Lower Cambrian of Spain. . Palaeontology 33::24956
    [Google Scholar]
  149. Wilkie IC, Sugni M, Gupta HS, Candia Carnevali MD, Elphick MR. 2021.. The mutable collagenous tissue of echinoderms: from biology to biomedical applications. . In Soft Matter for Biomedical Applications, ed. HS Azevedo, JF Mano, J Borges , pp. 133. Cambridge, UK:: R. Soc. Chem.
    [Google Scholar]
  150. Wood R, Zhuravlev AY. 2012.. Escalation and ecological selectively of mineralogy in the Cambrian radiation of skeletons. . Earth-Sci. Rev. 115::24961
    [Crossref] [Google Scholar]
  151. Wright A, Wagner PJ, Wright DF. 2021.. Testing Character Evolution Models in Phylogenetic Paleobiology. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  152. Wright DF. 2017.. Phenotypic innovation and adaptive constraints in the evolutionary radiation of Palaeozoic crinoids. . Sci. Rep. 7::13745
    [Crossref] [Google Scholar]
  153. Xian X-F, Zhang H-Q, Liu Y-H, Zhang Y-N. 2019.. Diverse radial symmetry among the Cambrian Fortunian fossil embryos from northern Sichuan and southern Shaanxi Provinces, South China. . Palaeoworld 28::22533
    [Crossref] [Google Scholar]
  154. Yang C, Li X-H, Zhu M, Condon DJ, Chen J. 2018.. Geochronological constraint on the Cambrian Chengjiang biota, South China. . J. Geol. Soc. 175::65966
    [Crossref] [Google Scholar]
  155. Zamora S. 2013.. Morphology and phylogenetic interpretation of a new Cambrian edrioasteroid (Echinodermata) from Spain. . Palaeontology 56::42131
    [Crossref] [Google Scholar]
  156. Zamora S, Clausen S, Álvaro JJ, Smith AB. 2010.. Pelmatozoan echinoderms as colonizers of carbonate firmgrounds in mid-Cambrian high energy environments. . Palaios 25::76468
    [Crossref] [Google Scholar]
  157. Zamora S, Deline B, Álvaro JJ, Rahman IA. 2017a.. The Cambrian Substrate Revolution and the early evolution of attachment in suspension-feeding echinoderms. . Earth-Sci. Rev. 171::47891
    [Crossref] [Google Scholar]
  158. Zamora S, Lefebvre B, Álvaro JJ, Clausen S, Elicki O, et al. 2013a.. Global Cambrian echinoderm diversity and palaeobiogeography. . Geol. Soc. Lond. Mem. 38::15164
    [Crossref] [Google Scholar]
  159. Zamora S, Rahman IA. 2014.. Deciphering the early evolution of echinoderms with Cambrian fossils. . Palaeontology 57::110519
    [Crossref] [Google Scholar]
  160. Zamora S, Rahman IA, Smith AB. 2012.. Plated Cambrian bilaterians reveal the earliest stages of echinoderm evolution. . PLOS ONE 7::e38296
    [Crossref] [Google Scholar]
  161. Zamora S, Rahman IA, Smith AB. 2013b.. The ontogeny of cinctans (stem-group Echinodermata) as revealed by a new genus, Graciacystis, from the middle Cambrian of Spain. . Palaeontology 56::399410
    [Crossref] [Google Scholar]
  162. Zamora S, Rahman IA, Sumrall CD, Gibson AP, Thompson JR. 2022.. Cambrian edrioasteroid reveals new mechanism for secondary reduction of the skeleton in echinoderms. . Proc. R. Soc. B 289::20212733
    [Crossref] [Google Scholar]
  163. Zamora S, Smith AB. 2010.. The oldest isorophid edrioasteroid (Echinodermata) and the evolution of attachment strategies in Cambrian edrioasteroids. . Acta Palaeontol. Pol. 55::48794
    [Crossref] [Google Scholar]
  164. Zamora S, Sumrall CD, Zhu X-J, Lefebvre B. 2017b.. A new stemmed echinoderm from the Furongian of China and the origin of Glyptocystitida (Blastozoa, Echinodermata). . Geol. Mag. 154::46575
    [Crossref] [Google Scholar]
  165. Zamora S, Wright DF, Mooi R, Lefebvre B, Guensburg T, et al. 2020.. Re-evaluating the phylogenetic position of the enigmatic early Cambrian deuterostome Yanjiahella. . Nat. Commun. 11::1286
    [Crossref] [Google Scholar]
  166. Zamora S, Wright DF, Nohejlová M. 2023.. Phylogenetic position of Bohemiacinctus gen. nov. (Echinodermata, Cincta) from the Cambrian of Bohemia: implications for macroevolution and the role of taxon sampling in palaeobiological systematics. . Pap. Palaeontol. 9::e1482
    [Crossref] [Google Scholar]
  167. Zhang Z, Holmer LE, Skovsted CB, Brock GA, Budd GE, et al. 2013.. A sclerite-bearing stem group entoproct from the early Cambrian and its implications. . Sci. Rep. 3::1066
    [Crossref] [Google Scholar]
  168. Zhao J, Rahman IA, Zamora S, Chen A, Cong P. 2022.. The first edrioasteroid echinoderm from the lower Cambrian Chengjiang biota of Yunnan Province, China. . Pap. Palaeontol. 8::e1465
    [Crossref] [Google Scholar]
  169. Zhu M. 1997.. Precambrian–Cambrian trace fossils from eastern Yunnan, China: implications for Cambrian explosion. . Bull. Natl. Mus. Nat. Sci. 10::275312
    [Google Scholar]
/content/journals/10.1146/annurev-earth-031621-113343
Loading
/content/journals/10.1146/annurev-earth-031621-113343
Loading

Data & Media loading...

Supplemental Materials

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error